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Abstract

Background: With improvements in next-generation DNA sequencing technology, lower cost is 

needed to collect genetic data. More machine learning techniques can be used to help with cancer 

analysis and diagnosis.

Methods: We developed an ensemble machine learning system named performance-weighted-

voting model for cancer type classification in 6,249 samples across 14 cancer types. Our ensemble 

system consists of five weak classifiers (logistic regression, SVM, random forest, XGBoost and 

neural networks). We first used cross-validation to get the predicted results for the five classifiers. 

The weights of the five weak classifiers can be obtained based on their predictive performance by 

solving linear regression functions. The final predicted probability of the performance-weighted-

voting model for a cancer type can be determined by the summation of each classifier’s weight 

multiplied by its predicted probability.

Results: Using the somatic mutation count of each gene as the input feature, the overall accuracy 

of the performance-weighted-voting model reached 71.46%, which was significantly higher than 

the five weak classifiers and two other ensemble models: the hard-voting model and the soft-

voting model. In addition, by analyzing the predictive pattern of the performance-weighted-voting 

model, we found that in most cancer types, higher tumor mutational burden can improve overall 

accuracy.

Conclusion: This study has important clinical significance for identifying the origin of cancer, 

especially for those where the primary cannot be determined. In addition, our model presents a 

good strategy for using ensemble systems for cancer type classification.
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INTRODUCTION

It is generally accepted that tumorigenesis is a process of cell renewal, replacement and 

accumulation of a series of oncogenes, tumor suppressor genes and genetic instability [1], 

resulting in the collapse of controlling cell division and apoptosis. Studies of cancer genetics 

have shown that a few driver mutations are enough to cause cancer [2]. In addition to the 

driver mutations, neutral mutations (or “passenger” mutations) are believed to be common as 

well [3,4]. The accumulation of driver and passenger mutations is a marker that documents 

the evolutionary history of cancer [5].

The identification of tumorigenesis and the type of cancer is important. Once a cancer type 

is classified, the diagnosis can be determined from the prior experience. Studies have shown 

that cancer cell metastasis can occur at the early stages of cancer progression [6–8]. In 

addition, about 3% to 9% of all cancer diagnoses are cancer of unknown primary (CUP) [9]. 

Misclassification of a cancer type or misidentification of cancer of unknown primary usually 

results in a poor prognosis. Though full of challenges, the definition of the primary of cancer 

is important. In particular, it will provide significant information on therapeutic strategies 

that could improve the survival of patients.

Two decades ago, only clinical information was available regarding cancer type 

classification. Accompanied by the improvements in next-generation DNA sequencing 

technology, genomic data is growing rapidly. The recent large-scale whole-exome 

sequencing (WES) and whole-genome sequencing (WGS) projects have displayed different 

patterns of mutations across cancer types [10–12]. A recent study analyzed an extensive 

catalog of somatic mutations from 30 most common cancer types and uncovered 20 distinct 

mutational signatures, as a consequence of the intrinsic slight infidelity of the DNA 

replication machinery, exogenous or endogenous mutagen exposures, enzymatic 

modification of DNA, or defective DNA repair [13]. The prevalence of different mutational 

patterns makes cancer type classification and therapeutic strategies more accurate.

Due to the complexity and high intra-tumor heterogeneity (ITH) within cancer cells [14], it 

is not easy to determine a cancer type directly. Fortunately, a variety of machine learning 

techniques and deep-learning algorithms have been widely applied in the last three decades 

for cancer analysis [15–18]. Most of these studies apply methods for the definition of 

tumorigenesis, modeling the progression of cancer and determining informative factors that 

are utilized in the early detection of cancer [19,20]. Since the nineties of the 20th century, 

machine learning models have become widely used for molecular classification through 

microarray and oligonucleotide chip gene expression data [21–24]. In the meantime, more 

advanced methods use microarray data to select effective genes for cancer type classification 

[25–27]. Accompanied by the development of The Cancer Genome Atlas (TCGA) project, 

more related studies directly targeted WES [28] and RNA sequencing data [29], as well as 

the studies that utilized epigenetic profiling to classify cancer of unknown primary [30]. 

Zeng et al. used non-smooth non-negative matrix factorization (nsNMF) and support vector 

machine (SVM) to study the associations between somatic mutations and cancers [28]. 

Liang et al. used sparse logistic regression with an L-1/2 penalty for gene selection in cancer 

classification problems, and proposed a coordinate descent algorithm with a new univariate 
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half thresholding operator to solve the L-1/2 penalized logistic regression [27]. Marquard et 
al. used a random forest method and multiple cancer genetic features to identify the primary 

site of the cancers of unknown primary origin [31]. More recently, Jiao et al. use neural 

networks model that integrate different features including single nucleotide variation (SNV), 

copy number alteration (CNA), structural variation (SV) from WGS data to classify the 

primary and metastasis of cancer cells [32].

Ensemble systems, also called multiple classifier systems, are becoming more and more 

popular as machine learning methods. They have demonstrated themselves to be very 

effective and extremely versatile in a broad spectrum of problem domains and real-world 

applications [33]. Ensemble systems are integrations of multiple machine learning classifiers 

whose decisions are combined [34]. In this study, we developed an ensemble machine 

learning model named performance-weighted-voting model based on the voting model. Our 

ensemble system consisted of five classifiers: logistic regression (LR), SVM, random forest 

(RF), extreme gradient boosting (XGBoost) and multilayer perceptron (MLP) neural 

network (NN). Unlike the basic voting model, the weights of the performance-weighted-

voting model differ across the weak classifiers (Fig. 1). What’s more, each classifier’s 

weights across cancer types are different. The weights of the five weak classifiers can be 

obtained based on their predictive performance by solving linear regression functions. We 

applied our model to learn and predict 6,249 samples across 14 cancer types from the TCGA 

somatic mutation data and finally achieved an average accuracy of 71.46%, which was the 

among the eight models mentioned in our study. In addition, our model can theoretically 

promote any combination of weak classifiers with a high degree of accuracy.

RESULTS

Data learning using five machine learning classifiers

We used mutation count per gene as the input feature to train the classifiers. The classifiers 

calculated the probability that belongs to each of the 14 cancer types through discriminative 

functions and output the cancer type that achieved the highest probability (see “Materials 

and Methods”). Figure 2 displays the overall predictive performance of the test set by the 

five classifiers with optimal parameters. Among the five classifiers, the logistic regression 

classifier (mean = 68.67%, SD = 1.21%) and the neural networks classifier (mean = 68.07%, 

SD = 0.94%) performed best, and the SVM (mean = 63.74%, SD = 0.72%) and XGBoost 

classifiers (mean = 62.89%, SD = 1.43%) followed closely. In contrast, the overall accuracy 

of the random forest classifier was only 54.79% (SD = 1.64%) that performed worse than 

the other classifiers.

The precision, recall and F1-score among the five classifiers are similar to their overall 

accuracies (Supplementary Table S1). The logistic regression classifier (precision = 71.13%, 

recall = 68.08%, F1-score = 68.84%) and neural networks (precision = 69.80%, recall = 

67.65%, F1-score = 68.14%) achieved higher scores than SVM (precision = 70.73%, recall = 

62.28%, F1-score = 64.39%), XGBoost (precision = 64.83%, recall = 61.50%, F1-score = 

62.40%) and random forest (precision = 60.47%, recall = 54.36%, F1-score = 53.00%). In 

particular, in most cancer types, the average F1-scores of logistic regression classifier and 

neural network classifier are the top two highest. Additionally, the F1-scores vary largely 
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among different cancer types. Three cancer types, LGG, SKCM and THCA, achieved F1-

scores greater than 80% in at least one classifier. In contrast, another three cancer types, 

HNSC, PRAD and STAD, performed poorly in all five classifiers, with no classifier 

achieving an F1-score greater than 60%.

Data learning using upgraded machine learning models

To improve the predictive accuracy, we considered to use ensemble methods by integrating 

the five classifiers for further prediction. We first applied two well-known models: the hard-

voting model and the soft-voting model. Comparing the predictive performance of the two 

voting models with the five classifiers, the overall accuracy of both hard-voting model 

(69.06%; SD = 1.33%) and the soft-voting model (69.66%; SD = 1.37%) were significantly 

higher (P-value<0.05, Wilcoxon rank-sum test) than any of the five classifiers. In both the 

two voting models, their weight to the weak classifiers are equal. To address this issue, we 

developed a weighted voting model: the performance-weighted-voting model. The 

performance-weighted-voting model can strengthen the power of the weak classifier that has 

better predictive performance by allocating a higher weight (see “Materials and Methods”). 

The average overall accuracy of the performance-weighted-voting model reaches 71.46% 

(SD = 1.02%), which is significantly higher (P-value = 2.5×10−3, Wilcoxon rank-sum test) 

than the soft-voting model, the second highest model (Table 1 and Supplementary Fig. S1). 

The average precision, recall and F1-score of the performance-weighted-voting model are 

72.67%, 70.97% and 72.02%, which is also significantly higher than the hard-voting model 

(72.25%, 68.35%, 69.24%), soft-voting model (72.08%, 68.49%, 69.36%) and five weak 

classifiers (Supplementary Table S1). In particular, the F1-score of the performance-

weighted-voting model reached 60% across all cancer types except STAD.

Theoretically, the hard-voting and the soft-voting models perform well only when all weak 

classifiers can achieve high overall accuracies. In contrast, the performance-weighted-voting 

model only relies on the highest accuracy of the weak classifiers in each specific cancer 

type. The model can filter the classifiers automatically by allocating different weights using 

a linear regression model. The performance-weighted-voting model would perform better if 

more weak classifiers were integrated.

Predictive pattern analysis of performance-weighted-voting model across cancer types

To evaluate the causes of misclassification predicted by the performance-weighted-voting 

model, we compared the different mutation count per sample between the correctly 

classified group and the misclassified group. The average mutation count per sample of the 

correctly classified group (215.18) is significantly higher (P-value = 5.4×10−3, Wilcoxon 

rank-sum test) than the misclassified group (142.27). More specificity, in 10 of 14 cancer 

types the average mutation count per sample of correctly classified groups was significantly 

higher (P-value < 0.05, Wilcoxon rank-sum test) than misclassified groups (Fig. 3). By 

contrast, in only 3 cancer types the average mutation count per sample of correctly classified 

groups was significantly lower (P-value < 0.05, Wilcoxon rank-sum test) than misclassified 

groups. The different mutation count between two groups implies that tumor mutation 

burden (TMB) as a cancer type-specific feature reveals a positive correlation to the 
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predictive accuracy [35]. A deeper understanding and utilization of the inner relationships 

will help to improve the predictive accuracy of our model.

We explored the confusion matrix for the performance-weighted-voting model to analyze the 

patterns of misclassification (Table 2). Based on the confusion matrix, the model is most 

confused in distinguishing between BRCA ~ PRAD, LUSC ~ LUAD and HNSC ~ LUSC, 

which at least eight samples were misclassified to the other cancer type in both of the two 

cancer types. The confusions in distinguishing between GBM ~ LGG and TRAD ~ PHCA 

are intermediate. Some of these confusions are informative. The LUAD and LUSC are both 

lung cancers and the LGG and GBM are both brain cancers, these cancer cells share 

common developmental origins [36]. Though BRCA and PRAD cancer cells arise in organs 

that are different, they are more similar than different and driven by steroid hormone 

signaling [37,38]. In addition, we found that the proportion of the patients who are current 

smoker or current reformed smoker for no more than 15 years of the misclassified samples 

in misclassified samples is significantly higher (P-value = 0.0249, Chi-squared test) than 

correctly classified samples between HNSC and LUSC cancer pair, and similarly for LUSC 

~ LUAD cancer pair (P-value = 0.0076, Chi-squared test). Tobacco smoking as an 

externality can change the characteristics and mutation signature [39] of these cancer types 

which may interfere with the prediction of classifiers.

We analyzed the final predictive probability across 14 cancer types for each of the samples, 

with 10 misclassified samples achieving a prediction probability greater than 70%. Among 

the 10 misclassified samples, four samples were GBM but predicted as LGG, three samples 

were LUAD but predicted as LUSC and three samples were HNSC but predicted as LUSC. 

We also scanned the predicted outcomes of five weak classifiers. To our surprise, in nearly 

14% (52) of the misclassified cases, all five classifiers offered the same prediction 

(Supplementary Table S1). In particular, of the 52 samples, six HNSC samples were derived 

into LUSC, four GBM samples were derived into LGG, four LGG samples were derived into 

GBM and three LUAD samples were derived into LUSC. These errors are consistent with 

the results of confusion matrix.

The predictive performance across different mutation type subsets

The MAF file contains 16 types of somatic mutations flagged by various calling software 

packages. Typically, most driver mutations are nonsynonymous mutations. These mutations 

are believed to have greater effects than synonymous mutations for tumorigenesis and cell 

evolution. To assess whether using different mutation types can improve the accuracy in 

cancer type classification, we used four different subsets of mutations (“missense mutation 

group”, “synonymous nonsynonymous mutation group”, “high impact mutation group” and 

“total mutation group”) as input features based on their different impacts on cancer evolution 

(see “Materials and Methods”).

Figure 4 presents the predictive results for the four cancer type groups. The overall accuracy 

of the “missense mutation group” as well as the “synonymous nonsynonymous mutation 

group” are significantly lower than the other two groups. The overall accuracies of the eight 

classifiers range from 44.31% to 57.86% in “missense mutation group” and from 49.39% to 

63.84% in “synonymous nonsynonymous mutation group”. The distributions of the “high 
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impact mutation group” (55.64%–68.86%) are very close to the “total mutation group” 

(54.79%–71.46%), but still lower. In general, the test results have demonstrated that using 

more mutation types helps to improve the predictive accuracy. One interpretation is that 

though some passenger mutations (e.g., synonymous mutations) do not affect cancer growth 

directly, they still provide useful information for cancer type classification through 

hitchhiking effect. Usually, a driver mutation provides a fitness advantage to cancer cells. 

The frequency of the adaptive mutation can be high because of the positive selection. In the 

meantime, the frequencies of the genetically linked passenger mutations are also increased 

accompanied by the driver mutation due to the linkage disequilibrium [40], which will 

strengthen the genetic characteristics of a cancer type. Furthermore, the overall accuracies of 

the eight classifiers reveal that the performance-weighted-voting model performed better 

than the other classifiers across all mutation type groups (Fig. 4).

The predictive performance using driver gene set

Studies are trying to use gene panels instead of total genes for cancer research. This trial will 

potentially enable cost-effective assessment of much larger numbers of samples for deeper 

biological and predictive insights. To this end, we aimed to test whether we can use less 

genes to improve the predictive performance of cancer type classification. Cancer driver 

genes are the genes whose mutations drive tumor growth. Herein, we used the mutation 

count of each of the 201 driver genes rather than the whole genes (see “Materials and 

Methods”) as input features. Unfortunately, all five weak classifiers, as well as the three 

voting models, failed to improve the overall accuracy. As the highest number of the eight 

classifiers, the overall accuracy models of performance-weighted-voting model (mean = 

61.35%, SD = 0.50%) is more than ten percent below the accuracy using the mutation count 

of each of the total genes as input features (Fig. 5).

DISCUSSION

This study used machine learning methods for cancer type classification for 6,249 samples 

across 14 cancer types. We attempt to assess, compare and analyze the performance of 

several classifiers that have been applied to, including logistic regression, support vector 

machine, random forest, neural networks and XGBoost. We used three-fold cross-validated 

grid-search over a parameter grid to optimize the parameters of the classifiers. To improve 

accuracy, we also employed three ensemble models, the hard-voting model, the soft-voting 

model and the performance-weighted-voting model, integrating the five weak classifiers. 

Relying on the performance-based methods to train the different weights of each weak 

classifier in the ensemble system, the overall accuracy of the performance-weighted-voting 

model reached 71.46%, which was significantly higher than the other classifiers. We used 

different mutation types based on their effect on cancer evolution for cancer type 

classification, and concluded that only using all mutation types yielded the highest accuracy 

(Fig. 4). We also attempted to use a set of driver genes [41] as the input feature, but found no 

improvement to the overall accuracy (Fig. 5). Our work on cancer type classification is 

similar to previous studies [32,42], but the two types of studies are different in a couple 

aspects. First, the machine learning classifiers they used (random forest, neural networks and 

soft-voting) are existing models, while we developed a new classifier and first proposed the 
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performance-based idea to weight weak classifiers in the ensemble system. Second, the 

performance-weighted-voting model, as an improved voting model, has demonstrated to be 

superior to the two standard voting models (the hard-voting model and the soft-voting 

model) within the same dataset.

To analyze the patterns of misclassification in the performance-weighted-voting model, we 

divided the predicted data into correctly classified and misclassified subsets and compared 

the mutation count per sample between the two subsets. The average mutation count of the 

correctly classified subset is significantly higher than the misclassified subset. More 

specifically, the average mutation count of correctly classified samples is significantly higher 

than misclassified samples in 10 of 14 cancer types (Fig. 3). We also discovered that some 

misclassifications are possibly due to the common developmental origin (LUAD ~ LUSC 

and GBM ~ LGG) [36], steroid hormone signaling (BRCA ~ PRAD) [37,38], and tobacco 

smoking (LUAD ~ LUSC and HNSC ~ LUSC) [39]. Others may be due to the algorithms of 

the classifiers. To address this problem, we need to build more detailed training subsets or 

integrate more genetic or phenotypic data for cancer type classification.

Cancer of unknown primary site is a heterogeneous group of cancers for which the 

anatomical site of origin remains occult after detailed investigation [43]. The identification 

of the cancer of unknown primary, as well as the origin of metastasis, is important but 

challenging [44]. This study has important clinical significance for identifying the origin of 

cancer, especially for those where the primary cannot be determined [45]. Considering the 

occurrence of cancer cell dissemination at the early stages of cancer progression [6,46–49], 

our model can help to identify the primary of metastatic cancer cell types that are present in 

the cancer cell genome. In other fields, including circulating tumor cells (CTC) research for 

cancer metastatic detection, our model also presents the potential for cell detection and 

predicts the risk of cancer remission [50,51]. In addition, our finding of a positive correlation 

between TMB and prediction accuracy provides cancer type-specific features [35]. These 

features may be used to interpret the immunotherapy variances in different cancer types 

[52,53], which may provide new strategies for cancer therapy.

MATERIALS AND METHODS

TCGA mutation data

The MAF file containing WES somatic mutations from 10,295 samples across 33 cancer 

types was downloaded from TCGA. Mutations were called by seven software packages 

(MuTect, MuSE, VarScan2, Radia, Pindel, Somatic Sniper and Indelocator) from Multi-

Center Mutation Calling in Multiple Cancers (MC3) working group [54]. All PASS somatic 

variants referred by two or more variant calling software packages were extracted. 344 

hypermutator samples were excluded as artifactual sensitivity to high background mutation 

rates might perturb the prediction of classifiers. 705 samples marked as “mutation call 

filter”, 167 samples marked as “pathology review” and 75 samples marked as “RNA 

degradation” referred by Bailey et al. [41] were also excluded. To ensure a high quality of 

the learning dataset, we preferred a minimum cutoff of 300 samples per cancer type. 

Ultimately, our cancer type classification dataset consisted of 1,174,111 SNPs from 6,249 

samples across 14 cancer types.
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Machine learning classifiers

Five well-known machine learning classifiers were employed for cancer type classification, 

including logistic regression, support vector machine, random forest, extreme gradient 

boosting, and multilayer perceptron neural networks.

The logistic regression classifier is a classification method used to assign observations to a 

discrete set of classes. It builds a regression model to predict the probability that a given data 

entry belongs to the category using the sigmoid function. The dimension of the input vector 

is known as features or predictors. The model was implemented using the Python package 

sklearn with the LogisticRegression function.

Unlike the logistic classifier, a support vector machine [55] classifier can use a kernel 

function to map the input vectors into high-dimensional feature spaces implicitly and 

compute a maximum-margin hyperplane decision surface that separates the classes. This 

hyperplane has numerous statistical characteristics. Capabilities of SVM classifiers can be 

further expanded by kernel tricks by creating nonlinear decision boundaries [56]. The model 

was implemented using the Python package sklearn with the SVC function.

Random forest classifier [57] is a strong classifier named forest consisting of many weak 

decision trees that can obtain better performance than a single tree. Each decision tree is 

trained using a new training data set which is produced by random sampling with 

replacement from the original data set, i.e., a case may be sampled many times in a new 

training data set. The final decision is made via a majority vote from the decision trees in the 

forest. The model was implemented using the Python package sklearn with the 

RandomForestClassifier function.

Extreme gradient boosting [58] classifier is also a strong learner that combines a set of weak 

decision trees, but differs from random forest. In the random forest classifier, the training 

data set is randomly sampled as a replacement from the original data set. In contrast, in the 

extreme gradient boosting classifier, the training data set of the new decision tree is the 

residual between the predictive result of the previous decision trees and the correct result. 

The extreme gradient boosting is a computationally efficient variant of the gradient boosting 

algorithm. The model was implemented using the Python package xgboost with the 

XGBClassifier function.

Multilayer perceptron neural network classifier is a nonlinear model consisting of multiple 

neurons that can learn and generate a class of functions from the training data set. Each 

neuron weights the input nodes and generates the output by employing nonlinear activation 

mathematical functions. The linear combination is formed by perceptron through the 

computation of an output neuron from multiple real-valued inputs [59]. The model was 

implemented using the Python package sklearn with the MLPClassifier function.

Model training and parameter optimization

The 6,249 cases were split into a training set and a test set with a ratio of 80% to 20%. The 

training set was used for training the classifiers and optimizing the parameters while the test 

set was only used for final prediction. A three-fold cross-validated grid-search over a 
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parameter grid was applied to optimize the parameters of a classifier. The training set was 

split into three subsets, two were used as training subsets and one was used as a validating 

subset by turns. The final prediction of the test set was based on the optimal parameters. The 

optimization was calculated using the Python package sklearn with the GridSearchCV 

function.

Evaluation metrics of classification performance

To evaluate the performance of the models, overall accuracy, precision, recall (sensitivity), 

and F1-score were applied to quantitatively assess the predictive performance. Accuracy 

measures the proportion of cases in correct assignments. Recall (also called true positive 

rate) measures the proportion of actual positives that are correctly identified to that type. 

Precision measures the proportion of samples assigned to a type that is correctly identified as 

that type. The F1-score is the harmonic means of recall and precision that combines 

precision and recall in a statistically more meaningful way. Let TP, TN, FP and FN denote 

the number of true positives, true negatives, false positives and false negatives, respectively. 

The evaluation metrics can be expressed as:

Accuracy = (TP + TN)/(TP + FN + TN + FP)

Recall (sensitivity) = TP/(TP + FN)

Precision = TP/(TP + FP)

F1‐score = 2(recall × precision)/(recall + precision)

Upgraded ensemble machine learning models

An ensemble model can integrate multiple weak learning classifiers with the aim of 

obtaining better predictive performance than any of the constituent weak learning classifiers 

alone. Five classifiers, logistic regression, SVM, random forest, XGBoost and neural 

networks, were chosen as the weak classifiers in our ensemble model. The two voting 

models (hard-voting and soft-voting) were first considered as an ensemble classifier for 

cancer type classification. In both of the two voting models, the weights of the five 

classifiers are equal, indicating that we cannot make full use of the different predictive 

performances of the weak classifiers across the 14 cancer types. To address this issue, we 

developed a new ensemble model called the performance-weighted-voting model. The 

weights of the performance-weighted-voting model differ among the weak classifiers based 

on their predictive performance. Specifically, each weak classifier is allocated to different 

weights across the 14 cancer types, and each weight is dependent on the specific predictive 

performance of the corresponding cancer types.

The performance-weighted-voting model consists of three steps: parameter optimization, 

weights optimization and final prediction (Fig. 1). The first two steps can be learned by the 
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training set and the final prediction is tested by the test set. In the parameter optimization 

step, we used the grid-search method by setting hyperparameters for each classifier and 

selecting the combination with the highest accuracy. To achieve the optimal weights of the 

five classifiers, we built a linear regression model. Let xi,j,n and yi,j,n denote the predicted 

probability and true state of classifier j, cancer type i and sample n, respectively. Here, 

0⩽xi,j,n⩽1 and yi,n∈{0,1} is a one-hot matrix where yi,n=1 represents sample n belongs to 

cancer type i and for any n, ∑iyi, n = 1. Let wi,j as the weight of classifier j and cancer type i. 

To obtain the five weights to cancer type i, we expect the weights satisfy linear regression 

functions,

∑
j

wi, jxi, j, n = yi, n

∑
j

wi, j = 1
,

for all sample n in training set and all i in cancer types. Using the least square method to 

solve the functions, the weight vector, Wi=(wi, LR, wi, SVM, wi, RF, wi, XGBoost, wi, NN), of 

cancer type i can be expressed as

W i = XiTXi
−1XiTYi/Zi .

The vector Yi=(yi, 1, yi, 2, ···, yi, N), where N is the sample size. The vector 

Xi = x i, 1, x i, 2, …, x i, N , where x i, n = xi, LR, n, xi, SV M, n, xi, RF, n, xi, XGBoost, n, xi, NN, n . 

And Zi is the normalization factor. The third step is the final prediction the test set. Denote 

pi, j as predicted probability of classifier j and cancer type i in test set. The score of the 

predicted cancer sample that belongs to cancer type i is

Si = wi, LRpi, LR + wi, SV Mpi, SV M + wi, RF pi, RF
+ wi, XGBoost pi, XGBoost + wi, NNpi, NN

The predictive probability of the performance-weighted-voting model yields pi=Si/S, where 

S = ∑Si is the summation of the scores that belong to the 14 cancer types.

Different mutation type subsets as input features

The MAF file contains 16 types of somatic mutations (Missense_Mutation, Silent, 

Nonsense_Mutation, Intron, 3′UTR, 5′UTR, Splice_Site, RNA, Frame_Shift_Ins, 

Frame_Shift_Del, In_Frame_Ins, Nonstop_Mutation, In_Frame_Del, 3′Flank, 5′Flank, 

Translation_Start_Site) flagged by variant calling software packages. Consider that most 

driver mutations are nonsynonymous mutations, and in most cases nonsynonymous 

mutations play more important roles than synonymous mutations in tumorigenesis. To 

evaluate whether these mutation types have positive or negative effects on cancer type 

classification, we selected four different subsets of mutations as input features according to 

their mutation types for cancer type classification. The four groups were “missense mutation 

group” (Missense_Mutation), “synonymous nonsynonymous mutation group” 
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(Missense_Mutation, Silent, Nonsense_Mutation), “high impact mutation group” 

(Missense_Mutation, Nonsense_Mutation, Translation_Start_Site, Frame_Shift_Del, 

Nonstop_Mutation, Frame_Shift_Ins, In_Frame_Del, Splice_Site, In_Frame_Ins) and “total 

mutation group”.

Driver gene extraction as an input feature

The txt file (Mutation.CTAT.3D.Scores.txt) that characterizes the cancer driver genes of the 

mutations in the MAF file was downloaded from Bailey et al. [41]. Genes that were flagged 

as having at least two of the three columns “New_Linear (functional) flag”, “New_Linear 

(cancer-focused) flag” and “New_3D mutational hotspot flag” were selected as driver genes. 

A total of 201 genes met the requirement.

DATA AVAILABILITY
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Author summary:

The identification of the cancer of unknown primary is of clinical significance, and can 

provide important cancer behavioral therapeutic strategies. To achieve this, we developed 

an ensemble machine learning system called the performance-weighted-voting model for 

cancer type classification. The ensemble system can integrate weak classifiers and train 

the weights of the weak classifiers based on their predictive performance. The model has 

achieved the highest overall accuracy among the models mentioned in this study. 

Furthermore, the model can theoretically promote any combination of weak classifiers 

with a high degree of accuracy.
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Figure 1. The workflow of the performance-weighted-voting model.
The performance-weighted-voting model integrates five classifiers including logistic 

regression, SVM, random forest, XGBoost and neural networks. We first used cross-

validation to get the predicted results for the five classifiers. The weights of the five weak 

classifiers can be obtained based on their predictive performance by solving linear regression 

functions. The final predicted probability of the performance-weighted-voting model for a 

cancer type can be determined by the summation of each classifier’s weight multiplied by its 

predicted probability.
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Figure 2. The predictive performance for the five classifiers with optimal parameters.
Five classifiers, logistic regression (LR, green box), neural networks (NN, blue box), support 

vector machine (SVM, brown box), extreme gradient boosting (XGBoost, purple box) and 

random forest (RF, steel blue box) were selected. Three-fold cross-validation was used to 

optimize the top parameters of each classifier. Each model was trained and predicted 10 

times independently.
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Figure 3. Mutation count comparison between correctly classified samples and misclassified 
samples.
In 10 of the 14 cancer types, the average mutation count of correctly classified samples is 

significantly higher than misclassified samples (red asterisks above the bars). In contrast, in 

3 of the 14 cancer types, the average mutation count of correctly classified samples is 

significantly lower than misclassified samples (blue asterisks above the bars). The height of 

each bar represents the average mutation count, and the error bar is the 95% confidence 

interval. *: P < 0.05, **: P < 0.01, ***: P < 0.001.
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Figure 4. The overall accuracy of the input features using different groups of mutation types.
Four groups of mutation types, “missense mutation group” (red bar), “synonymous 

nonsynonymous mutation group” (green bar), “high impact mutation group” (blue bar) and 

“total mutation group” (orange bar), were selected as input features for cancer type 

classification. Each of the four groups of mutation types were used as input features 

predicted by the eight classifiers. The height of each bar represents the average number, and 

the error bar is the standard deviation.
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Figure 5. The overall accuracy of the input features using driver genes and total genes.
201 driver genes (red bar) were extracted in comparison with total genes (blue bar). Both of 

the two gene sets were used as input features to predict the cancer types by the eight models. 

The height of each bar represents the average number, and the error bar is the standard 

deviation.
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Table 1

The predictive results for the eight models

Classifier Accuracy

Logistic regression
68.67%

a
±1.21%

b

SVM 63.74%±0.72%

Random forest 54.79%±1.64%

XGBoost 62.89%±1.43%

Neural network 68.07%±0.94%

Hard-voting 69.06%±1.33%

Soft-voting 69.66%±1.37%

Performance-weighted-voting 71.46%±1.02%

a
The average number of 10 repeats.

b
The standard deviation of 10 repeats.
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