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Abstract

Purpose: To develop a fully automated vessel wall (VW) analysis workflow (fully automated 

and robust analysis technique for popliteal artery evaluation, FRAPPE) on the popliteal artery in 

standardized knee MR images.

Methods: Popliteal artery locations were detected from each MR slice by a deep neural network 

model and connected into a 3D artery centerline. Vessel wall regions around the centerline were 

then segmented using another neural network model for segmentation in polar coordinate system. 

Contours from vessel wall segmentations were used for vascular feature calculation, such as mean 

wall thickness and wall area. A transfer learning and active learning framework was applied in 

training the localization and segmentation neural network models to maintain accuracy while 

reducing manual annotations. This new popliteal artery analysis technique (FRAPPE) was 

validated against manual segmentation qualitatively and quantitatively in a series of 225 cases 

from the Osteoarthritis Initiative (OAI) dataset.

Results: FRAPPE demonstrated high accuracy and robustness in locating popliteal arteries, 

segmenting artery walls, and quantifying arterial features. Qualitative evaluations showed 1.2% of 

slices had noticeable major errors, including segmenting the wrong target and irregular vessel wall 

contours. The mean Dice similarity coefficient with manual segmentation was 0.79, which is 

comparable to inter-rater variations. Repeatability evaluations show most of the vascular features 

have good to excellent repeatability from repeated scans of same subjects, with intra-class 

coefficient ranging from 0.80 to 0.98.
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Conclusion: This technique can be used in large population-based studies, such as OAI, to 

efficiently assess the burden of atherosclerosis from routine MR knee scans.
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1 | INTRODUCTION

Atherosclerosis, a leading cause of death worldwide,1 is a systemic disease that leads to 

plaque formation or luminal narrowing in multiple vascular beds and can cause clinical 

events through blood flow obstruction to the heart (coronary heart disease), brain (ischemic 

stroke), or lower extremities (peripheral vascular disease).2

Vessel wall (VW) MRI, through the use of black blood imaging, has been effective at 

visualizing normal and diseased arteries and characterizing atherosclerotic lesions.3,4 VW 

MRI has previously been used in clinical trials and in natural history studies to identify 

populations with high cardiovascular risks, or to monitor vascular disease progression,5,6 

particularly in the carotid and coronary arteries. Due to the expenses in the MRI scan, most 

previous works involving vessel wall analysis were limited in subjects and times of scans. In 

these studies, careful and comprehensive manual review was needed. Unfortunately, manual 

review is not scalable to large population-based studies, because it is impractically time-

consuming.

The Osteoarthritis Initiative (OAI)7 (URL: https://www.clinicaltrials.gov. Unique identifier: 

NCT00080171) is a multicenter, prospective cohort study of knee osteoarthritis, sponsored 

by the National Institutes of Health. This cohort would be of interest for cardiovascular 

research because osteoarthritis and cardiovascular disease share a number of risk factors 

including age and obesity, and both are associated with physical inactivity. This massive 

dataset (bilateral knee MRI in 4796 subjects up to eight timepoints over a period of 96 mo, 

over three million images in total) provides high-quality 3D VW MRI images with the 

popliteal artery wall (in axial view) clearly visible on the 3D DESS sequence. Therefore, it 

is ideal for research on vessel wall features as MR biomarkers8 and the relationship of these 

biomarkers with cardiovascular risk.9

We hypothesize that quantitative VW analysis of the popliteal arteries will provide new 

insights into atherosclerotic cardiovascular disease, beyond the original focus of the OAI 

study on knee osteoarthritis. Artery wall quantification requires drawing the lumen and outer 

wall contours, then deriving vessel wall feature biomarkers, such as wall thickness. Most 

quantitative studies relied on manual vessel wall segmentation,10 which is challenging and 

subject to reader variability and fatigue.11 Some lumen and outer wall boundaries are not 

clearly demarcated. Artery and vein may be adjacent and easy to confuse. Bifurcations lead 

to irregular vessel wall shapes. All these factors increase the review difficulty and time. In 

our experience, the manual review for a single knee at a single timepoint (more than 60 

images per knee) takes up to 3 h. An accurate and fully automated VW evaluation technique 

is, therefore, essential for large population studies. Some computer assisted tools for vessel 

wall segmentation exist,12–17 but manual operations such as initial seed-point placement and 

Chen et al. Page 2

Magn Reson Med. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.clinicaltrials.gov/
https://clinicaltrials.gov/ct2/show/NCT00080171


region of interest selection are still needed. In addition, none of these methods are adapted to 

popliteal vessel wall segmentations.

Therefore, we aim to develop an automated vessel wall analysis technique with minimal 

human intervention. This would be applicable not only to OAI data, but also to other studies 

using similar acquisition protocols. Fully automated vessel wall analysis faces three main 

technical challenges: artery localization, vessel wall segmentation, and adequate annotation. 

For artery localization, the technique must identify the correct artery as the analysis target. 

Veins and other small artery branches could be mistaken for the popliteal artery, and the 

technique must be robust to normal and pathologic variants including bifurcation and 

stenosis. For vessel wall segmentation, valid vessel wall contours must be defined even from 

images with flow artifacts or signal loss as subtle deviation of contours might lead to large 

errors in vessel wall measurements. Finally, the training, validating, and testing of machine 

learning models, especially deep neural network models, require a large number of high-

quality manual annotations.

In this work, we developed a fully automated and robust analysis technique for popliteal 

artery evaluation (FRAPPE) using innovative machine learning techniques, including object 

tracking and deep neural networks to solve the technical challenges. We validated the 

performance of FRAPPE in the OAI dataset by comparing its measurements with manual 

measurements and estimating scan-rescan repeatability. We also performed a preliminary 

assessment of FRAPPE’s ability to discriminate between diseased and non-diseased arteries 

by comparing FRAPPE-based measurements between subjects with high and low 

cardiovascular risk.

2 | METHODS

2.1 | FRAPPE techniques

Five steps are included in FRAPPE: artery detection, tracklet refinement, vessel wall 

segmentation, feature calculation, and export & display. Workflow is shown in Figure 1.

2.1.1 | Artery detection—The bounding boxes (minimum encompassing rectangles 

around the target) of popliteal arteries in each image from the 3D MRI are predicted from a 

Yolo V218 model.

2.1.2 | Tracklet refinement—Artery detection might initially include false objects or 

missed popliteal arteries in certain images. A tracklet refinement step19 is thus used to 

combine the neighboring detection information to generate the centerline of the popliteal 

artery of interest. Patches along the centerline are extracted for vessel wall segmentation.

2.1.3 | Vessel wall segmentation—A vessel wall segmentation technique based on 

another neural network model is applied. The segmentation neural network structure with 

regression and segmentation branches as two outputs is shown in Figure 2. The segmentation 

is in polar coordinate system so that it reduces errors near artery bifurcations and ensures 

contour continuity. Each image along with its neighbors are converted to the polar 

coordinate system, then concatenated in 3D polar stacks (height of 180, width of 256, depth 
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of 3, channel of 1). A sliding window with the height of 80 and step of 1 is used to extract 

polar patches (height of 80, width of 256, depth of 3, channel of 1) along the height 

dimension from the polar stacks for the neural network to segment vessel wall. The lumen 

and outer wall boundaries can be predicted from the regression branch of the network, then 

converted back to the Cartesian coordinate system as the final vessel wall contours. From the 

segmentation branch of the network, a probability map can be acquired to calculate the 

segmentation confidence score for estimation of segmentation quality20. Dice loss21 and 

mean absolute error loss are used for the segmentation and regression branches. Adam 

optimizer22 is used to control the learning rate. Please refer to Chen et al19 for detailed 

descriptions for techniques of artery localization and vessel wall segmentation.

2.1.4 | Feature calculation—Vessel features for each image are calculated23 when 

lumen and outer wall contours are identified from the vessel wall segmentation. The 

available features for each image generated from FRAPPE are listed in Table 1. Image-based 

features can be further combined into artery-based features, such as maximum of normalized 

wall index.

2.1.5 | Export and display—The artery features and confidence scores for each image 

are exported to a MySQL database in the local network for storage and statistical analysis. 

During the automated process, images failed in any of the steps are flagged for further 

manual confirmation or correction. A visualization tool24 can be used for 3D visualization of 

artery lumen and wall structures if manual inspections are needed. The contour editing 

tool23 can be used if manual corrections are needed.

2.2 | FRAPPE training

Machine learning techniques used in FRAPPE require training procedures. Unlike 

traditional training methods requiring large number of human annotations, FRAPPE training 

includes two phases: model development by transfer learning, and fine tuning using active 

learning.

Transfer learning techniques were applied to train the localization and segmentation models, 

aided by limited human annotations. Initiated from previous models for carotid artery 

applications19 where human annotations of 32,591 image slices from 1157 subjects are 

available, models could be trained using a relatively small dataset of popliteal artery images 

to reduce the need for tedious human labeling.

To improve the robustness of FRAPPE in quantifying the images that are particularly 

challenging, such as abnormal artery structures, poor image quality or with substantial 

artifacts, a tuning phase is needed. With feedback from an expert human reviewer (G.C., 

with over 10 y of experience in vascular review), the hyper-parameters in FRAPPE were 

adjusted based on the reviewer’s qualitative comments on the initial FRAPPE results, in 

order to achieve better agreements with manual review. In addition, active learning 

techniques were applied. Batches of challenging samples, such as images in artery 

bifurcations or with calcified plaques, with low confidence scores, were chosen for manual 

corrections, then the corrected images were used for further training, so that the performance 

of FRAPPE on difficult samples was iteratively improved.
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Before FRAPPE was deemed acceptable for its final performance evaluation, an assessment 

was made of 1) whether FRAPPE achieved performance comparable to human inter-rater 

variation, so that the iterative training procedure could stop; 2) whether FRAPPE was 

reliable for all images, or whether it was necessary to discard FRAPPE segmentations of 

images with failed artery localization or vessel wall segmentation and replaced by manual 

segmentation; 3) whether results should be discarded from the most proximal and distal 

images in the 3D image where image quality is systematically poorer.

2.3 | Dataset selection

All data were from the OAI,7 for which the study procedures were approved by local 

Institutional Review Boards and all participants provided informed consent. Briefly, subjects 

underwent MRI of the knee using a rigorously standardized acquisition protocol on four 

identical Siemens 3T MRI scanners. By initial inspection of a limited amount of data, the 3D 

DESS sequence in the OAI provided valuable vessel wall information for analysis. The 

imaging parameters for 3D DESS are: repetition time/echo time:16.32/4.71 ms, in-plane 

resolution: 0.36 × 0.36 mm, slice thickness: 1.5 mm, field of view: 140 × 140 mm.

As our research focuses on cardiovascular risk assessments, we identified two groups of 

subjects who, on the basis of baseline clinical and demographic information, had, 

respectively, low or high risk for cardiovascular disease. This allowed us to compare results 

between high- and low-risk groups and to enrich the datasets used for training, validation, 

and testing with individuals at higher risk of atherosclerosis and plaque in their popliteal 

arteries. The high-risk group included subjects ≥65 y old with a history of smoking, history 

of hypertension, body mass index (BMI) ≥ 25 kg/m2, and at least one of seven additional 

prior events or risk factors: 1) operation to unclog or bypass arteries in legs; 2) stroke, 

transient ischemic attack, blood clot or bleeding in brain; 3) heart attack; 4) diabetes; 5) 

current smoker; 6) BMI ≥ 30 kg/m2; 7) age ≥ 75 y old. The low-risk group included subjects 

<55 y old who never smoked, were not hypertensive, had BMI < 25 kg/m2, and had none of 

the seven additional risk factors specified for the high-risk group.

Altogether, two training sets, two validation sets, and four testing sets from the OAI database 

were employed in FRAPPE development, tuning, and in final performance evaluation. These 

datasets are summarized in Table 2. Training Set 1 and Validation Set 1 were randomly 

selected for model training during the technical development phase. The Training Set 2, 

Validation Set 2, Testing Set 1, and Testing Set 2 were randomly selected, but with the high-

risk group enriched to comprise approximately one-third of the sample, about three-times 

the prevalence in the entire OAI dataset. Testing Set 1 included 25 subjects with a full 

quantitative review by human reviewers for comparison with FRAPPE. Testing Set 2 

included 225 subjects (including the 25 Testing Set 1 subjects) which underwent a 

qualitative review of FRAPPE’s performance, further described in the Image Review 

section. Testing Set 3 was designed to assess repeatability of vascular features measured by 

FRAPPE and was randomly selected from the subjects who had 24-mo and 30-mo scans 

available. Testing Set 4 was selected from the baseline scans of the high- and low-risk 

groups.
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Images from both sides were used for analysis in Testing Set 4, and a random side was 

chosen for the other sets. Training/Validation Sets 2 and Testing Sets 1–4 were selected to 

achieve equal representation from each of the four participating sites. Training/Validation 

Sets 2 and Testing Sets 1–2 included a single scan per subject, with the timepoint (baseline, 

12-mo, etc.) chosen at random.

2.4 | Image review

Human reviewer 1 (G.C.) drew vessel wall contours on Training Set 1, 2, Validation Set 2, 

and half of Testing Set 1 (N = 12). She also did the qualitative review for Validation Set 2, 

and Testing Set 2. Reviewer 2 (W.L., a newly trained qualified reviewer) drew vessel wall 

contours on Validation Set 2, and the other half of Testing Set 1 (N = 13) independent of 

reviewer 1. Inter-reader agreement was evaluated using Validation Set 2. Both reviewers 

analyzed 61 images centered at the tibial medial spine in all cases and all reviews were 

performed independent of FRAPPE. To further evaluate the segmentation performance on 

normal vessel wall versus vessel wall with plaques, reviewer 2 subdivided each slice in 

Testing Set 1 into “no plaque,” “plaque without calcification,” and “plaque with 

calcification” groups based on a modified American Heart Association (AHA) lesion 

classification for MRI.25

The qualitative assessment was designed to evaluate image and segmental quality, and to 

take less than 5 min per case, so a much larger sample size could feasibly be evaluated 

compared to the quantitative image reviews of Validation Set 2 and Testing Set 1. Overall 

image quality of each scan was rated on a 4-point scale (1 = poor, arterial wall and lumen 

boundaries were unidentifiable; 2 = adequate, wall and luminal boundaries were identifiable, 

but wall components were not; 3 = good, wall and luminal boundaries were identifiable, but 

there was some uncertainty in the detection of wall components; 4 = excellent, wall and 

lumen boundaries and wall components were identifiable with no uncertainty). The contours 

generated by FRAPPE on each image were examined and rated as having major segmental 

errors or not. Major errors were defined as cases where 1) the contours drawn by FRAPPE 

were clearly inconsistent with the underlying images in such a way that, in reviewer 1’s 

experience, a trained human reviewer would not draw them; and 2) the error potentially 

could have a noticeable effect on vascular features (e.g., wall thickness or lumen area) 

derived from the contours, either due to a substantial error on a single image, or a more 

moderate error present on several images. Major errors were also classified by type of error, 

including: unable to segment artery, wrong structure segmented (e.g., wrong artery or vein), 

overly thin wall, overly thick wall, highly irregular contours, and others.

2.5 | Statistical analysis

Agreement between FRAPPE and manual review measurements (Validation Set 2 and 

Testing Set 1) was evaluated using the Dice similarity coefficient (DSC)26 as the metric for 

pixel-wise segmentation and using the mean difference (bias), the coefficient of variation 

(CV), the intraclass correlation coefficient (ICC), and Bland-Altman plots as metrics of the 

image- and artery-based vessel features in Table 1. Similar methods were used to summarize 

inter-reader agreement (Validation Set 2) and the repeatability of the vessel features (Testing 

Set 3). Differences in artery-based features between high- and low-risk groups (Testing Set 
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4) were summarized using means and the area under the receiver operating characteristic 

(ROC) curve (AUC). The qualitative review (Testing Set 2) was summarized using counts 

and percentages. Throughout, 95% confidence intervals (CIs) were calculated for important 

parameters. For image-based analyses and the analysis of Testing Set 4, which included left 

and right arteries, CIs were calculated using the non-parametric bootstrap with resampling 

by subject to account for any dependence among the multiple observations per subject.

To evaluate the robustness of the segmentation confidence, the ranked correlation coefficient 

between the confidence score and DSC was calculated using generalized estimating 

equations, accounting for non-independence between slices from the same subject.

To compare the segmentation performance of FRAPPE with state-of-the-art neural network 

models, 3D Cartesian based U-net 27(previously adopted in vessel wall segmentation28), and 

Mask-RCNN29 (ResNet-10130 as backbone, pretrained on the ImageNet31 dataset) were 

trained using the same transfer learning and active learning procedure for popliteal vessel 

wall segmentation with the same dataset. The segmentation performances were evaluated 

using DSC. Paired T-test was used to evaluate the significance of the segmentation 

differences.

All statistical calculations were conducted with the statistical computing language R 

(version 3.4.2 and 3.5.1; R Foundation for Statistical Computing, Vienna, Austria).

3 | RESULTS

3.1 | FRAPPE training and validation

Baseline characteristics of OAI subjects included in the training, validation, and testing sets 

are summarized in Supporting Information Table S1. After transfer learning using Training 

set 1, the FRAPPE model was further tuned in Training set 2 with feedback provided by 

reviewer 1. Images with a confidence score lower than 0.8 were further reviewed by 

reviewer 1 and corrected if necessary, to provide additional training to the algorithm. In 

addition, most artifacts and low-quality images were at the most distal or proximal slices of 

the 3D image, so the first and last five images were excluded from further analysis.

After three iterations of active learning, FRAPPE achieved a DSC of 0.81 (95% CI: 0.79 to 

0.83) in Validate Set 2, comparable to the DSC between two human reviewers of 0.85 (95% 

CI: 0.83 to 0.87). Examples showing the improvement for segmenting challenging images 

with calcified plaque or severe flow artifacts through active learning is shown in Figure 3. 

Agreement in measurements of vascular features between FRAPPE and human reviewers as 

measured by the CV and ICC were also similar to the level of agreement between the two 

human reviewers (Supporting Information Table S2). For example, the FRAPPE-reviewer 

CV for mean wall thickness was 6.5% compared to the inter-reader CV of 6.8%.

From Validation Set 2, only one image was flagged as failures in artery localization due to 

partial coverage of the artery. Considering the low occurrence, there was no need to add the 

missing contours manually, so no human corrections were applied in other assessments.
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3.2 | Accuracy of FRAPPE in the testing sets

In Testing Set 1, the DSC of 0.79 (95% CI: 0.77–0.81) was similar to that estimated in 

Validation Set 2, and significantly higher than 3D Cartesian based U-net (mean DSC of 0.77, 

P value < 1e-5) and Mask-RCNN (mean DSC of 0.67, P value < 1e-5). The quantitative 

assessment of image-based and artery-based vascular features in Testing Set 1 are shown in 

Table 3. Relative to human reviewers, the CV and ICC estimates for FRAPPE were 8.7% 

and 0.73 for mean wall thickness, 10.0% and 0.90 for mean wall area, and 2.9% and 0.99 for 

mean lumen area. Bland-Altman plots of selected features are shown in Supporting 

Information Figure S1. Some of the segmentation results on challenging images were shown 

in Figure 4, demonstrating good performance of FRAPPE on bifurcation images, vessel wall 

with low contrasts, vessel wall with plaque, and when the artery is close to the vein. After 

slice-based plaque labeling, 1276 slices were grouped as “no plaque,” 59 slices as “plaque 

without calcification,” 56 slices as “plaque with calcification.” The DSCs (0.79, 0.82, 0.82) 

and vessel wall features are comparable between three groups, indicating similar 

performance of FRAPPE in segmentation of normal vessel wall and vessel wall with 

plaques. Detailed comparison results between three groups are shown in Supporting 

Information Table S3.

The ranked correlation coefficient between confidence score and the DSC is 0.234 with P-

value < .001, indicating lower confidence is likely to lead to lower segmentation 

performance.

Testing Set 2 contained 225 subjects. Of these scans, 211 (94%) were rated as good or 

excellent image quality (rating = 3–4), 14 (6%) had adequate quality (rating = 2), and no 

scans had poor quality (rating = 1). Flow artifacts were found in 81 (36%) of cases. Other 

types of artifacts were less common: motion-related (n = 1), inadequate fat suppression (n = 

2), substantial partial voluming (n = 9), and other types (n = 6).

From the 225 scans in Testing Set 2, the FRAPPE segmentations on 14,055 images were 

reviewed. Of these images, 165 were rated as having a major segmentation error (rate: 1.2%, 

95% CI: 0.6–1.9%). The specific types of errors included FRAPPE outlining the wrong 

structure (wrong artery or vein; n = 66 [0.5%]), highly irregular contours (n = 38 [0.3%]), 

overly thin wall (n = 30 [0.2%]), overly thick wall (n = 24 [0.2%]), unable to segment (n = 7 

[0.05%]), and other types (n = 7 [0.05%]).

3.3 | Repeatability of vascular features

Repeatability of artery-based vascular features in Testing Set 1 is summarized in Table 4. 

Repeatability was high for most features with CV < 5% and ICC ≥ 0.94 except for mean 

eccentricity ratio (CV = 12.2%, ICC = 0.80) and max normalized wall index (CV = 6.2%, 

ICC = 0.86).

3.4 | Comparison of high- and low-risk groups

Artery-based vascular features in subjects with high and low risk for atherosclerosis (Testing 

Set 4) are summarized in Table 5. Mean eccentricity ratio (AUC: 0.79, 95% CI: 0.68–0.89, P 
= .005), max wall thickness (AUC: 0.73, 95% CI: 0.60–0.85, P = .002), and mean wall 
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thickness (AUC: 0.71, 95% CI: 0.57–0.84, P = .004) were most able to discriminate between 

high- and low-risk groups based on the AUC.

3.5 | Computation time

Based on our workstation with Intel Xeon CPU E5–1650 v4 @3.6GHz 6 cores, 64 GB 

memory, NVIDIA GeForce GTX TITAN V on Windows 10, the processing time for Testing 

Set 2 for artery localization, vessel wall segmentation, and feature calculation is 65.2 ± 19.8 

s, 279.1 ± 48.4 s, and 114.3 ± 14.7 s, respectively. The whole process took less than 8 min 

per artery on average.

4 | DISCUSSION

4.1 | Feasibility

On the basis of comprehensive assessments using a wide range of images from the OAI 

dataset, vessel wall is clearly visible in MR knee images and vessel wall features can be 

robustly and automatically extracted.

Robustness of the algorithm was demonstrated in three ways.

1. From the qualitative review (Testing Set 2), MR images originally designed for 

osteoarthritis were shown to have sufficient quality for quantitative vessel wall 

analysis, and FRAPPE worked well overall across images of varying quality, 

vascular anatomy and artifacts with an overall error rate of 1.2% of images. From 

the quantitative review (Testing Set 1), FRAPPE had a DSC of 0.79 (over 0.7 

considered as excellent agreement,32 and significantly better than two other 

neural network methods using the same learning procedure and dataset) and 

produced vascular features with relatively good agreement (ICC > 0.71 for 

image-based measurements, ICC > 0.68 for artery-based measurements) with 

those produced by human review.

2. Six-month repeatability of generated MR vessel wall biomarkers by FRAPPE 

compared favorably with previous work in the carotid artery.33

3. For challenging situations, such as images with calcified plaques, due to the 

active learning technique, FRAPPE showed good performance after selecting 

only a few similar cases with human annotations as additional training set. The 

same approach could be applied if other unseen challenging problems are 

identified to further improve the performance.

Errors in FRAPPE are usually on images from the most distal and proximal segments of the 

artery in the scan where the signal loss becomes severe in MR; therefore, the first and last 

five images were excluded. Outer wall segmentation has more problems than the lumen due 

to weaker contrast with neighboring tissues. In subjects with higher cardiovascular risk, it is 

much more likely that severe plaques might reduce the flow and lead to more challenging 

segmentation. Arterial bifurcations or trifurcations did not have noticeable impact on the 

completeness of vessel wall segmentation, which is one of the advantages of the polar 

coordinate-based segmentation applied in FRAPPE.
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The process time for FRAPPE was reasonable, so that analysis of popliteal arteries in large-

scale datasets is realistic. The popliteal artery appears in over three million images in the 

OAI dataset so manual segmentation is completely impractical, and it could take up to 67 y 

(8 h per workday) if using manual review. The analysis is still challenging if using some 

semi-automated review methods that require human interactions such as region of interest 

selection or manual modifications on predicted contours. The realistic processing time 

comes from three main factors.

1. The fully automated workflow in FRAPPE demonstrates no human interventions 

are needed to generate high-quality vessel wall features, even if a few images 

might have errors or low segmentation confidence.

2. GPU acceleration allows fast predictions of artery locations and segmentations.

3. With MySQL database handling results from multiple workstations in the local 

network, paralleling processing is available. Based on the current processing 

time, with 10 instances of FRAPPE, all OAI subjects (each has bilateral knee 

scans) at baseline can be processed within a week.

4.2 | Significance

Because of the accuracy and efficiency of FRAPPE, the OAI dataset with multiple 

timepoints can be analyzed within a reasonable time. Based on previous MR work in other 

vessels such as the carotid,5 the vessel wall features generated from FRAPPE are likely to 

offer imaging biomarkers of cardiovascular risk useful in both research and clinical 

environments.

As the pilot data, Testing Set 4 including subjects with both high and low cardiovascular 

risks validated our assumption that some FRAPPE extracted vessel wall features would be 

reflective of these differences in risks. The relationships between popliteal vessel wall and 

atherosclerotic cardiovascular disease should be further studied and characterized with a 

larger sample. Considering the large number of subjects, multiple timepoints of scans, the 

large coverage of knee (at least 90 mm), and the variety of atherosclerotic conditions of 

subjects in this information rich dataset, the OAI is promising for further research on 

popliteal vessel wall and atherosclerotic cardiovascular disease in a large population study.

The OAI 3T MRI protocol was developed through consensus34 and has become a de facto 

standard for knee MRI research, so we believe FRAPPE could have wide applicability 

wherever knee MRI data are acquired. Importantly, FRAPPE could provide an add-on 

popliteal artery analysis of standard knee MR scans without adding any additional work for 

radiologists. Although vessel wall features for popliteal arteries have not usually been 

reported from routine knee scans, these features could provide additional assessments of 

cardiovascular risks in asymptomatic patients. Subjects identified with thickened vessel wall 

can then be referred for more detailed examinations for atherosclerosis.

4.3 | Limitations

The original OAI protocol has no repeated scans at the same timepoint. The closest 

approximation to these repeated scans were the subset of subjects who underwent MRI at 
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both 24 and 30 mo. It is possible that some subjects had disease progression within 6 mo, in 

which case repeatability may be underestimated. Furthermore, image registration was not 

performed. We expect the repeatability of FRAPPE to be further improved with good vessel-

targeted registrations.

FRAPPE was developed using the 3D DESS sequence. Applications on other MR vessel 

wall sequences is available with additional training sets.

Only vessel wall thickness and area measurements are provided in the current FRAPPE 

version. More features and functions can be added in the future, such as vessel wall signal 

intensity measurements, automated high-risk plaque detection, and plaque components 

segmentation.

5 | CONCLUSIONS

Automated analysis of popliteal vessel wall from standardized knee MRI is feasible, 

demonstrated from the OAI dataset. A fully validated FRAPPE has the potential for accurate 

and repeatable vessel wall measurement of popliteal arteries while minimizing human effort 

and analysis time, which may play an important role for future artery wall analysis in both 

atherosclerosis research and clinical care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
A, Workflow of FRAPPE with one axial image slice as an example. B, Bounding box is 

detected shown in green rectangles. C, The x and y coordinates of boxes from all slices are 

refined using a tracklet approach. D, Lumen (red) and outer wall (blue) contours are 

generated using the segmentation model. E, Vascular features are calculated using contours. 

F, Segmentation results can be exported and visualized, with the red arrow indicating the 

slices in A,B,D
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FIGURE 2. 
Convolutional neural network structure used for vessel wall segmentation
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FIGURE 3. 
Missed segmentation of calcified plaques (pointed by the red arrows) and irregular contours 

caused by severe flow artifacts (pointed by the green arrows) before active learning (middle). 

Contours improved after additional training using active learning technique (right). Contours 

are not affected by the neighboring vein (pointed by the yellow arrow), a benefit for using 

the polar segmentation model
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FIGURE 4. 
Example of FRAPPE generated contours (right column images: red contour, lumen 

boundary; blue contour, outer wall boundary) in challenging images (original images shown 

in the left column, zoomed-in images shown in the middle column) with low image contrast 

around vessel wall boundary, bifurcation (top row), plaque (middle row), and when artery is 

close to the vein (bottom row)
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TABLE 3

Agreement between FRAPPE and human reviewers in the Testing Set 1

Variable

Reader Difference between FRAPPE and human reviewers

FRAPPE Human Mean (95% CI) CV (95% CI) ICC (95% CI)

Image-based measurements (n = 1391)

Mean wall thickness, mm 0.81 ± 0.16 0.76 ± 0.21 0.05 (0.02, 0.08) 12.3% (9.4, 15.3) 0.74 (0.65, 0.79)

Max wall thickness, mm 0.99 ± 0.38 0.96 ± 0.49 0.03 (−0.03, 0.07) 17.8% (13.2, 22.2) 0.84 (0.77, 0.90)

Eccentricity ratio 1.43 ± 0.51 1.59 ± 0.74 −0.16 (−0.24, −0.07) 22.6% (17.9, 26.8) 0.72 (0.55, 0.80)

Wall area, mm2 18 ± 6 17 ± 7 1.2 (0.2, 1.9) 14.5% (10.3, 18.2) 0.87 (0.83, 0.89)

Lumen area, mm2 30 ± 12 30 ± 13 −0.1 (−0.6, 0.4) 5.0% (3.5, 6.8) 0.99 (0.98, 0.99)

Total vessel area, mm2 48 ± 17 47 ± 18 1.1 (0.4, 1.7) 4.7% (3.3, 6.6) 0.98 (0.97, 0.99)

Normalized wall index, % 38 ± 5 36 ± 6 1.9 (0.6, 2.8) 8.3% (7.1, 9.6) 0.71 (0.60, 0.78)

Artery-based measurements (n = 25)

Mean wall thickness, mm 0.81 ± 0.10 0.75 ± 0.15 0.05 (0.02, 0.09) 8.7% (6.4, 10.7) 0.73 (0.35, 0.89)

Max wall thickness, mm 1.82 ± 0.73 1.83 ± 1.00 −0.01 (−0.25, 0.24) 22.4% (13.6, 32.3) 0.78 (0.56, 0.90)

Mean eccentricity ratio 1.43 ± 0.21 1.59 ± 0.36 −0.16 (−0.24, −0.07) 11.8% (8.4, 14.5) 0.68 (0.22, 0.87)

Mean wall area, mm2 18 ± 5 16 ± 6 1.2 (0.4, 2.1) 10.0% (7.1, 12.4) 0.90 (0.73, 0.96)

Mean lumen area, mm2 30 ± 11 30 ± 11 −0.1 (−0.7, 0.4) 2.9% (1.8, 4.1) 0.99 (0.99, 1.00)

Mean total vessel area, mm2 48 ± 16 46 ± 17 1.1 (0.4, 1.7) 2.8% (2.0, 3.9) 0.99 (0.97, 1.00)

Mean normalized wall index, % 38 ± 3 36 ± 5 1.9 (0.8, 3.0) 6.2% (4.8, 7.5) 0.70 (0.30, 0.88)

Max normalized wall index, % 46 ± 8 46 ± 10 0.1 (−1.7, 1.9) 6.5% (3.9, 9.1) 0.88 (0.75, 0.95)

Abbreviations: CV, coefficient of variation; FRAPPE, fully automated and robust analysis technique for popliteal artery evaluation; ICC, intraclass 
correlation coefficient.
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