Skip to main content
. 2021 Jul 29;33(24):17589–17609. doi: 10.1007/s00521-021-06344-5

Table 13.

Performance results of ResNet50 on internal dataset

KFold Accuracy Precision Recall Specificity F1-score
Without GAN Fold1 0.9710 0.9719 0.9688 0.9731 0.9704
Fold2 0.9771 0.9752 0.9782 0.9760 0.9767
Fold3 0.9832 0.9844 0.9813 0.9850 0.9828
Fold4 0.9817 0.9874 0.9751 0.9880 0.9812
Fold5 0.9863 0.9906 0.9813 0.9910 0.9859
Overall 0.9798 0.9819 0.9769 0.9826 0.9794
With GAN Fold1 0.9908 0.9937 0.9875 0.9940 0.9906
Fold2 0.9924 0.9969 0.9875 0.9970 0.9922
Fold3 0.9939 1.0000 0.9875 1.0000 0.9937
Fold4 0.9893 0.9968 0.9813 0.9970 0.9890
Fold5 0.9893 0.9968 0.9813 0.9970 0.9890
Overall 0.9911 0.9969 0.9850 0.9970 0.9909