Skip to main content
. 2021 Jul 29;33(24):17589–17609. doi: 10.1007/s00521-021-06344-5

Table 4.

Comparison performance results of models without GAN and with GAN on internal dataset

Model Method Accuracy Precision Recall Specificity F1-score
VGG16 without GAN 0.9814 0.9898 0.9720 0.9904 0.9808
with GAN 0.9872 0.9949 0.9788 0.9952 0.9868
VGG19 without GAN 0.9841 0.9924 0.9751 0.9928 0.9837
with GAN 0.9875 0.9894 0.9850 0.9898 0.9872
Xception without GAN 0.9902 0.9900 0.9900 0.9904 0.9900
with GAN 0.9927 0.9913 0.9938 0.9916 0.9925
ResNet50 without GAN 0.9798 0.9819 0.9769 0.9826 0.9794
with GAN 0.9911 0.9969 0.9850 0.9970 0.9909
ResNet50v2 without GAN 0.9860 0.9931 0.9782 0.9934 0.9856
with GAN 0.9942 0.9975 0.9907 0.9976 0.9941
InceptionV3 without GAN 0.9881 0.9949 0.9807 0.9952 0.9878
with GAN 0.9951 0.9949 0.9913 0.9952 0.9950
InceptionResNetV2 without GAN 0.9893 0.9931 0.9850 0.9934 0.9890
with GAN 0.9893 0.9962 0.9913 0.9964 0.9938
DenseNet121 without GAN 0.9893 0.9919 0.9863 0.9922 0.9891
with GAN 0.9921 0.9919 0.9919 0.9922 0.9919
DenseNet169 withoutGAN 0.9911 0.9944 0.9875 0.9946 0.9909
with GAN 0.9927 0.9956 0.9894 0.9958 0.9925