Table 5.
Model | Method | Accuracy | Precision | Recall | Specificity | F1-score |
---|---|---|---|---|---|---|
VGG16 | without GAN | 0.8670 | 0.7447 | 0.8364 | 0.8799 | 0.7879 |
with GAN | 0.9023 | 0.8024 | 0.8877 | 0.9083 | 0.8429 | |
VGG19 | without GAN | 0.8836 | 0.7646 | 0.8758 | 0.8868 | 0.8194 |
with GAN | 0.9086 | 0.8086 | 0.9048 | 0.9102 | 0.8540 | |
Xception | without GAN | 0.9145 | 0.8039 | 0.9399 | 0.9039 | 0.8666 |
with GAN | 0.9486 | 0.8779 | 0.9593 | 0.9440 | 0.9168 | |
ResNet50 | without GAN | 0.8978 | 0.7900 | 0.8906 | 0.9007 | 0.8373 |
with GAN | 0.9303 | 0.8644 | 0.9061 | 0.9404 | 0.8847 | |
ResNet50v2 | without GAN | 0.8914 | 0.7755 | 0.8902 | 0.8919 | 0.8289 |
with GAN | 0.9167 | 0.8272 | 0.9077 | 0.9205 | 0.8656 | |
InceptionV3 | without GAN | 0.9061 | 0.8075 | 0.8955 | 0.9105 | 0.8492 |
with GAN | 0.9498 | 0.8936 | 0.9423 | 0.9530 | 0.9173 | |
InceptionResNetV2 | without GAN | 0.8983 | 0.7928 | 0.8875 | 0.9028 | 0.8374 |
with GAN | 0.9373 | 0.8682 | 0.9287 | 0.9409 | 0.8974 | |
DenseNet121 | without GAN | 0.9000 | 0.7953 | 0.8907 | 0.9039 | 0.8403 |
with GAN | 0.9346 | 0.8673 | 0.9203 | 0.9407 | 0.8930 | |
DenseNet169 | withoutGAN | 0.9032 | 0.7982 | 0.8997 | 0.9046 | 0.8459 |
with GAN | 0.9319 | 0.8624 | 0.9156 | 0.9388 | 0.8882 |