Skip to main content
. 2021 Jul 29;33(24):17589–17609. doi: 10.1007/s00521-021-06344-5

Table 5.

Comparison performance results of models without GAN and with GAN on external dataset

Model Method Accuracy Precision Recall Specificity F1-score
VGG16 without GAN 0.8670 0.7447 0.8364 0.8799 0.7879
with GAN 0.9023 0.8024 0.8877 0.9083 0.8429
VGG19 without GAN 0.8836 0.7646 0.8758 0.8868 0.8194
with GAN 0.9086 0.8086 0.9048 0.9102 0.8540
Xception without GAN 0.9145 0.8039 0.9399 0.9039 0.8666
with GAN 0.9486 0.8779 0.9593 0.9440 0.9168
ResNet50 without GAN 0.8978 0.7900 0.8906 0.9007 0.8373
with GAN 0.9303 0.8644 0.9061 0.9404 0.8847
ResNet50v2 without GAN 0.8914 0.7755 0.8902 0.8919 0.8289
with GAN 0.9167 0.8272 0.9077 0.9205 0.8656
InceptionV3 without GAN 0.9061 0.8075 0.8955 0.9105 0.8492
with GAN 0.9498 0.8936 0.9423 0.9530 0.9173
InceptionResNetV2 without GAN 0.8983 0.7928 0.8875 0.9028 0.8374
with GAN 0.9373 0.8682 0.9287 0.9409 0.8974
DenseNet121 without GAN 0.9000 0.7953 0.8907 0.9039 0.8403
with GAN 0.9346 0.8673 0.9203 0.9407 0.8930
DenseNet169 withoutGAN 0.9032 0.7982 0.8997 0.9046 0.8459
with GAN 0.9319 0.8624 0.9156 0.9388 0.8882