Table 5.
GAN | Dataset | Method | Performance | |
---|---|---|---|---|
[82] | Cycle-GAN [87] | Cycle-GAN Data [87] | Cycle-GAN Discriminator [87] | 83.58% |
Fridrich and Kodovsky [83] | 94.40% | |||
Cozzolino et al. [84] | 95.07% | |||
Bayar and Stamm [85] | 84.86% | |||
Rahmouni et al. [58] | 85.71% | |||
DenseNet [18] | 89.19% | |||
InceptionNet V3 [86] | 89.09% | |||
XceptionNet [19] | 94.49% | |||
[88] | DC-GAN W-GAN |
CelebA [92] | DCGAN Discriminator | 95.51% |
VGG+FLD | >90 % (DC-GAN) >94% (W-GAN) |
|||
[91] | DFC-VAE DCGAN WGAN-GP PGGAN |
CelebAHQ [93] CelebA [92] LFW [94] |
Co-Color | 100% |
[59] | PG-GAN | CelebAHQ [93] | Lap-CNN | 96.3% |
[98] | GAN | MFS2018 [6] | RG-INHNet | 0.56 (AUC) |
Saturation Features | 0.7 (AUC) | |||
[100] | Cycle-GAN Pro-GAN Star-GAN |
MFS2018 [6] | PRNU-based method | 0.999 (AUC) |