Skip to main content
. 2020 Jun 20;6(6):52. doi: 10.3390/jimaging6060052

Table 2.

Applications of explainability in medical imaging.

Method Algorithm Model Application Modality
Attribution Gradient*I/P, GBP, LRP, occlusion [36] 3D CNN Alzheimer’s detection Brain MRI
GradCAM, GBP [37] Custom CNN Grading brain tumor Brain MRI
IG [38] Inception-v4 DR grading Fundus images
EG [39] Custom CNN Lesion segmentation for AMD Retinal OCT
IG, SmoothGrad [41] AlexNet Estrogen receptor status Breast MRI
Saliency maps [42] AlexNet Breast mass classification Breast MRI
GradCAM, SHAP [49] Inception Melanoma detection Skin images
Activation maps [50] Custom CNN Lesion classification Skin images
DeepDreams [46] Custom CNN Segmentation of tumor from liver CT imaging
GSInquire, GBP, activation maps [47] COVIDNet CNN COVID-19 detection X-ray images
Attention Mapping between image to reports [56] CNN & LSTM Bladder cancer Tissue images
U-Net with shape attention stream [57] U-net based Cardiac volume estimation Cardiac MRI
Concept vectors TCAV [59] Inception DR detection Fundus images
TCAV with RCV [60] ResNet101 Breast tumor detection Breast lymph node images
UBS [61] SqueezeNet Breast mass classification Mammography images
Expert knowledge Domain constraints [63] U-net Brain MLS estimation Brain MRI
Rule-based segmentation, perturbation [64] VGG16 Lung nodule segmentation Lung CT
Similar images GMM and atlas [6] 3D CNN MRI classification 3D MNIST, Brain MRI
Triplet loss, kNN [65] AlexNet based with shared weights Melanoma Dermoscopy images
Monotonic constraints [66] DNN with two streams Melanoma detection Dermoscopy images
Textual justification LSTM, visual word constraint [67] Breast mass classification CNN Mammography images
Intrinsic explainability Deep Hierarchical Generative Models [68] Auto-encoders Classification and segmentation for Alzheimer’s Brain MRI
SVM margin [69] Hybrid of CNN & SVM ASD detection Brain fMRI