Skip to main content
. 2021 Feb 1;7(2):22. doi: 10.3390/jimaging7020022

Table 5.

Comparison of the proposed approach with U-Net and its variants using BRATS2015 dataset.

Authors, Year and Citation Model Dataset DSS
Daimary et al. [42] U-SegNet BRATS2015 0.73
Zhou et al., 2019 OM-Net + CGAp BRATS2015 0.87
Kayalibay et al., 2017 CNN + 3D filters BRATS2015 0.85
Isensee et al., 2018 U-Net + more filters BRATS2015 0.85
+ data augmentation
+ dice-loss
Kamnitsas et al., 2016 3D CNN + CRF BRATS2015 0.85
Qin et al., 2018 AFN-6 BRATS2015 0.84
Havaei et al. [43] CNN(whole) BRATS2015 0.88
Havaei et al. [43] CNN(core) BRATS2015 0.79
Havaei et al. [43] CNN(enhanced) BRATS2015 0.73
Pereira et al. [44] CNN(whole) BRATS2015 0.87
Pereira et al. [44] CNN(core) BRATS2015 0.73
Pereira et al. [44] CNN(enhanced) BRATS2015 0.68
Malmi et al. [45] CNN(whole) BRATS2015 0.80
Malmi et al. [45] CNN(core) BRATS2015 0.71
Malmi et al. [45] CNN(enhanced) BRATS2015 0.64
Taye et al., 2018 [46] MAKM BRATS2015 0.68
Re-implemented U-Net BRATS2015 0.75
Erena et al., 2020 Case-1:Proposed Approach (15 randomly selected images) BRATS2015 0.89
Erena et al., 2020 Case-2:Proposed Approach (12 randomly selected images) BRATS2015 0.90
Erena et al., 2020 Case-3:Proposed Approach (800 brain images) BRATS2015 0.80
Erena et al., 2020 Average:Proposed Approach BRATS2015 0.86