Skip to main content
. 2021 Mar 20;7(3):59. doi: 10.3390/jimaging7030059

Table 1.

Hyperparameters of the proposed architectures by custom design: k is the kernel size, s is stride, p is padding.

Layer No. of Filters or Neurons k s p Output Shape Trainable Parameters
Input (400, 400, 3) 0
block1_conv 32 3 1 same (400, 400, 32) 896
block1_pool 32 3 3 0 (133, 133, 32) 0
block2_conv 32 3 1 same (133, 133, 32) 9248
block2_pool 32 2 2 0 (66, 66, 32) 0
block3_conv 64 3 1 same (66, 66, 64) 18,496
block3_pool 64 2 2 0 (33, 33, 64) 0
block4_conv 64 3 1 same (33, 33, 64) 36,928
block4_pool 64 2 2 0 (16, 16, 64) 0
block5_conv 64 3 1 same (16, 16, 64) 36,928
block5_pool 64 2 2 0 (8, 8, 64) 0
FC1 (architecture 1) 1028 581,898,372
FC1 (architecture 2) 1028 143,296,004
FC1 (architecture 3) 1028 71,648,516
FC1 (architecture 4) 1028 16,843,780
FC1 (architecture 5) 1028 4,211,716
FC2 2 2058
Architecture 1 581,901,326
Architecture 2 143,308,206
Architecture 3 71,679,214
Architecture 4 16,911,406
Architecture 5 4,316,270