Skip to main content
. 2021 Apr 28;7(5):81. doi: 10.3390/jimaging7050081

Table 1.

Data dimensions in CORONA-Net (the backbone/encoder network).

Layers Kernel Size Stride Padding Output Channel
Input Tensor (50, 3, 224, 224 ) - - -
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 64
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 64
MaxPooling K = 2 × 2 S = 2 P = 0 -
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 128
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 128
MaxPooling K = 2 × 2 S = 2 P = 0 -
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 256
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 256
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 256
MaxPooling K = 2 × 2 S = 2 P = 0 -
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 512
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 512
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 512
MaxPooling K = 2 × 2 S = 2 P = 0 -
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 512
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 512
Convolution
(BatchNorm+Relu)
K = 3 × 3 S = 1 P = 1 O = 512
Convolution K = 1 × 1 S = 1 P = 0 O = 100