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Abstract

Understanding and predicting how amino acid substitutions affect proteins are keys to our basic understanding of
protein function and evolution. Amino acid changes may affect protein function in a number of ways including direct
perturbations of activity or indirect effects on protein folding and stability. We have analyzed 6,749 experimentally
determined variant effects from multiplexed assays on abundance and activity in two proteins (NUDT15 and PTEN) to
quantify these effects and find that a third of the variants cause loss of function, and about half of loss-of-function
variants also have low cellular abundance. We analyze the structural and mechanistic origins of loss of function and use
the experimental data to find residues important for enzymatic activity. We performed computational analyses of
protein stability and evolutionary conservation and show how we may predict positions where variants cause loss of
activity or abundance. In this way, our results link thermodynamic stability and evolutionary conservation to experi-
mental studies of different properties of protein fitness landscapes.

Key words: protein variants, multiplexed assays of variant effects, deep mutational scanning, protein stability, disease
variants, genomics, protein structure–function.

Introduction
Mutational analysis of proteins has provided us with a wealth
of information about the molecular interactions that stabilize
proteins and govern their functions (Fersht 1999). This infor-
mation has in turn enabled us to engineer proteins with im-
proved activities and stability (Goldenzweig and Fleishman
2018), to better understand how mutations cause disease
(Stein et al. 2019), and help elucidate the role of protein
stability in evolution (DePristo et al. 2005; Echave et al. 2016).

Computational analyses of missense variants in genetic dis-
eases have suggested that loss of function via loss of protein
stability is a major cause of disease (Wang and Moult 2001;
Ferrer-Costa et al. 2002; Steward et al. 2003; Yue et al. 2005;
Casadio et al. 2011; Gao et al. 2015; Stein et al. 2019) because
unstable proteins either aggregate or become targets for the
cell’s protein quality control apparatus and are degraded
(Nielsen et al. 2020). Indeed, cellular studies of disease-

causing variants in a number of genes have shown that
many variants are degraded in the cell (Meacham et al. 2001;
Olzmann et al. 2004; Yaguchi et al. 2004; Ron and Horowitz
2005; Yang et al. 2011 2013; Arlow et al. 2013; Chen et al. 2017;
Nielsen et al. 2017; Matreyek et al. 2018; Abildgaard et al. 2019;
Scheller et al. 2019; Suiter et al. 2020). For this reason, several
methods for predicting and understanding disease-causing var-
iants include predictions of changes in protein stability (Yue
et al. 2005; Casadio et al. 2011; De Baets et al. 2012; Ancien et al.
2018; Wagih et al. 2018; Gerasimavicius et al. 2020).

Although stability-based predictions can be relatively suc-
cessful and may provide mechanistic insight into the origins
of disease, it is also clear that variants can cause disease via
other mechanisms such as removing key residues in an active
site or perturbing interactions or regulatory mechanisms.
Thus, methods used to predict the pathogenicity of missense
variants often combine analysis of sequence conservation
with information on protein structure and stability and other
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sources of information (Kumar et al. 2009; Adzhubei et al.
2010; De Baets et al. 2012; Kircher et al. 2014; Choi and Chan
2015; Ioannidis et al. 2016).

In the same way that perturbed protein stability may cause
disease, protein structure, stability, and folding also puts
restraints of how amino acid sequences evolve (Mirny and
Shakhnovich 1999; DePristo et al. 2005; Liberles et al. 2012).
Obviously, however, other considerations such as intrinsic
activity and interactions with other molecules also play im-
portant roles in determining how sequences evolve, and site-
to-site variation in evolutionary rates appear to be deter-
mined by a complex relationship between effects on stability
and other functional constraints (Echave et al. 2016; Jimenez
et al. 2018; Echave 2019).

In order to understand better the relationship between
protein stability, abundance, and function, we here asked
the question of what fraction of single amino acid changes
in a protein causes loss of function via loss of stability and
cellular abundance of the proteins. Until recently, mutational
analyses of proteins have mostly relied on a one-by-one ap-
proach in which individual amino acid changes are intro-
duced and effects on various properties of a protein are
tested—often using in vitro experiments on purified proteins
(Shoichet et al. 1995; Fersht 1999). Such experiments can now
be complemented by experiments that simultaneously probe
the effects of thousands of variants in a single assay. Such
multiplexed assays of variant effects (MAVEs, also often
termed deep mutational scans) are based on developments
in high-throughput DNA synthesis, functional assays, and se-
quencing techniques (Kinney and McCandlish 2019). Briefly, a
selection procedure (e.g., for growth rate or a fluorescent
reporter of a protein property) is applied to a large library
of variants, each expressed in individual cells. Variants change
in frequency depending on how they perform under the
conditions of the selection, and the frequency of each variant
before and after the selection is determined using next-
generation DNA sequencing. Changes in variant frequency
are used to compute a score that describes each variant’s
effect on the property under selection. Such data can be
used as an input to protein engineering (Araya et al. 2012;
Shin and Cho 2015), to map local regions of fitness landscapes
and help elucidate genotype–phenotype relationships
(Hietpas et al. 2011; Sarkisyan et al. 2016; Fernandez-de
Cossio-Diaz et al. 2020), and to understand which and how
mutations may cause disease (Starita et al. 2015; Weile and
Roth 2018; Stein et al. 2019).

Now, for the first time, we have available measurements of
thousands of variant effects on two key protein properties,
activity and abundance, measured in multiple proteins. Here,
we take advantage of these data to examine more broadly
how substitutions affect activity and stability. We examine
how variants may affect abundance and activity differently to
find functionally important positions in proteins (Chiasson
et al. 2020), and to understand whether different types of
effects are found in different regions of a protein’s structure.

To do so, we here analyze two different types of MAVEs
that probe different aspects of protein function. As subjects of
our study, we have chosen two medically relevant human

proteins, PTEN (phosphatase and tensin homolog) and
NUDT15 (nucleoside diphosphate-linked to x hydrolase 15),
because for both of these proteins multiplexed functional
data exist from two different assays: One measuring the effect
of variants on the activity of the protein via a growth rate
(Mighell et al. 2018) or drug sensitivity (Suiter et al. 2020)
phenotype, and an assay that probes the effects of amino acid
changes on cellular abundance (Matreyek et al. 2018; Suiter
et al. 2020). We will sometimes refer to the abundance data as
reporting on “stability” and the growth-based activity data as
“activity,” or “function,” recognizing that the experiments re-
port on a complex interplay of effects during the experimen-
tal assays. Notably, low scores in the activity-based assays
might occur both due to loss of intrinsic enzymatic function,
but also, for example, due to decreased protein abundance.
Indeed, we use the complementary information on protein
abundance to disentangle effects on abundance and intrinsic
activity.

PTEN is a 403 amino-acid residue long lipid phosphatase
expressed throughout the human body, and mutations in the
PTEN gene have been associated with cancer and autism
spectrum disorders (Yehia et al. 2019). In mice, PTEN has
been shown to suppress tumor development via dephos-
phorylation of phosphatidylinositol lipids, although in vitro
PTEN has been shown to have a broader range of substrates
including proteins. PTEN is composed of two domains: a
catalytic tensin-like domain (residues 14–185) and a C2 do-
main (residues 190–350) that mediates membrane recruit-
ment (Lee et al. 1999). The C-terminal region of PTEN is
disordered with a PDZ-domain binding region (residue
401–403) (Valiente et al. 2005). Our analysis of PTEN includes
a MAVE that probes the effects of most single amino acid
substitutions when assayed for lipid phosphatase activity in
yeast (Mighell et al. 2018), whose growth had been made
dependent on the ability of PTEN to catalyze the formation
of essential phosphatidylinositol bisphosphate (PIP2) from its
triphosphate (PIP3). Although these experiments only probe
one function of PTEN and might be affected also, for example,
by expression levels, it has been shown that the resulting data
accurately classifies the pathogenicity of PTEN variants
(Mighell et al. 2018; Jepsen et al. 2020). We complement these
data with results from a different MAVE in which variant
effects on cellular abundance are determined in an experi-
ment termed “variant abundance by massively parallel
sequencing” (VAMP-seq) (Matreyek et al. 2018). In VAMP-
seq, the steady-state abundance of protein variants in cul-
tured mammalian cells is detected by fusion to a fluorescent
protein, and cells are sorted using fluorescent activated cell
sorting. The outcome of the VAMP-seq experiment is not
substantially affected by the fusion with full-length GFP and
correlates with in vitro measurements of thermal stability
(Matreyek et al. 2018), but importantly also captures other
effects that might affect protein abundance and which could
be relevant for function, evolution, and disease. Our analysis
here covers the 56% of all possible single amino acid variants
in PTEN for which we have measurements for both the ac-
tivity and abundance, and thus complements our recent
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analysis of a small number of disease variants in PTEN (Jepsen
et al. 2020).

NUDT15 is a nucleotide triphosphate diphosphatase that
consists of 164 amino acids in a nudix hydrolase domain
featuring a conserved nudix box that coordinates the catalytic
Mg2þ. The biologically relevant assembly is reported to be a
homodimer although the monomer also has catalytic activity
(Carter et al. 2015). NUDT15 deficiency is associated with
intolerance to thiopurine drugs (Yang et al. 2014; Moriyama
et al. 2016, 2017; Nishii et al. 2018), which are widely used in
the treatments of leukemia and autoimmune diseases
(Karran and Attard 2008). Thiopurines are a class of antime-
tabolite drugs that form the active metabolite, thio-dGTP,
which competes with dGTP and causes apoptosis when in-
corporated extensively into DNA. NUDT15 hydrolyzes thio-
dGTP and thus negatively regulates the levels and cytotoxic
effects of thiopurine metabolites. Therefore, NUDT15 variants
that decrease function are a major cause of toxicity during
thiopurine therapy, and thus the dose of the drug may be
personalized to match the metabolism of these compounds
(Relling et al. 2019). The high drug sensitivity of cells with
compromised NUDT15 function has been used in a MAVE to
assay 95% of all single amino acid variants for causing intol-
erance toward thiopurine drugs (Suiter et al. 2020). The same
library and cells were also used in a VAMP-seq experiment to
probe variant effects on cellular abundance, and like in the
case of PTEN, the results were shown to correlate with in vitro
measurements of thermal stability. As in the case of PTEN, the
outcome of the MAVE might depend on the exact conditions
and, for example, drug concentration used, but was shown to
capture the effects of several known pharmacogenetic var-
iants (Suiter et al. 2020).

Here, we have analyzed the effect of variants on activity
and cellular abundance in both PTEN and NUDT15 to pro-
vide a global view of what fraction of variants cause substan-
tial loss of activity in the cell, and what fraction of these
variants do so via loss of protein abundance. We find that
approximately one-third of all variants cause loss of protein
activity, and that about half of these do so most likely because
of loss of protein abundance. Variants that cause loss of abun-
dance are often found inside the protein core, whereas var-
iants that cause loss of activity without affecting abundance
are often found in functionally important positions including
those involved in catalysis or that interact with substrates. We
also find that we can predict rather accurately the positions
where substitutions generally give rise to decreased abun-
dance and activity, whereas it remains difficult to quantita-
tively predict the effects of individual variants. Together, our
results provide further insight into the link between thermo-
dynamic stability and evolutionary conservation and experi-
mental studies of different properties of fitness landscapes.

Results and Discussion

Global Analysis of Variant Effects
We collected data from multiplexed assays reporting on both
the activity and abundance of a total of 2,822 variants in
NUDT15 (Suiter et al. 2020) and 3,927 variants in PTEN

(Matreyek et al. 2018; Mighell et al. 2018) (supplementary
fig. S1, Supplementary Material online). Scripts to repeat
our analyses are available online at https://github.com/
KULL-Centre/papers/tree/master/2020/mave-analysis-
cagiada-et-al (last accessed April 6, 2021). Two-dimensional
histograms reveal that most variants have high scores in both
assays, indicating wild-type like abundance and activity under
the conditions of the cellular assays (fig. 1A and B).

In order to separate wild-type like variants from those with
decreased activity and/or abundance, we define a threshold
value for all scores (supplementary fig. S2, Supplementary
Material online). These thresholds define four classes of var-
iants according to whether the variant showed high or low
scores in the activity-based and abundance MAVEs. For sim-
plicity, each class is also associated with a color. “WT-like”
variants had wild-type like activity and abundance and are
shown in green. “Low-activity, high-abundance” variants had
WT-like abundance but low activity in the assays, and are
shown in blue. “Low-abundance, high-activity” variants had
WT-like activity but low abundance in the assays and are
shown in yellow. “Total loss” variants had low activity and
low abundance and are shown in red.

For both proteins, the majority of variants are wild-type
like (60% for NUDT15 and 54% for PTEN; fig. 1A and B; green).
The total-loss category represents variants that both show
loss of activity and low cellular abundance (14% for NUDT15
and 18% for PTEN; fig. 1A and B; red), and as discussed further
below, we expect that most of these variants lose activity
because of their low abundance. Of the total of 680 and
1,403 variants with low activity in NUDT15 and PTEN, respec-
tively, 60% and 50% lose activity together with loss of abun-
dance. The low-activity, high-abundance variants are still
abundant in the cell but inactivated by other means, for ex-
ample, by changes in amino acids in the active site (fig. 1A and
B; blue). The low-abundance, high-activity class, which con-
tains 16% of NUDT15 and 10% of PTEN variants (fig. 1A and
B; yellow), show low abundance levels, but high levels of ac-
tivity in the activity-based assay and are not as easily
explained by a single mechanism.

To focus our analysis on different types of variant effects in
different parts of the protein structure, and to decrease un-
certainty coming from examining individual variants, we con-
verted the variant data into positional categories that
represent the most frequent class among the variants at
that position. We performed this classification procedure at
all positions with at least five tested variants (99% for
NUDT15 and 88% for PTEN), which also helped average
out noise from examining individual variants with intermedi-
ate scores, and represent the classes using the same names
and coloring scheme as for the variants. This results in 62%
and 60% positions classified as WT-like for NUDT15 and
PTEN, respectively (fig. 1C and D; green). On the other
hand, at 15% and 22% of the positions most variants cause
loss of activity together with loss of abundance (fig. 1C and D;
red), whereas loss of activity without loss of abundance is the
most common outcome at 9% and 12% of the positions
(fig. 1C and D; blue). Finally, at 14% of the positions in

Loss of Protein Function . doi:10.1093/molbev/msab095 MBE

3237



A B

C D

E F

FIG. 1. Overview of the NUDT15 and PTEN multiplexed data analyzed in this work. (A) and (B) show 2D histograms that combine the data from the
activity-based MAVE on the y axis with the results from the VAMP-seq experiment on the x axis. Variants are categorized based on the region of the
2D histogram (dashed lines) they belong to. The fractions of variants falling in each of the four quadrants are indicated, with errors of the mean
estimated by bootstrapping using the uncertainties of the experimental scores. The two green points indicate the wild type. Arrows on the axes
indicate directions of greater abundance or activity; for detailed definitions of the scores and their uncertainties, we refer the reader to the original
publications (Matreyek et al. 2018; Mighell et al. 2018; Suiter et al. 2020). Panels (C) and (D) show a per-position consensus category (CC) colored
onto the structure of the proteins (PDB entry 5LPG for NUDT15 and 1D5R for PTEN). Panels (E) and (F) show the positional color categories
together with the secondary structure (ST) and solvent accessibility (SA). The four classes of variants/positions are represented by a color: “WT-
like” (green), “Low activity, high abundance” (blue), “Low abundance, high activity” (yellow), and “Total loss” (red).
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NUDT15 and 6% in PTEN the variants most often have low
abundance, but high levels of activity (fig. 1C and D; yellow).

We validated the classifications using a clustering method
that does not depend on defining cutoffs for the experimental
scores. We grouped together positions with similar variant
profiles in the two MAVEs (see Materials and Methods), and
find overall very good agreement with the cutoff-based
method in particular for the WT-like, total-loss and loss of
activity, high-abundance categories (supplementary figs. S3
and S4, Supplementary Material online). For NUDT15, we
find that 133/163 positions are classified in the same way
using the two different methods, with the most variable
results occurring in the category with low abundance but
sufficient activity to sustain growth (supplementary fig. S3,
Supplementary Material online). For PTEN, we analyzed the
data using either three or four clusters, with the former
appearing to be the more natural classification. In that case,
246/310 positions are classified in the same way using the two
methods, with the 12 positions in the low-abundance, high-
activity (yellow) category ending either as WT-like or total-
loss. This indicates that three of the four categories of position
effects are identified more robustly, corresponding to substi-
tutions generally resulting in 1) WT-like activity in both
assays, 2) loss of activity and abundance, or 3) loss of activity,
while retaining WT-like abundance. The low-abundance,
high-activity positions are, however, less robustly classified
and we do not analyze them further.

As expected, amino acids at buried positions are in general
sensitive to mutations. In NUDT15, 35 out of the 163 amino
acids are fully buried, and half of these (49%) are classified as
sensitive to mutations in both the activity- and abundance-
based assays (red label) with the remaining buried positions
mainly classified as low abundance, high activity (34%; fig. 1E
and F). Because the variant coverage is lower in PTEN, only
355 of 403 positions can be classified in this way, and only 34
of these 355 are fully buried. Among these 34, 80% are clas-
sified as “unstable” positions (low-abundance, high-activity,
and total-loss categories). Thus, loss of abundance is the typ-
ical reason for loss of activity for variants at buried positions.

Low-activity, high-abundance positions are defined as hav-
ing the majority of the tested variants that have lost activity,
but are still abundant in the cell. Previously such positions
have been found to map to functionally important sites in the
membrane protein VKOR (Chiasson et al. 2020). We find that
in PTEN, these variants and positions are mainly found in the
catalytic phosphatase domain (supplementary fig. S5,
Supplementary Material online) and include the active site
(fig. 2A and B). In NUDT15, we find the low-activity, high-
abundance positions in several different regions. One group is
located in proximity of the substrate-binding site and
includes previously discussed Arg34 and Gly47 (Suiter et al.
2020). Another group includes the residues that coordinate a
magnesium ion (Suiter et al. 2020). Finally, we find a group of
residues that stretches from the substrate-interacting Arg34
and Gln44 (Carter et al. 2015) to Asn117 and Asn111 more
distal from the substrate-binding pocket and connected via a
hydrogen bond network (fig. 2C and D). Asn111 and Asn117
appear to help position a loop (residues 111–117) that

includes the magnesium-coordinating Glu113, and although
these residues do not directly contact the substrate, many
substitutions lead to loss of function without loss of
abundance.

Having found that many low-activity, high-abundance
positions play functional roles, we asked the question
whether they are generally found near the active sites in
NUDT15 and PTEN. Using Gly47 in NUDT15 and Arg130 in
PTEN as reference points in the active sites in these two
proteins, we find that the low-activity, high-abundance posi-
tions, where variants typically show loss of activity, but not
loss of abundance, are clustered around the active sites.
Specifically, we find all of these positions in NUDT15 are
within 14 Å of Gly47 (Ca-distances). The average distance
between low-activity, high-abundance positions, and Gly47
is 9 Å, a value that can be compared with the average (15 Å)
over all positions in NUDT15. In PTEN, we find that 29 of 32
low-activity, high-abundance positions are found in the cat-
alytic domain. All of these 29 positions are within 22 Å of
Arg130, with the average distance to Arg130 being 14 Å (com-
pared with 21 Å over all positions).

Although the typical outcome at low-activity, high-abun-
dance positions is loss of activity, not all substitutions have
equally large effects, and some amino acid substitutions are
more likely to be detrimental to function than others. We
thus examined the individual substitutions at the low-activity,
high-abundance positions to ask whether particular types of
substitutions preserve function better than others. Although
such an analysis is made difficult by the small numbers
of substitutions when broken down to start and end amino
acid, we do find evidence suggesting differences depending on
amino acid chemistry (supplementary fig. S6, Supplementary
Material online). For example, at low-activity, high-abun-
dance positions with Asn as the wild-type residue, it appears
that substitutions to other small and polar amino acids (Asp,
Ser, Thr) preserve function better than, for example, substi-
tutions to hydrophobic amino acids (supplementary fig. S6,
Supplementary Material online). More generally, it has previ-
ously been observed that there is a substantial effect of amino
acid type on the outcome of a MAVE experiment (Gray et al.
2017; Dunham and Beltrao 2020), and we here find similar
results (supplementary fig. S7, Supplementary Material on-
line). As expected, we find that many total loss variants are
substitutions of hydrophobic amino acids with charged and
polar amino acids, whereas substitutions of hydrophobic res-
idues with other hydrophobics are more common in the
wild-type like category. More detailed analyses of these
effects, however, are hampered by the low number of many
of the types of substitutions.

Computational Predictions of Multiplexed Data from
MAVEs
As described previously and demonstrated above, MAVEs
provide a wealth of data not only for use in medical applica-
tions (Weile and Roth 2018; Stein et al. 2019) but also for
understanding basic properties of proteins (Dunham and
Beltrao 2020). Despite recent advances in proteome-wide
experiments (Despr�es et al. 2020), it is still not possible to
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probe all possible variants in all proteins experimentally, and
thus computational methods remain an important supple-
ment to predict and understand variant effects. Experimental
data from MAVEs are thus increasingly used to benchmark
prediction methods, as they provide a broad view of the effect
of amino acid substitutions in proteins (Hopf et al. 2017;
Jepsen et al. 2020; Livesey and Marsh 2020; Reeb et al. 2020).

Recently, we exploited the two different MAVEs for PTEN
to analyze a small number of pathogenic variants together

with variants that have been observed in a broader analysis of
the human population (Jepsen et al. 2020). Specifically, we
compared the abundance-based (VAMP-seq) and activity-
based multiplexed data with two computational methods
aimed at capturing either 1) specifically protein stability or
2) function more broadly. Here, we build on this work, by 1)
applying computational modeling to predict changes in ther-
modynamic protein stability using Rosetta (Park et al. 2016)
and 2) using evolutionary conservation as a more general
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A B
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FIG. 2. Examples of “low-activity, high-abundance” positions. (A) Residues in PTEN in the low-activity, high-abundance category (blue) include
residues in and surrounding the catalytic phosphatase site including some that directly interact with the substrate (here mimicked by the inhibitor
tartrate; Lee et al. 1999). (B) Other residues that are more distant to the active site also fall in this category, and variants in this region could perturb
the integrity of the active site. (C and D) Examples of functionally important residues in NUDT15 that are close to, but outside of the active site. In
particular, we identified four conserved residues (Asn111, Asn117, Gln44, Arg44) that appear to connect via a hydrogen bond network, and whose
perturbation could affect the hydrolysis of the thiopurines.
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view of which amino acid changes would be tolerated while
maintaining function (Ekeberg et al. 2014). The former uses as
input the structure of NUDT15 or PTEN to predict the
change in protein stability (DDG), whereas the latter uses a
sequence alignment of homologuous proteins as input to a
computational assessment of conservation, taking both site
and pair-conservation (coevolution) into account, quantified
by a score (which we by analogy to DDG term DDE) that
estimates how likely a substitution would be. We note that
the same kind of model can be used to predict contacts in
protein structure, but in line with previous work (Lapedes
et al. 2012; Lui and Tiana 2013; Hopf et al. 2017; Nielsen et al.
2017) is here used to estimate the effects of amino acid
substitutions. We also note that it has previously been shown
that the “pair terms” in these models, that capture effects of
(apparent) coevolution between pairs of sites, improve accu-
racy in these predictions (Hopf et al. 2017). As previously
argued (Jepsen et al. 2020), the DDG calculations are more
akin to the results of an abundance-based MAVE (both cap-
turing aspects of protein stability), whereas the DDE values
capture a broader range of effects as would also be expected
from an activity-based MAVE.

We thus compared the computational predictions of DDG
and DDE with each of the two multiplexed assays for
NUDT15 and PTEN (supplementary fig. S8, Supplementary
Material online). As expected, we find that stability predic-
tions correlate better with the abundance-based MAVE than
with the activity-based MAVE, whereas for the evolutionary
analysis, the situation is reversed (supplementary fig. S9,
Supplementary Material online). In the case of NUDT15, for
example, the data from the abundance-based MAVE corre-
late more strongly with the DDG calculations (rp ¼ 0:57)
than with DDE (rp ¼ 0:42), whereas the activity-based
MAVE is more poorly correlated with stability predictions
(rp ¼ 0:35) than with the conservation-based scores
(rp ¼ 0:52). Although the difference is smaller (but still pre-
sent) for PTEN, the results support the notion that analysis of
conservation is a better predictor of general aspects of protein
function, whereas the Rosetta calculations support the
expected relationship between cellular protein abundance
and thermodynamic stability (Matreyek et al. 2018;
Abildgaard et al. 2019; Jepsen et al. 2020). In addition, we
note that whereas the correlation coefficients are not very
high, the results are in line with previous analyses of similar
data (Hopf et al. 2017; Jepsen et al. 2020; Livesey and Marsh
2020).

We define threshold values for the computational scores
(supplementary figs. S10 and S11, Supplementary Material
online) to separate wild-type like from deleterious variants
and construct four categories that we label with colors as
above. Using a threshold of 2 kcal/mol for the DDG for
both proteins results in 69% (NUDT15) and 65% (PTEN) of
the variants being predicted stable. Similarly, from the evolu-
tionary conservation analysis 78% and 58% of all variants for
NUDT15 and PTEN, respectively, have scores that indicate
that the substitutions are tolerated. Note that, by convention,
positive DDG and DDE scores indicate loss of stability or

sequence tolerance, respectively, and hence the scales are
inverted compared with the scores from the MAVEs.

To enable a more direct comparison between the exper-
imental and computational scores, we show histograms of
the two computational scores (DDG and DDE) for each of
the four classes based on the experimental scores (fig. 3). We
find that the variants that experimentally were classified as
WT-like (stable and active) generally have low computational
values; thus the computational predictions suggest that these
substitutions have a mild effect on stability (low DDG) and
are compatible with substitutions observed in homologous
proteins (low DDE). We make similar observations for the
total loss category, where the computational scores are gen-
erally above the cutoff, and for the low-activity, high-abun-
dance category where the computational analysis finds low
values of DDG but higher values of DDE. Despite these gen-
eral trends, we find variable agreement in the classification of
individual variants by experiments and computation (supple-
mentary fig. S12, Supplementary Material online), with the
best agreement in the WT-like and total-loss categories. To
examine whether the results from the conservation analyses
were specific to using lbsDCA, we also used the Evolutionary
Trace Analysis algorithm (Lichtarge et al. 1996; Lua et al. 2016)
to analyze the multiple sequence alignments, and found sim-
ilar results (supplementary fig. S13, Supplementary Material
online).

We proceeded by generating and examining the struc-
ture–function relationships that we extracted from the com-
putational analyses (supplementary fig. S14, Supplementary
Material online). We used the computational results to group
the positions into four categories and found a substantial
overlap with those found in experiments (supplementary
fig. S15, Supplementary Material online), in particular for
the WT-like and total-loss categories, with approximately
70% of the positions classified in the same way. This result
suggests that the computational analyses better capture gen-
eral effects at positions compared with individual variants as
discussed above (fig. 3). We again used a clustering procedure
as an alternative approach to classify positions and find good
agreement both with the cutoff-based classification of the
computational data as well as with the experiment-based
classifications (supplementary fig. S16, Supplementary
Material online). Thus, together these results show that a joint
computational analysis of stability and conservation can be
used to find positions in the protein where substitutions are
likely to disrupt thermodynamic stability, and other positions
where they will cause loss of activity via removing functionally
important residues.

Conclusions
Large-scale analysis of proteins using multiplexed assays pro-
vides opportunities to obtain a global view of variant effects
(Gray et al. 2017; Dunham and Beltrao 2020). By combining
different assays to read out different properties of a protein it
becomes possible to dissect which positions contribute most
to which property (Jepsen et al. 2020). Most proteins need to
be folded to be active, and thus amino acid substitutions that
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lead to loss of stability will often lead to loss of function. Loss
of stability thus appears to be an important driver for disease
(Yue et al. 2005; Stein et al. 2019) and determinant of evolu-
tionary rates (Echave et al. 2016), and vice versa it has been
shown that residues in active sites may be suboptimal for
stability (Shoichet et al. 1995).

We have here exploited the availability of data generated
by MAVEs for two proteins, with one experiment probing
general effects on protein activity and another directly assess-
ing cellular abundance. We show that a global analysis of
these experiments can provide insight into how proteins
function and how activity may be perturbed. With the assays
considered here, we find that most variants have at most a
modest effect on protein activity. Of the approximately 30%
of the variants that cause substantial loss of activity, we find
that approximately 50% also cause loss of abundance. Thus,
although it is not surprising that there in many cases is a
correlation between loss of function and loss of abundance,
we here provide quantitative estimates on the relative impor-
tance of these effects across a wide range of substitutions in
two unrelated proteins. The relative amounts of “low-activity,
high-abundance” and “total-loss” variants that we find can be
compared with our previous analysis of 42 disease-causing
variants in PTEN, where we found a comparable fraction
(�60%) of the disease-causing variants appears to cause
loss of function via loss of stability and thereby cellular protein

abundance (Jepsen et al. 2020). Indeed, most (but not all)
pathogenic variants in PTEN (Mighell et al. 2018; Jepsen et al.
2020) score low in the activity-based MAVE, with a substan-
tial fraction of these also having low abundance (supplemen-
tary fig. S17, Supplementary Material online), whereas the
situation for pharmacogenetic variants in NUDT15 (Suiter
et al. 2020) is more complex (supplementary fig. S17,
Supplementary Material online). Similarly, in our studies of
pathogenic missense variants in the MLH1 gene, we found
low steady-state protein levels (<50% of wild type) in seven
out 16 pathogenic variants (Abildgaard et al. 2019). Thus, at
least in these cases, it appears that the fraction of variants that
cause disease via this mechanism reflects the overall fraction
of “total loss” variants in the protein. An interesting question
for future experiments is how many of these variants would
be active if protein levels could be restored for example by
chemical chaperones or modulating the protein quality con-
trol apparatus (Arlow et al. 2013; Kampmeyer et al. 2017).
Indeed, chaperones are known to help buffer against desta-
bilizing variants during evolution (Rutherford and Lindquist
1998; Tokuriki and Tawfik 2009).

Building on previous work (Cheng et al. 2005; Chiasson
et al. 2020), we also show how we can use variant effects on
protein activity and abundance/stability to find functionally
important residues both by experiments and computation.
For several surface-exposed residues, many variants cause loss

FIG. 3. Histograms of the two computational scores (DDG and DDE) in NUDT15 and PTEN. DDG aims to capture effects purely on the
thermodynamic stability, with high values indicating destablized variants. DDE captures evolutionary conservation, as calculated by a model
that takes both site and pairwise coevolution into account, and with high values indicating nonconservative substitutions. Thus, for both DDG and
DDE positive values indicate detrimental substitutions, whereas in the experiments low values indicate substitutions that cause loss of activity or
abundance. For both proteins, we split the histograms up according to the four categories of variants determined from the experiments, as
indicated by the axes with high and low experimental scores for abundance and activity. Thus, for example, the two green histograms for NUDT15
indicate the distributions of DDG and DDE values for those variants that are classified as stable and active by the MAVEs, and indeed it is clear that
most of these variants have scores that are below the cutoff (red dashed lines). In addition to the colored histograms, we also show the full
histogram of all analyzed variants (gray) to ease comparison between the subsets and the full set of variants.
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of activity, but without substantial loss of abundance. We find
that these include the active sites in NUDT15 and PTEN, but
also discover functionally important sites adjacent to these
active sites. The importance of second shell positions for
modulating the structure or dynamics of active site residues
has for example also emerged in studies of ligand binding
(Tinberg et al. 2013) and enzyme evolution and design
(Campbell et al. 2016; Broom et al. 2020). In our analysis
of functional residues, we mostly focused on general effects
at each position, rather than specific effects of individual
substitutions. We did this to average out noise from individ-
ual measurements and to find general patterns, but with
more data, it would be interesting to perform such struc-
ture–sequence–function analysis at the level of individual
substitutions.

The relatively tight confinement of these low-activity/high-
abundance positions may also explain why predictions of
changes in protein stability can be used to predict a substan-
tial number of disease variants: At least in NUDT15 and PTEN
the number of positions where substitutions typically cause
loss of abundance (and thereby activity) is greater than the
number of positions where substitutions cause loss of activity
while retaining protein abundance. Indeed, although func-
tional sites induce substantial constraints on amino acid var-
iation during evolution, the strongest effects are those closest
to the active sites (Jack et al. 2016; Mayorov et al. 2019). Our
ability to predict these sites by combining evolutionary anal-
ysis and stability calculations also suggests an approach for
discovering new functionally important sites using a com-
bined analysis of protein structure and sequences. We find
that approximately 12% of variants in NUDT15 and PTEN
appear to be able to support wild-type like growth in the
cellular assays even at substantially reduced protein levels.
Clearly, there can be a nonlinear relationship between a
growth phenotype and protein abundance (Jiang et al.
2013), and this may help explain some of these variants.
Future experiments that probe the relationship between ex-
pression levels and variant effects in NUDT15 and PTEN may
shed further light on these variants. Further, the abundance-
based MAVE for PTEN was performed in a cultured mam-
malian cell line (Matreyek et al. 2018) and the activity-based
MAVE was performed in yeast (Mighell et al. 2018), leading to
potential differences due to the differences in the quality
control and proteostasis machinery in these cells.

In summary, we demonstrate how multiplexed assays and
computational analyses are beginning to provide a coherent
and comprehensive view of the global effects of variants in
proteins. The results highlight that many effects are correctly
predicted and thus computation can be used not only to
predict whether a variant will cause loss of activity or not,
but also provide some mechanistic insight. Clearly, there is
room for improvement, and additional experiments on more
proteins and covering more aspects of the complicated rela-
tionship between protein sequence and functions will help
further our ability to predict these effects computationally
(Cheng et al. 2005).

Materials and Methods

Conservation Analysis of Variant Effects
We used a statistical analysis of multiple sequence alignments
(MSAs) of the two proteins to estimate the tolerance toward
specific substitutions. In line with previous work, we use a
method that includes both site and pairwise conservation
(coevolution). We used the WT sequences from UniProt
(P60484 and Q9NV35) as input to HHBlits (Remmert et al.
2011) to build initial MSAs, which we filtered before calculat-
ing the variant effects. The first filter removes sequences
(rows) in the MSA with more than 50% gaps. The second
filter keeps only positions (columns) that are present in the
human target sequences of NUDT15 or PTEN. Finally, we
apply a similarity filter (Ekeberg et al. 2013) to remove redun-
dant sequences (more than 80% identical). We use a modified
version of the lbsDCA algorithm (Ekeberg et al. 2014), based
on l2-regularized maximization with pseudocounts to predict
the likelihood of every variant of the protein. We use the
energy potential generated by the algorithm to evaluate
the log-likelihood difference between the wild type and the
variant sequences (DDE). We verified that the outcome of
these analyses did not depend substantially on the parame-
ters used to construct the MSA or to filter the alignments
(supplementary fig. S18, Supplementary Material online). We
performed Evolutionary Trace Analysis (Lichtarge et al. 1996;
Lua et al. 2016) calculations using the webserver available at
evolution.lichtargelab.org.

Structural Analysis
We used Rosetta (GitHub SHA1 99d33ec59ce9fcecc5e4f3800-
c778a54afdf8504) to predict changes in thermodynamic sta-
bility (DDG) from the structure of NUDT15 and PTEN using
the Cartesian ddG protocol (Park et al. 2016). As starting
points, we used the crystal structures of NUDT15 (Valerie
et al. 2016) (PDB ID: 5LPG) and PTEN (Lee et al. 1999)
(PDB ID: 1D5R). The values obtained from Rosetta were di-
vided by 2.9 to bring them from Rosetta energy units onto a
scale corresponding to kcal/mol (Frank DiMaio, University of
Washington; personal correspondence) (Jepsen et al. 2020).
We used DSSP-2.28 (Kabsch and Sander 1983; Touw et al.
2015) and the same crystal structures as above to classify the
burial with a three-state model (Rost and Sander 1994) (bur-
ied, intermediate, or exposed).

Defining Thresholds for Classifying Variants
We defined thresholds for the scores from both MAVEs (sup-
plementary fig. S2, Supplementary Material online), by fitting
the variant score distributions using the minimal number of
Gaussians (three) needed to obtain a reasonable fit. We then
used the intersection of the first and last Gaussian as cutoff for
our classifications. We use a cutoff of 2 kcal/mol (similar to
the value used in our previous study; Jepsen et al. 2020) for
DDG and varied the cutoff for DDE to maximize the overlap
in the classification of positions (supplementary fig. S11,
Supplementary Material online).

To examine the threshold-based classifications, we used a
hierarchical clustering algorithm (Ward 1963; Virtanen et al.
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2020) to group positions with similar responses to amino acid
substitutions. Each position was represented by a 40D vector
that contains the scores for each of the 20 possible amino
acids in the two MAVEs. Missing values were replaced by the
average score over that position. We use the Euclidean dis-
tance between these vectors as similarity score in the hierar-
chical clustering (Ward 1963). To compare with the
threshold-based classification, we analyzed this using four
clusters, though, in the case of PTEN, we also show the results
using only three clusters.

Residue Classification
We assigned a category to residues for which data for at least
five variants are available in both MAVEs. We used the mode
(the most common class of the variants at that position) to
assign the residue category.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Remmert M, Biegert A, Hauser A, Söding J. 2011. HHblits: lightning-fast
iterative protein sequence searching by HMM-HMM alignment. Nat
Methods. 9(2):173–175.

Ron I, Horowitz M. 2005. Er retention and degradation as the molecular
basis underlying gaucher disease heterogeneity. Hum Mol Genet.
14(16):2387–2398.

Rost B, Sander C. 1994. Conservation and prediction of solvent accessi-
bility in protein families. Proteins 20(3):216–226.

Rutherford SL, Lindquist S. 1998. Hsp90 as a capacitor for morphological
evolution. Nature 396(6709):336–342.

Sarkisyan KS, Bolotin DA, Meer MV, Usmanova DR, Mishin AS, Sharonov
GV, Ivankov DN, Bozhanova NG, Baranov MS, Soylemez O, et al.
2016. Local fitness landscape of the green fluorescent protein. Nature
533(7603):397–401.

Scheller R, Stein A, Nielsen SV, Marin FI, Gerdes A-M, Di Marco M,
Papaleo E, Lindorff-Larsen K, Hartmann-Petersen R. 2019. Toward
mechanistic models for genotype–phenotype correlations in phe-
nylketonuria using protein stability calculations. Hum Mutat.
40(4):444–457.

Loss of Protein Function . doi:10.1093/molbev/msab095 MBE

3245



Shin H, Cho B-K. 2015. Rational protein engineering guided by deep
mutational scanning. Int J Mol Sci. 16(9):23094–23110.

Shoichet BK, Baase WA, Kuroki R, Matthews BW. 1995. A relationship
between protein stability and protein function. Proc Natl Acad Sci U
S A. 92(2):452–456.

Starita LM, Young DL, Islam M, Kitzman JO, Gullingsrud J, Hause RJ,
Fowler DM, Parvin JD, Shendure J, Fields S. 2015. Massively parallel
functional analysis of brca1 ring domain variants. Genetics
200(2):413–422.

Stein A, Fowler DM, Hartmann-Petersen R, Lindorff-Larsen K. 2019.
Biophysical and mechanistic models for disease-causing protein var-
iants. Trends Biochem Sci. 44(7):575–588.

Steward RE, MacArthur MW, Laskowski RA, Thornton JM. 2003.
Molecular basis of inherited diseases: a structural perspective.
Trends Genet. 19(9):505–513.

Suiter CC, Moriyama T, Matreyek KA, Yang W, Scaletti ER, Nishii R, Yang
W, Hoshitsuki K, Singh M, Trehan A, et al. 2020. Massively parallel
variant characterization identifies NUDT15 alleles associated with
thiopurine toxicity. Proc Natl Acad Sci U S A. 117:201915680.

Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W,
Kalodimos CG, Johnsson K, Stoddard BL, et al. 2013. Computational
design of ligand-binding proteins with high affinity and selectivity.
Nature 501(7466):212–216.

Tokuriki N, Tawfik DS. 2009. Chaperonin overexpression promotes ge-
netic variation and enzyme evolution. Nature 459(7247):668–673.

Touw WG, Baakman C, Black J, Te Beek TA, Krieger E, Joosten RP, Vriend
G. 2015. A series of PDB-related databanks for everyday needs.
Nucleic Acids Res. 43(Database issue):D364–D368.

Valerie NCK, Hagenkort A, Page BDG, Masuyer G, Rehling D, Carter M,
Bevc L, Herr P, Homan E, Sheppard NG, et al. 2016. NUDT15 hydro-
lyzes 6-thio-deoxyGTP to mediate the anticancer efficacy of 6-thio-
guanine. Cancer Res. 76(18):5501–5511.

Valiente M, Andr�es-Pons A, Gomar B, Torres J, Gil A, Tapparel C,
Antonarakis SE, Pulido R. 2005. Binding of PTEN to specific PDZ
domains contributes to PTEN protein stability and phosphorylation

by microtubule-associated serine/threonine kinases. J Biol Chem.
280(32):28936–28943.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T,
Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, et
al. 2020. SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nat Methods. 17(3):261–272.

Wagih O, Galardini M, Busby BP, Memon D, Typas A, Beltrao P. 2018. A
resource of variant effect predictions of single nucleotide variants in
model organisms. Mol Syst Biol. 14(12):e8430.

Wang Z, Moult J. 2001. Snps, protein structure, and disease. Hum Mutat.
17(4):263–270.

Ward JH Jr. 1963. Hierarchical grouping to optimize an objective func-
tion. J Am Stat Assoc. 58(301):236–244.

Weile J, Roth FP. 2018. Multiplexed assays of variant effects contribute to
a growing genotype–phenotype atlas. Hum Genet. 137(9):665–678.

Yaguchi H, Ohkura N, Takahashi M, Nagamura Y, Kitabayashi I, Tsukada
T. 2004. Menin missense mutants associated with multiple endo-
crine neoplasia type 1 are rapidly degraded via the ubiquitin-
proteasome pathway. Mol Cell Biol. 24(15):6569–6580.

Yang C, Asthagiri AR, Iyer RR, Lu J, Xu DS, Ksendzovsky A, Brady RO,
Zhuang Z, Lonser RR. 2011. Missense mutations in the NF2 gene
result in the quantitative loss of merlin protein and minimally affect
protein intrinsic function. Proc Natl Acad Sci U S A.
108(12):4980–4985.

Yang C, Huntoon K, Ksendzovsky A, Zhuang Z, Lonser RR. 2013.
Proteostasis modulators prolong missense VHL protein activity
and halt tumor progression. Cell Rep. 3(1):52–59.

Yang S-K, Hong M, Baek J, Choi H, Zhao W, Jung Y, Haritunians T, Ye BD,
Kim K-J, Park SH, et al. 2014. A common missense variant in
NUDT15 confers susceptibility to thiopurine-induced leukopenia.
Nat Genet. 46(9):1017–1020.

Yehia L, Ngeow J, Eng C. 2019. PTEN-opathies: from biological insights to
evidence-based precision medicine. J Clin Invest. 129(2):452–464.

Yue P, Li Z, Moult J. 2005. Loss of protein structure stability as a major
causative factor in monogenic disease. J Mol Biol. 353(2):459–473.

Cagiada et al. . doi:10.1093/molbev/msab095 MBE

3246


