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ABSTRACT

Elevated circulating trimethylamine N-oxide (TMAO) concentrations have been observed in patients with chronic kidney disease (CKD). We aimed
to systematically estimate and quantify the association between TMAO concentrations and kidney function. The PubMed, EMBASE, Cochrane
Library, Scopus, and Web of Science databases were systematically searched from 1995 to 1 June, 2020, for clinical studies on circulating TMAO
concentrations and kidney function indicators. We used R software to conduct meta-analyses of the extracted data. A cumulative meta-analysis
was applied to test whether health status affected the pooled effect value. Meta-regression and subgroup analyses were performed to identify
possible sources of heterogeneity. Ultimately, we included a total of 32 eligible clinical studies involving 42,062 participants. In meta-analyses of
continuous-outcome variables, advanced CKD was associated with a 67.9 μmol/L (95% CI: 52.7, 83.2; P < 0.01) increase in TMAO concentration,
and subjects with high concentrations of TMAO had a 12.9 mL/(min·1.73 m2) (95% CI: −16.6, −9.14; P < 0.01) decrease in glomerular filtration rate
(GFR). In meta-analyses of the correlations, TMAO was strongly inversely correlated with GFR [Fisher’s z-transformed correlation coefficient (ZCOR):
−0.45; 95% CI: −0.58, −0.32; P < 0.01] and positively associated with the urine albumin-to-creatinine ratio (UACR; ZCOR: 0.26; 95% CI: 0.08, 0.43;
P < 0.01), serum creatinine (sCr; ZCOR: 0.43; 95% CI: 0.28, 0.58; P < 0.01), urine albumin excretion rate (UAER; ZCOR: 0.06; 95% CI: 0.04, 0.09; P < 0.01),
blood urea (ZCOR: 0.50; 95% CI: 0.29, 0.72; P < 0.01), blood uric acid (ZCOR: 0.32; 95% CI: 0.25, 0.38; P < 0.01), and serum cystatin C (CysC; ZCOR:
0.47, 95% CI: 0.44, 0.51; P < 0.01). This is the first systematic review and meta-analysis to reveal a negative association between circulating TMAO
concentrations and kidney function. Adv Nutr 2021;12:1286–1304.
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Introduction
Increasing evidence suggests that the gut microbiome is
associated with homeostasis, health, and multiple diseases
(1, 2). Dietary intake is considered to be the greatest source
of human exposure to the environment and, in turn, exerts
important influences on the composition and metabolism of
the gut microbiota (3, 4). As living organisms, bacteria thrive
by taking nutrients and energy from the host’s diet. They
also function as a living barrier against ingested noxious
substances and liberate otherwise inaccessible nutrients or
even potentially harmful metabolic by-products for systemic
absorption. Patients with kidney disease are at a high risk of
accumulating all kinds of gut microbial metabolites, owing
to a decreased capability for systemic metabolite clearance.
Gut microbiota-derived uremic toxins, in turn, have been

implicated in the progression of chronic kidney disease
(CKD) due to their promoting adverse pathophysiological
changes in the kidneys, including fibrosis (5), loss of kidney
tubular function (6, 7), and reduction in glomerular filtration
rate (GFR) (8). Impaired kidney function seriously affects
many aspects of human health. It has been reported as an
independent risk factor for cardiovascular disease (CVD)
(9, 10). In 2017, impaired kidney function resulted in
∼61.3 million disability-adjusted life-years and 1.4 million
CVD-related deaths (11). Therefore, early identification and
effective control of risk factors for kidney impairment are
crucial.

Trimethylamine N-oxide (TMAO) is a gut microbiota-
derived metabolite that is formed in the liver from trimethy-
lamine (TMA), which is derived from trimethyl-alkyl
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ammonium compounds (e.g. choline and carnitine) by the
gut microbiota (12) and excreted through the kidneys during
urination (13, 14). The formation of the TMAO precursor
TMA is inseparable from intestinal flora, and its substrate
metabolites are abundant in foods rich in choline and
carnitine, including dairy products, egg yolks, organ and
muscle meats, and seafoods such as fish and crustaceans (15,
16). Over the last 10 y, TMAO has attracted a great deal
of attention after a series of reports revealed its important
roles in the occurrence and development of CVD (17)
and other diseases such as heart failure (18, 19), incident
atrial fibrillation (20), hypertension (21), and diabetes (22).
A metabolomic study of 1434 Framingham Heart Study
participants with an estimated baseline GFR (eGFR) of
≥60 mL/(min·1.73 m2) showed that 9 metabolites predicted
the development of CKD and that choline, the precursor
of TMAO, was 1 of 3 markers that remained significant
after adjustments for confounders (23). Mammals cannot
metabolize TMAO, and ≤95% of total TMAO in the body
is excreted unchanged by the kidneys through glomerular
filtration and tubular secretion (24, 25). Studies have shown
that TMAO concentrations are elevated in patients with
end-stage kidney disease (ESKD) (26–30), and an ∼30-
fold increase in TMAO concentrations has been reported in
hemodialysis patients versus individuals with normal kidney
function (24, 27, 31, 32). In addition, among CKD subjects
[GFR <60 mL/(min·1.73 m2)], Tang et al. (26) observed
that high concentrations of TMAO accelerated the decline of
kidney function and were associated with a 2.8-fold increased
mortality risk. In a linear-regression analysis, TMAO was an
independent predictor of carotid atherosclerosis burden (33).
Mouse studies mimicking long-term exposure to elevated
TMAO concentrations have revealed that TMAO might
contribute to progressive tubulointerstitial fibrosis, collagen
deposition, and kidney function impairment (29). These data
suggest a significant association between TMAO and kidney
function and the possibility that TMAO could function as a
biomarker of kidney disease.

To better understand the relation between circulating
TMAO concentrations and kidney function, we performed
the current systematic review and meta-analyses to quantify
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the correlation between circulating TMAO concentrations
and kidney function impairment.

Methods
The prospectively developed protocol of the present study
was registered in the International Prospective Regis-
ter of Systematic Reviews (PROSPERO) database (No.
CRD42020191612). Preferred Reporting Items for System-
atic Reviews and Meta-analyses (PRISMA) guidelines (34)
were followed throughout this study.

Data sources and searches
We systematically searched the PubMed, EMBASE,
Cochrane Library, Scopus, and Web of Science databases
from 1995 to 1 June, 2020. Medical Subject Headings
(MeSH) and free-text terms were combined to identify
relevant articles, with no language restrictions. Additionally,
we searched clinicaltrials.gov and manually searched the
references in the selected trials and meta-analyses to identify
additional eligible studies. Details of the search terms are
provided in Supplemental Table 1. We contacted the study
authors for additional information when necessary to ensure
that all relevant articles were included in the search. Two
reviewers (YZ and MG) developed the selection criteria
and screened the titles and abstracts of the searched articles
for relevance after removal of duplicates. Two authors
(YZ and XF) independently assessed the full texts of the
remaining articles to determine their eligibility for inclusion
based on predetermined criteria. The reviewers resolved any
disagreement through discussion or, if required, adjudication
by a third reviewer.

Study selection
Referring to the recommendations of the Global Burden
of Diseases, Injuries, and Risk Factors Study (11) and
the Kidney Disease: Improving Global Outcomes (KDIGO)
guidelines (35), we used the terms “CKD,” “ESKD,” and
“advanced CKD” (CKD5 or ESKD) to refer to different stages
or degrees of kidney function impairment (Table 1). We
used the term “impaired kidney function” to refer to all
stages of CKD and the indicators of kidney function damage,
including decreased GFR and increased urine albumin-
to-creatinine ratio (UACR), serum creatinine (sCr), urine
albumin excretion rate (UAER), blood urea nitrogen (BUN),
blood urea, blood uric acid, and serum cystatin C (CysC).

We included observational studies with cohort, cross-
sectional, or case-control designs if they: 1) used serum or
plasma samples from participants, 2) used MS for analysis,
3) reported TMAO concentrations in healthy subjects and
patients with advanced CKD, 4) reported the values of kidney
function indicators in ≥2 TMAO categories, 5) reported
continuous-outcome variables (TMAO concentrations, val-
ues of kidney function indicators) as mean (SD) or median
(IQR), 6) reported the Pearson correlation coefficient (r)
or Spearman rank correlation coefficient (rho) between
TMAO concentrations and kidney function indicators, and
7) involved subjects aged >18 y. Studies that included
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TABLE 1 GFR categories in CKD1

CKD stage Definition Description of kidney function

CKD12 GFR ≥90 mL/(min·1.73 m2) and UACR ≥30 mg/g Normal or high
CKD22 GFR 60–89 mL/(min·1.73 m2) Mildly decreased
CKD3a2 GFR 45–59 mL/(min·1.73 m2) Mildly to moderately decreased
CKD3b2 GFR 30–44 mL/(min·1.73 m2) Moderately to severely decreased
CKD42 GFR 15–29 mL/(min·1.73 m2) Severely decreased
CKD53 GFR <15 mL/(min·1.73 m2) Kidney failure (advanced CKD)
ESKD Kidney transplant recipients and patients treated by dialysis Kidney failure (advanced CKD)

1GFR is the total amount of fluid filtered through all functioning nephrons per unit of time, which is the best available indicator of overall kidney
function (36). The Kidney Disease Improving Global Outcomes (KDIGO) initiative classifies an individual as having CKD if abnormalities of kidney
structure or function persist for >3 mo. Criteria included reduced GFR, presence of albuminuria, or abnormalities of kidney structure (35).
Notably, in the absence of evidence of kidney damage, neither the CKD1 nor the CKD2 GFR category fulfilled the criteria for CKD (35). CKD,
chronic kidney disease; ESKD: end-stage kidney disease; GFR, glomerular filtration rate; UACR: urine albumin-to-creatinine ratio.
2Not including kidney transplant recipients.
3Not including kidney transplant recipients or patients treated by dialysis.

pregnant women, participants with any other diseases such as
cancer or immune-related disease, or participants who took
nephrotoxic drugs were excluded.

Data extraction and quality assessment
Data were independently extracted by a single author (YZ)
using a standardized and pilot-tested form before being
checked by a second author (XF) for accuracy. In the event
of discrepancies, all authors discussed the results to establish
a consensus. The extracted data included information on trial
characteristics (first author, publication year, area, sample
size, and study design), baseline information of participants
(mean age and/or age range, sex, and underlying disease),
TMAO characteristics [sample source of TMAO (serum or
plasma) and TMAO analysis method], and the main results
of the study. For the meta-analysis of continuous-outcome
variables, if the original study grouped variables by kidney
function, we extracted the number of participants/cases in
each stage of CKD and the reported mean (SD) or median
(IQR) of TMAO concentrations across CKD stages. If the
original study grouped variables by TMAO concentration, we
extracted the number of participants/cases in each category
of TMAO and the reported mean (SD) or median (IQR)
of each kidney function indicator across TMAO categories.
For the meta-analysis of the correlations, we extracted the
r or rho values between TMAO concentration and each
kidney function indicator. Additionally, we did not place
excessive restrictions on the measurement of any indicator.
For example, we reported both actually measured GFR (28,
31) and eGFR as GFR in this study.

Two researchers (YZ and MG) independently assessed the
quality of the studies, and all discrepancies were resolved
through discussion and the involvement of 2 additional re-
searchers (XF and MW). The Newcastle–Ottawa Scale (NOS)
(37) was used to assess the quality assessment of cohort and
case-control studies based on study group selection, group
comparability, and ascertainment of outcome/exposure with
8 detailed questions. Studies with ≥6 stars were deemed
to be of high quality. We used the Agency for Healthcare
Research and Quality (AHRQ) checklist (38) for cross-
sectional studies. Items were scored “1” if the answer was

“yes” and “0” if the answer was “no” or “unclear.” Final quality
assessment scores were as follows: low quality, 0–3; moderate
quality, 4–7; high quality, ≥8. Details of quality assessment
are presented in Supplemental Tables 2 and 3.

Data synthesis and analysis
We performed 3 meta-analyses to further analyze the relation
between TMAO and kidney function. All data were analyzed
using R software version 4.0.0, and P values <0.05 were
considered statistically significant unless otherwise specified.

First, we performed a meta-analysis of circulating TMAO
concentrations in patients with advanced CKD compared
with healthy subjects. Second, we conducted meta-analyses
of kidney function indicators in subjects with high concen-
trations of TMAO versus those with low concentrations of
TMAO. In this analysis, if the original study reported circu-
lating TMAO concentrations as quartiles or tertiles, the high
concentration of TMAO included the highest layer of TMAO
concentration, and the other layers were classified into
the low concentration of TMAO. For continuous-outcome
variables, we analyzed differences using mean differences
(MDs) with 95% CIs; when variables were presented as
median values, mean (SD) was estimated according to the
method described by Wan et al. (39). If the original study
did not specify the number of individuals in each TMAO
category, we assumed that equal numbers of participants
were enrolled in each group. Third, we performed meta-
analyses of correlations between circulating TMAO concen-
trations and kidney function indicators by combining the
correlation coefficients obtained in the individual studies.
The following procedures were performed to ensure that an
unbiased estimate was calculated: we extracted r values from
each study and calculated 95% CIs after applying Fisher’s
z transformation. The latter was presented as the outcome
variable (40–42). In addition, if the original study reported
rho values, we converted the data to the corresponding
r values for further calculations (43).

We evaluated heterogeneity between studies using the
P value of the Q test and the I2 statistic, with significance
established at P < 0.1 or an I2 statistic of >50%, which
was considered representative of statistical heterogeneity.
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FIGURE 1 Flow chart of the literature search and study selection process.

The random-effects model was applied when heterogeneity
was high (i.e. I2 >50%). We performed meta-regression and
subgroup analyses to identify possible sources of hetero-
geneity according to study location, design, disease status,
sample size, and sample source for TMAO measurement.
A cumulative meta-analysis was applied to test whether
health status affected the pooled effect value. Possible
publication bias was examined using Begg’s and Egger’s tests.
To ensure the stability of the results, we performed sensitivity
analysis by removing 1 study at a time from the primary
analysis.

Results
Literature search and study characteristics
Base on the above-mentioned inclusion criteria, we identified
3201 reports and screened their summaries for eligibility

after removing duplicates. Of the 201 full-text articles
assessed, we selected 32 for data synthesis. A flow chart
of the literature search and study selection is presented in
Figure 1. Of these articles, 9 (24, 27–29, 31, 32, 44–
46) investigated TMAO concentrations on different CKD
stages (Table 2, Supplemental Tables 4 and 5). Seventeen
studies (17, 19–21, 27, 47–58) reported the values of kidney
function indicators in different TMAO categories (Table 3,
Supplemental Table 6). Fifteen studies (18, 19, 26, 28, 31, 32,
45, 50, 51, 54, 58–62) reported the correlation coefficient be-
tween TMAO concentration and kidney function indicators
(Table 4, Supplemental Table 7). Based on the original
data, we included 6 articles (24, 27–29, 31, 32) for meta-
analysis of the circulating TMAO concentrations in patients
with advanced CKD compared with healthy subjects and
16 articles (17, 19–21, 27, 47–51, 53–58) for meta-analysis
of the GFR in subjects with high concentrations of TMAO
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FIGURE 2 Meta-analysis of the circulating TMAO concentrations in patients with advanced CKD compared with healthy subjects. CKD,
chronic kidney disease; MD, mean difference; TMAO, trimethylamine N-oxide.

versus those with low concentrations of TMAO. With respect
to the meta-analyses of the correlations between TMAO and
kidney function indicators, we included 13 articles for GFR
(18, 19, 26, 28, 45, 50, 51, 54, 58–62), 3 for sCr (19, 32, 45), 3
for CysC (26, 45, 59), 2 for blood urea (19, 51), 1 for plasma
uric acid (31), 1 for serum uric acid (50), 1 for UACR (31),
and 1 for UAER (31). Of note, the studies by Svingen et al.
(20) and Lever et al. (62) were each included as 2 independent
studies.

The general characteristics of the studies included in
the meta-analyses and the demographic and mean baseline
parameters of the enrolled patients are summarized in
Tables 2–4 and Supplemental Tables 4–7. These studies
were published between 2006 and 2020. A total of 42,062
participants were included in the final data synthesis. The
design of these studies was mainly cohort (17–20, 26–28, 32,
45, 47–53, 55, 58–62) or cross-sectional (24, 29, 31, 44, 46,
54, 56, 57); only 1 study had a case-control design (21). Of
all articles, 3 reported serum-derived TMAO concentrations
(21, 27, 54), and the rest reported plasma-derived TMAO
concentrations (17–20, 24, 26, 28, 29, 31, 32, 44–53, 55–62).
These clinical studies were conducted in different countries
worldwide: 13 were from the USA (17, 24, 26, 27, 29, 32,
46, 49, 50, 53, 55, 56, 59); 3 were from China (21, 44, 47);
2 were from Norway (18, 20); 2 were from the UK (19,
51); 2 were from Germany (54, 57); 1 was from each of
Canada (45), Denmark (48), Spain (60), France (31), Sweden
(28), Netherlands (58), Austria (61), and New Zealand (62);
and 1 was a global clinical trial (52). Study participants
differed by disease status: 11 studies examined patients with
CKD (24, 26–29, 31, 32, 44–46, 52), 9 examined patients
with CVD (18–20, 47, 50, 51, 53, 56, 62), 3 examined
patients with diabetes mellitus (DM) (48, 49, 62), 2 exam-
ined patients undergoing diagnostic coronary angiography
(CAG) (17, 61), 1 examined patients with peripheral-artery
disease (60), 1 examined patients with hypertension (21),
and 5 examined healthy disease-free subjects (20, 54, 55,
57, 58).

Meta-analysis of the circulating TMAO concentrations
in patients with advanced CKD compared with healthy
subjects
Six articles (24, 27–29, 31, 32) were included for compar-
ison of circulating TMAO concentrations in patients with
advanced CKD (404 participants) versus healthy subjects
(366 participants). TMAO accumulated in all stages of
CKD and increased with the aggravation of kidney function
damage (Table 2, Supplemental Table 4). Advanced CKD was
associated with a 67.9 μmol/L (95% CI: 52.7, 83.2; P < 0.01;
I2 = 93%; Figure 2) increase in circulating TMAO concen-
trations, compared with concentrations in healthy subjects.
Results of the subgroup analyses are shown in Figure 3.
In a sample size of ≤200 participants, heterogeneity was
significantly reduced (from 93% to 13%).

Meta-analysis of the GFR in subjects with high
concentrations of TMAO compared with subjects with
low concentrations of TMAO
We included 16 studies (17, 19–21, 27, 47–51, 53–58) with
28,260 participants for GFR comparison in the high- and
low-TMAO categories, with the study by Svingen et al.
(20) included as 2 independent studies. Subjects with high
concentrations of TMAO had a 12.9 mL/(min 1.73 m2)
(95% CI: −16.6, −9.14; P < 0.01; I2 = 98%; Figure 4)
decrease in GFR level. Meta-regression analysis revealed age
(tau2 reduced from 0.119 to 0.108; P = 0.0186) and health
status (tau2 reduced from 0.119 to 0.0428; P < 0.0001) of
participants as possible sources of heterogeneity (Supple-
mental Table 8). To further investigate the factors affecting
the strength of the association between GFR and TMAO,
we performed a series of subgroup analyses (Figure 5)
based on study location, health status, sample size, and
sample source. A greater association between TMAO and
GFR was found in studies conducted in the USA and Europe
than in those performed in Asia [USA (MD: −17.5; 95%
CI: −24.4, −10.6; I2 = 97%), Europe (MD: −10.6; 95% CI:
−15.1, −6.04; I2 = 98%), Asia (MD: −9.51; 95% CI: −18.9,

1296 Zeng et al.



Subgroups
Area
USA
non−USA
Study design
Cohort
Cross−sectional
Participants, n 
>200
≤200
Sample source
Plasma
Serum
All individuals

Studies
n  (references

 

4 (24,27,29,32)
2 (28,31)

3 (27,28,32)
3 (24,29,31)

1 (32)
5 (24,27−29,31)

5 (24,28,29,31,32)
1 (27)

6 (24,27−29,31,32)

Advanced CKD
  )              n  

277
127

376
28

235
169

379
25

404

Healthy subjectls
           n 

268
98

332
34

235
131

349
17

366

           MD (95% CI)

66.3 (43.4; 89.2)
68.1 (63.2; 73.0)

64.5 (43.8; 85.1)
72.3 (58.9; 85.7)

44.4 (40.7; 48.2)
70.6 (63.6; 77.5)

64.2 (48.2; 80.2)
89.8 (65.7;  114)
67.9 (52.7; 83.2)

Heterogeneity

Q = 23.6   I2 = 87%   P < 0.01
Q = 0.92   I2 = 0%     P = 0.34

Q = 62.3   I2 = 97%   P < 0.01
Q = 1.26   I2 = 0%     P = 0.53

Q = 0        I2 = not applicable
Q = 4.62   I2 = 13%   P = 0.36

Q = 62.4   I2 = 94%   P < 0.01
Q = 0        I2 = not applicable
Q = 71.0   I2 = 93%   P < 0.01

           MD (95% CI)

0 30 60 90 120
   TMAO, μmol/L

FIGURE 3 Subgroup analyses in meta-analysis of the circulating TMAO concentrations in patients with advanced CKD compared with
healthy subjects. CKD, chronic kidney disease; MD, mean difference; TMAO, trimethylamine N-oxide.

−0.41; I2 = 97%)]. Compared with healthy individuals,
patients with underlying diseases had a greater effect size
{CVD [MD: −16.9; 95% CI: −21.7, −12.1; I2 = 96%], CAG
[MD: −17.6; 95% CI: −19.2, −16.1; I2 = not applicable
(N/A)], CKD [MD: −13.4; 95% CI: −17.5, −9.23; I2 = N/A],
hypertension [MD: −4.90; 95% CI: −6.54, −3.26; I2 = N/A],
DM [MD: −24.3; 95% CI: −27.9, −20.7; I2 = 55%], health

status [MD: −3.30; 95% CI: −5.16, −1.44; I2 = 76%]}. This
finding was consistent with the results of our cumulative
analysis, which showed a progressive increase in pooled effect
size according to health status in individual studies (Supple-
mental Figure 1; k1–k5: healthy disease-free subjects, k6–
k17: patients with underlying disease). GFR decreased in
participants with elevated TMAO concentrations regardless

FIGURE 4 Meta-analysis of the GFR in subjects with high concentrations of TMAO compared with subjects with low concentrations of
TMAO. In this analysis, if the original study reported circulating TMAO concentrations as quartiles or tertiles, the high concentration of
TMAO included the highest layer of TMAO concentration, and the other layers were classified into the low concentration of TMAO. High
category: subjects with high concentrations of TMAO. Low category: subjects with low concentrations of TMAO. GFR, glomerular filtration
rate; MD, mean difference; TMAO, trimethylamine N-oxide.
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FIGURE 5 Subgroup analyses in meta-analysis of the GFR in subjects with high concentrations of TMAO compared with subjects with
low concentrations of TMAO. In this analysis, if the original study reported circulating TMAO concentrations as quartiles or tertiles, the high
concentration of TMAO included the highest layer of TMAO concentration, and the other layers were classified into the low concentration
of TMAO. High category: subjects with high concentrations of TMAO. Low category: subjects with low concentrations of TMAO. CAG,
coronary angiography; CKD, chronic kidney disease; CVD, cardiovascular disease; DM, diabetes mellitus; GFR, glomerular filtration rate; MD,
mean difference; TMAO, trimethylamine N-oxide.

of sample size [size >2000 (MD: −12.3; 95% CI: −18.3,
−6.22; I2 = 99%), size ≤2000 (MD: −13.1; 95% CI: −18.0,
−8.13; I2 = 97%)]. This finding was applicable to plasma
samples (MD: −14.5; 95% CI: −18.7, −10.3; I2 = 98%)
but not to serum samples (MD: −5.17; 95% CI: −12.4,
2.06; I2 = 92%). We did not observe decreased GFR with
elevated TMAO concentrations in cross-sectional studies
(MD: −4.25; 95% CI: −12.6, 4.12; I2 = 86%), cohort studies
(MD: −15.3; 95% CI: −19.6, −10.9; I2 = 99%), or the 1 case-
control study (MD: −4.90; 95% CI: −6.54, −3.26; I2 = N/A).
We conducted no meta-analyses of kidney function indi-
cators other than GFR, although a general description of
the indicators is provided in the characteristics table due
to the small number of studies (Table 3, Supplemental
Table 6).

Meta-analysis of the correlations between circulating
TMAO concentrations and GFR
We included 13 studies (18, 19, 26, 28, 45, 50, 51, 54, 58–62)
with 13,032 participants in our analysis and synthesis of the
correlation between TMAO and GFR; the study by Lever et
al. (62) was included as 2 independent studies. TMAO was
inversely related to GFR [Fisher’s z-transformed correlation

coefficient (ZCOR): −0.45; 95% CI: −0.58, −0.32; P <

0.01; I2 = 98%; Figure 6]. Meta-regression analysis revealed
healthy subjects (tau2 reduced from 0.0576 to 0.0136; P <

0.0001) as the source of heterogeneity (Supplemental Table
8). Results of the subgroup analyses are shown in Figure 7.
Similarly, studies conducted in the USA and Europe showed
a stronger correlation between TMAO and GFR than studies
conducted in other areas [USA (ZCOR: −0.52; 95% CI:
−0.63, −0.40; I2 = 88%), Europe (ZCOR: −0.43; 95% CI:
−0.63, −0.23; I2 = 98%), New Zealand (ZCOR: −0.35;
95% CI: −0.44, −0.26; I2 = 0%)]. The negative correlation
between TMAO and GFR was significantly stronger among
patients with CKD than among those with non-CKD diseases
and among healthy participants [CKD (ZCOR: −0.61; 95%
CI: −0.81, −0.41; I2 = 94%), non-CKD (ZCOR: −0.46; 95%
CI: −0.56, −0.37; I2 = 88%), healthy subjects (ZCOR: −0.10;
95% CI: −0.12, −0.07; I2 = 0%)]. This finding was consis-
tent with the results of cumulative analysis (Supplemental
Figure 2) and with those of the above-mentioned meta-
analysis of TMAO concentration comparisons. Additional
subgroup analysis demonstrated that this correlation existed
regardless of sample size [size >500 (ZCOR: −0.46; 95% CI:
−0.66, −0.25; I2 = 99%), size ≤500 (ZCOR: −0.44; 95%
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FIGURE 6 Meta-analysis of the correlations between circulating TMAO concentrations and GFR. CVD, cardiovascular disease; DM,
diabetes mellitus; GFR, glomerular filtration rate; TMAO, trimethylamine N-oxide; ZCOR, Fisher’s z-transformed correlation coefficient.

CI: −0.59, −0.29; I2 = 90%)]. As only 1 study (54) had
a cross-sectional design and used only serum samples, we
performed no subgroup analyses of study type and sample
source. TMAO concentration was positively associated with
UACR, sCr, UAER, blood urea, blood uric acid, and CysC
[UACR (ZCOR: 0.26; 95% CI: 0.08, 0.43; I2 = N/A), sCr

(ZCOR: 0.43; 95% CI: 0.28, 0.58; I2 = 94%), UAER (ZCOR:
0.06; 95% CI: 0.04, 0.09; I2 = N/A), blood urea (ZCOR:
0.50; 95% CI: 0.29, 0.72; I2 = 96%), blood uric acid (ZCOR:
0.32; 95% CI: 0.25, 0.38; I2 = 0%), CysC (ZCOR: 0.47; 95%
CI: 0.44, 0.51; I2 = 0%); all P values <0.01; Supplemental
Figure 3]. Again, all indicators are generally described in the

FIGURE 7 Subgroup analyses in meta-analysis of the correlations between circulating TMAO concentrations and GFR. CKD, chronic
kidney disease; GFR, glomerular filtration rate; TMAO, trimethylamine N-oxide; ZCOR, Fisher’s z-transformed correlation coefficient.
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characteristics table (Table 4). No further analyses of other
indicators except GFR were performed, owing to the small
number of included studies.

Study quality assessment
We used the NOS (37) to assess the quality of the cohort
and case-control studies; most of the included studies of
these types were found to have moderate-to-high quality,
with NOS scores of 5–9 (Supplemental Table 2). For cross-
sectional studies, we used the AHRQ checklist; all included
studies of this type were judged to have “good” or “fair”
quality (Supplemental Table 3).

Publication bias
We examined publication bias using Begg’s and Egger’s
regression tests. No evidence of publication bias was found
in the meta-analysis of GFR in subjects with high con-
centrations of TMAO compared with subjects with low
concentrations of TMAO (z = 0, P = 1; t =−0.886, P = 0.390;
Supplemental Table 9). Publication bias was observed in
the meta-analysis of correlations between circulating TMAO
concentrations and GFR (z = 0.711, P = 0.477; t = −2.28,
P = 0.041; Supplemental Table 9).

Discussion
This study is the first to examine the relation between circu-
lating TMAO concentration and kidney function indicators
using data from 32 studies with 42,062 participants. We
extracted multiple clinical kidney function indicators from
these studies and performed multiple statistical analyses to
assess the association of circulating TMAO concentration
with kidney function. First, we found that TMAO accumu-
lated in all stages of CKD and increased with the aggravation
of kidney function damage, especially in advanced CKD, with
TMAO concentrations showing an increase of 67.9 μmol/L
(95% CI: 52.7, 83.2; P < 0.01) in patients with advanced CKD
compared with healthy subjects. Second, GFR decreased in
subjects with high TMAO concentrations. Concentrations
of sCr, UAER, and blood urea were greater in subjects
with high TMAO concentrations, whereas BUN and UACR
concentrations showed no significant difference between the
2 categories. For BUN, as all participants in the original
study (52) were undergoing maintenance hemodialysis, no
significant difference existed because the indicators were
excessively elevated in both groups. For UACR, as all
participants in the original study (55) were healthy individ-
uals, this indicator showed no obvious changes; however,
when TMAO concentrations were high, the changes in all
other indicators suggested kidney impairment. Third, meta-
analyses of correlations showed that TMAO was inversely
associated with GFR and positively associated with UACR,
sCr, UAER, blood urea, blood uric acid, and CysC, with
respective correlation coefficients of −0.45, 0.26, 0.43, 0.06,
0.50, 0.32, and 0.47. Fourth, in subgroup analyses, patients
with underlying diseases (especially CKD) had a greater
effect size for the relation between circulating TMAO
concentrations and kidney function, compared with healthy

individuals. Cumulative meta-analyses according to healthy
status also showed the impact of underlying diseases on the
merger effect (Supplemental Figures 1 and 2). Taken together,
these data showed a significant negative correlation between
circulating TMAO concentrations and kidney function.

The mechanisms underlying the potential relation be-
tween TMAO and kidney function require further inves-
tigation. Previous studies have reported that atheroscle-
rosis, caused by the accumulation of cholesterol-laden
macrophages in the arterial wall, is the underlying cause of
most CVDs and many kidney diseases (63). TMAO has been
found to accelerate atherosclerotic progression in animal
models via mechanisms that include decreasing reverse
cholesterol transport, increasing macrophage activation, and
increasing the expression of Cluster of Differentiation 36
(CD36) and scavenger receptor A (15, 64–66). Therefore,
TMAO-mediated atherosclerosis could be an important
cause of heart and kidney diseases (12). Kidney fibrosis is
a common outcome of almost all progressive CKDs and
one of the main causes of ESKD (67). Activation of Smad3,
which is an important component of the transforming
growth factor-β (TGF-β) signaling pathway, plays a key
profibrotic role in mouse models of tissue fibrosis (68–70).
Tang et al. (26) provided evidence that the TMAO pathway
likely contributes to the progression of kidney disease. Their
study showed that dietary exposure to either choline or
TMAO led to a significant increase in TMAO concen-
trations and corresponding increases in tubulointerstitial
fibrosis, collagen deposition, and the ratio of phosphorylated
Smad3 to total Smad3. Furthermore, increased expression
of kidney injury marker-1 (KIM-1) and CysC suggested
causality in that experimental mouse model. In a recently
published mouse CKD model (71), iodomethyl choline,
the gut microbial choline trimethylamine-lyase inhibitor,
suppressed choline diet-induced kidney tubulointerstitial
fibrosis and profibrotic-gene expression. This implies that the
TMAO pathway contributes to the progression of “fibrotic”
kidney disease and that inhibition of this pathway might
prevent kidney function impairment and kidney injury.
Current evidence indicates that reducing circulating TMAO
concentrations could be a potential therapeutic approach to
the treatment of kidney impairment.

As previously reported, the circulating TMAO concen-
tration largely depends on habitual dietary patterns or the
dominant species in the intestinal microbiota of mice and
humans, which was believed to have little genetic influence
(72). As TMAO is a small-molecule (75.1 Da) uremic toxin,
its clearance from the circulation requires good kidney
function and is largely dependent on urinary excretion (17,
27). Our meta-analyses showed that health status has a key
influence on the association between TMAO concentration
and kidney function damage. Healthy subjects seemingly
had adequate TMAO excretion and likely experienced less
impact on their kidney function. However, subjects with
underlying diseases, particularly CKD, likely experienced
poor kidney function leading to lower TMAO excretion and
accumulation, which in turn might have exacerbated kidney

1300 Zeng et al.



damage. Studies have shown that even modest impairment
of kidney function, to an eGFR of 66–78 mL/(min·1.73
m2), significantly raises plasma TMAO concentration (73).
Accordingly, in patients with kidney impairment, reducing
the production of TMAO by adjusting dietary patterns seems
to be a necessary intervention.

Choline and l-carnitine are respectively the greatest
and second-greatest precursors of TMAO (15, 17, 66).
According to the USDA database, which lists the choline
content of common foods (74), the food richest in to-
tal choline (choline + phosphatidylcholine + phospho-
choline + sphingomyelin + glycerophosphocholine) is egg
(yolk: ∼600 mg/100 g; whole: ∼250 mg/100 g), followed
by the livers of various animals (∼200–400 mg/100 g),
instant coffee and cake (∼100 mg/100 g), red meat and fish
(∼80 mg/100 g), cereal grains (∼40 mg/100 g), legumes
and legume products (∼30 mg/g), vegetables and fruits
(∼20 mg/100 g), milk (∼10/100 g), and fats and oils
(∼5 mg/100 g). Consumption of choline-rich diets can
increase circulating TMAO concentrations (15, 17, 66,
75). A linear dose-response relation exists between TMAO
concentration and egg consumption: 2 eggs more than
double TMAO concentrations, and even 1 egg nearly doubles
the plasma TMAO concentration (76). l-carnitine, the
second-greatest precursor of TMAO, is abundantly present
in red meat (15). In a recent study (77) of the health
effects of dietary risks, both the USA and Europe were
found to be areas of high red meat consumption. In our
current analysis, it seemed that pooled effect values in those
2 regions were greater than those in any other region.
The increased sources of TMAO contributed by Western
dietary patterns can partially explain the discrepancies in
data from different areas. Given the limitation that most of
the original studies were conducted in the USA and Europe,
despite potential differences in dietary habits between these
2 regions, the different geographic locations of participants
did not ultimately yield different results. However, previous
studies have shown that TMAO concentration in both plasma
and urine was greater in omnivores and lower in vegans or
vegetarians (15) and that red meat consumption significantly
increased plasma and urinary TMAO concentrations (75).
Notably, the increase in plasma TMAO concentrations was,
on average, 3-fold higher compared with either white meat
or nonmeat sources (75). In that study, switching from red to
white meat or to nonmeat protein markedly reduced plasma
TMAO concentrations. In addition, fish and other seafoods
contain large amounts of both TMAO and TMA (13, 78).
For example, 100 g of cod contains >300 mg TMAO and
∼3 mg TMA, whereas 100 g of beef or egg both contain
<1 mg TMAO and <0.1 mg TMA; meanwhile, fruits showed
no detectable concentrations of these metabolites (78). The
specific contribution of the TMAO content of food itself to
human circulating TMAO concentrations is currently un-
known and needs further investigation. However, in healthy
young men, fish consumption yielded an increase in plasma
TMAO concentrations ∼50-fold higher than that yielded by
either egg or beef consumption (78). Generally, reducing

the consumption of TMAO-rich and TMAO precursor-rich
foods seems necessary for patients with impaired kidney
function.

However, as fish consumption is well known to have
cardioprotective properties (79, 80) and association with a
lower risk of depression and mortality, it could be considered
a healthy animal-based source of dietary protein (80).
Therefore, caution is warranted when proposing dietary
recommendations that restrict the consumption of fish.
Furthermore, choline is a semiessential nutrient that is
important for phospholipid synthesis in cell membranes,
methyl metabolism, acetylcholine synthesis, and cholinergic
neurotransmission in humans (74). In 1998, the US Institute
of Medicine (Food and Nutrition Board) (81) estimated the
adequate consumption of choline to be 550 mg/d for men and
425 mg/d for women. Therefore, foods containing choline
should not be completely excluded from the diet. Taken
together, these findings indicate that a more feasible way
of reducing TMAO concentrations in patients with kidney
impairment is to first control the consumption of l-carnitine
by introducing a diet low in red meat, and then subsequently
limit the intake of choline-rich foods such as egg yolk
while increasing the intake of plant-based foods, which
are associated with lower plasma TMAO concentrations.
Additionally, choline content varies by cooking method. Raw
or fried food retains more choline (74); for example, 100 g
of whole egg contains 225, 251, and 273 mg of total choline
when hard boiled, raw, and fried, respectively (74). Therefore,
to reduce choline intake, boiling, rather than frying, can be
adopted as the cooking method.

The sensitivity analyses showed that all results in this
meta-analysis study were stable (Supplemental Figures 4–
6). However, the variability in the range of TMAO concen-
trations across the studies due to different sample sources,
multiple measurement methods of TMAO and kidney
function indicators, and the presence of several different
populations of subjects contributed to the high heterogeneity
we observed. Meta-regression analyses revealed participant
age and health status as the possible sources of heterogeneity
in the meta-analysis of GFR comparison. Additionally, health
status was also a possible source of heterogeneity in the meta-
analysis of correlation coefficients.

Study limitations
Several major limitations in the current study warrant
consideration. First, although we attempted to investigate
the sources of heterogeneity, we failed to explain all possible
heterogeneities because the inherent differences in charac-
teristics, definitions of the included studies, and TMAO
concentrations in the general population are currently un-
known. Second, most study participants were from Western
countries, which limited the applicability of the results to
other ethnic groups such as Asians and Africans. Third,
because dietary intakes were not assessed in all included
studies, we failed to investigate the potential role thereof in
the association between intestinal microbial metabolites and
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outcomes. Fourth, publication bias was observed in the meta-
analysis of correlation coefficients. Despite detailed article
retrieval, we failed to extract sufficient available data due to
the limited number of original studies that reported correla-
tion coefficients, which could have allowed the possibility of
reporting biases. Furthermore, we extracted only r and rho.
Other evaluation indicators such as regression coefficients
were not included in the current analysis, which might
have resulted in selection bias. Therefore, the results should
be interpreted with caution and considered as hypothesis
generating.

Conclusions
The results of the current study suggest that the toxin TMAO
accumulated in patients with CKD, TMAO concentration
was significantly greater in patients with advanced CKD,
and GFR was decreased in individuals with high TMAO
concentrations. Moreover, a strong inverse correlation exists
between TMAO and GFR, and a positive correlation exists
between TMAO and UACR, sCr, UAER, blood urea, blood
uric acid, and Cys. Our meta-analyses revealed a positive
association between circulating TMAO concentrations and
kidney function impairment. Taken together, these findings
suggest that a high circulating TMAO concentration could
be an effective biomarker of kidney function impairment;
however, further interventional studies with prospective
longitudinal designs are needed to better understand this
relation.
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