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ABSTRACT

Immoderate calorie intake coupled with a sedentary lifestyle are major determinants of health issues and inflammatory diseases in modern society.
The balance between energy consumption and energy expenditure is critical for longevity. Excessive energy intake and adiposity cause systemic
inflammation, whereas calorie restriction (CR) without malnutrition, exerts a potent anti-inflammatory effect. The objective of this review was to
provide an overview of different strategies used to reduce calorie intake, discuss physiological mechanisms by which CR might lead to improved
health outcomes, and summarize the present knowledge about inflammatory diseases. We discuss emerging data of observational studies and
randomized clinical trials on CR that have been shown to reduce inflammation and improve human health. Adv Nutr 2021;12:1558–1570.
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Introduction
Modern society has brought profound changes in lifestyle.
Diets have become less healthy with the overconsumption
of calories (e.g. Western diet). This along with sedentary
behavior has led to weight gain and metabolic alterations,
increasing the vulnerability to inflammation-driven chronic
diseases (1, 2). A growing body of evidence has demonstrated
that the balance between energy consumption and energy
expenditure is critical not only for longevity but also
for improved quality of life across the lifespan (3, 4). It
would be naïve to posit that starvation is a key to reverse
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the onset and development of chronic diseases because
a balanced diet is critical for the proper maintenance of
healthy physiological and metabolic functions. Neverthe-
less, the “hormesis hypothesis” suggests that the adaptive
responses of cells and organs to a moderate stress may
prevent worse damage caused by a stronger similar stress.
Within this context, calorie restriction (CR) (called “caloric
restriction” or “calorie restriction”) is considered to have
many beneficial effects on health (5, 6). Indeed, McCay
et al. first reported in 1935 that rats fed a CR diet lived
longer (7). Accumulating data from observational cohort
and randomized clinical trials show that CR results in some
metabolic and molecular adaptations that have been shown
to improve health and delay the accumulation of molecular
damage in inflammatory disorders. Studies published during
the last decade have conclusively demonstrated that CR slows
the progression of multiple age-related conditions, including
diabetes, cardiovascular diseases, neurological disorders,
chronic inflammatory diseases, and cancer (8–10).

Because many chronic diseases ultimately arise from
diet-induced inflammation, a logical approach to minimize
the impact of these inflammation-related conditions is to
follow anti-inflammatory diets. Excessive energy intake and
consistent adiposity cause systemic inflammation, whereas
moderate CR without malnutrition exerts a potent anti-
inflammatory effect (11). But what does CR actually mean?
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TABLE 1 Different calorie restriction protocols

Dietary regimens Description

Normal balanced diet 55% carbohydrate, 30% lipids, 15% protein.
Caloric intake according to daily energy needs

Continuous energy restriction (CER) ↓ daily caloric intake for ≤10–30% of energy needs
Intermittent fasting (IF) Severe energy restriction (≤25% of energy needs) on 2 or 3 d per wk

(5:2-IF or 4:3-IF).
Consecutive or nonconsecutive fasting days.
Ad libitum eating for the remaining days

Alternate day fasting (ADF) Alternates days of ad libitum eating with fasting days (�0 calories)
Alternate day modified fasting

(ADMF)
Alternates days of ad libitum eating with fasting days (≤25% of

energy needs)
Time-restricted fasting (TRF) or

periodic fasting (PF)
Restricts food intake to a feeding time window(≤12 h per d) during

the waking phase
Fasting mimicking diet (FMD) ↓ daily caloric intake for 5 consecutive days (�30% of energy needs)

with low carbohydrate/low protein intake + micronutrient
supplementation

Ad libitum eating for the remaining days
Nutritional ketogenic diet Extreme restriction in carbohydrates 4% carbohydrates, 6% proteins,

90% fat

The most widely accepted view is that the health benefits
of CR are attributed to eating fewer calories, whatever the
source of those fewer calories might be, whether protein,
carbohydrate, or fat (12, 13). Several CR strategies were
developed to reduce calorie intake (14). Sustained periods
of CR or fasting are commonly used to maintain human
health, to manage overweight and pathological states, and
consequently improve aging circumstances. Improvement of
overall health and well-being as well as the physiological
effects of CR have been documented for rodents, monkeys,
and humans (8–10). These effects involve shaping of the gut
microbiota (15) and adaptive cellular responses that optimize
energy metabolism, favor cellular protection, improve in-
sulin sensitivity and glucose homeostasis, induce functional
changes in the neuroendocrine systems, and reduce oxidative
damage and inflammation (8, 11, 14, 16).

In this review, we discuss the different dietary strategies to
achieve CR, the cellular and physiological response to these
diets as well as their impact on the gut microbiota, with a
particular interest in anti-inflammatory effects. Finally, we
discuss the potential use of CR strategies in the management
of human inflammatory diseases.

Current Status of Knowledge
Different strategies of CR
Extreme restriction in macronutrients, such as a nutritional
ketogenic diet (17) are beyond the scope of this review.
CR consists of a balanced and moderated decrease in
the intake of all nutrients. For the first time, the data
presented by McCay et al. described that the restriction
of calories without malnutrition prolongs the lifespan in
rats compared with ad libitum feeding (7). Subsequently,
the reports published during 1946 to 1955 evaluating the
effect of CR on development and lifespan focused primarily
on defining the experimental diet ingredients and testing

different restriction protocols (18, 19). One of the first
publications to discuss the appropriateness of CR for humans
appeared in 1946 (18). Carlson and Hoelzel (18) speculated
that the abundance of food presented to humans in modern
society is concomitant for drive us to eat which would make
daily CR difficult. The authors suggested that a more realistic
method of CR in humans would be to fast on a periodic
schedule. Although questions surrounding the effectiveness
of CR in humans have yet to be answered, Carson and
Hoelzel did establish a new method for CR, i.e. intermittent
fasting (IF), one that is currently being tested for use in
humans (20, 21). Currently, different strategies that do not
result in malnutrition are used to reduce calorie intake
(Table 1). Continuous energy restriction (CER) consists
of limiting daily caloric intake below energy needs (22).
Fasting manipulates meal timing or eating frequency and
involves a severe or complete restriction of calorie intake
for a consistent window of 8 to 12 h. Fasting-related
strategies can be categorized into 4 approaches: IF, alternate-
day fasting (ADF), alternate-day modified fasting (ADMF),
and time-restricted feeding (TRF) (14, 23, 24). Modern
lifestyle reduces the duration of time spent fasting and
maintains individuals in a persistent postprandial state (25).
The concept of TRF arose within the context of circadian
rhythms and is defined as the provision of food for ≤12
h during the active phase (26–28). The majority of TRF
studies have also initiated the eating window early in the
active phase, presumably to maximize the metabolic benefits
(14, 27). A fasting mimicking diet (FMD), which is a
combination of CR and IF, consists of the consumption of a
hypocaloric diet for 5 consecutive days. Considering the role
of ketone bodies (see below) and the 3 d of delay for their
endogenous production (26), this strategy seems to be the
most efficient.

These different strategies of intermittent energy restric-
tion (IER) work just like CER with it focusing more on weekly
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calorie averages than daily calorie averages. However, regard-
less of the strategy, long-term adherence and compliance for
IER are better than CER. Overeating on the “feed day” due to
elevated hunger followed on from the “fast day” is obviously a
concern with these approaches. However, studies on IER have
concluded that even after fasting every other day, participants
report high levels of satiety throughout the duration of
the study and no compensatory eating. This observation
probably reflects an adaptation to the IER achieved within
a few weeks (29). Overall, IER is novel and a potentially
more efficacious intervention for weight loss, preservation of
lean mass, and improved metabolic health. Indeed, moderate
and short-term CER or IER does not compromise quality
of life and are tolerable, but their influence on appetite as
well as difficulties in adherence question their long-term
feasibility and efficiency. Fasting strategies are considered
to have a better adherence than CER. However, there is no
“standard” protocol for fasting at this time. A lot of research
was reviewed for this article and almost all used a different
fasting definition. Indeed, most studies use ad libitum diets as
control groups, making it harder to determine whether one
fasting protocol is more advantageous than another. Taking
into account that all CR protocols investigated have shown
comparable metabolic benefits, it is suggested that choosing
a protocol that can best fit an individual’s lifestyle will likely
increase compliance and long-term success.

Mechanisms contributing to the anti-inflammatory
effect of CR
Several studies that were conducted on animal models
support the observation that CR has the capacity to re-
duce inflammation. Accordingly, evidence supporting the
antioxidant and anti-inflammatory properties, using mainly
animal models, has shown a rapid growth during the last
decade and has been previously reviewed (30). CR strategies
decrease serum glucose concentrations within the organism
and trigger both molecular and cellular adaptations, which
induce a robust metabolic switching in major organs and
highly affect inflammatory responses (Figure 1) (31–33).

Sensing of CR and downstream signaling pathways
CR-induced hypoglycemia decreases anabolic hormones,
inhibits insulin-dependent anabolic metabolism through
the inhibition of the phosphatidylinositol 3-kinase (PI3K)
and mitogen-activated protein kinase (MAPK) signaling
pathways, which finally avoids the activation of mammalian
target of rapamycin (mTOR). The inactivity of mTOR
induces autophagy, which contributes to the suppression of
inflammation by downregulation of both IFN and proinflam-
matory cytokines secretion and also by inflammasome inhi-
bition (6). Inactive mTOR also prevents hypoxia inducible
factor 1 (HIF-1)-dependent activation of genes related to
inflammation, proinflammatory effects of reactive oxygen
species (ROS), and NF-κB activation (34, 35).

CR-induced hypoglycemia reduces mitochondrial activity
and leads to a decrease in ATP synthesis, an accumulation of
oxidized NAD+, and a low production of ROS in order to

maintain a low-grade oxidative stress which is considered to
be protective according to the mitohormesis hypothesis (36).
Therefore, CR-dependent maintenance of low levels of ROS
limits the production of proinflammatory molecules.

The accumulation of AMP and NAD+, as well as
inhibition of PI3K signaling pathways, activate sirtuin
1 (SIRT1) and AMP-activated protein kinase (AMPK)-
dependent regulatory proteins and subsequently activate
peroxisome proliferator-activated receptor-γ coactivator 1-α
(PGC-1α), a coregulator of numerous transcription factors.
PGC-1α inhibits NF-κB, a major activator of the expression
of several proinflammatory genes (37). Moreover, PGC-1α

activates peroxisome proliferator-activated receptor (PPAR)-
α and PPAR-γ , which mediate anti-inflammatory effects
(38).

CR-dependent regulation of the PI3K pathway increases
apoptosis and autophagy (allowing recycling of biochemical
compounds) and decreases reticulum endoplasmic stress
(24, 39–41). PGC-1α does not seem to be required for the
fasting regulation of unfolded protein response (UPR) and
the autophagy process but may be involved in regulating
basal hepatic autophagy (42).

Steroid hormones also participate in CR-dependent reg-
ulation of inflammation. CR activates the hypothalamic-
pituitary-adrenal (HPA) axis, increases the production of
glucocorticoids, and thus counteracts inflammation. The
anti- or pro-inflammatory effects of glucocorticoids are
context dependent, with variable responses depending upon
concentration, time of exposure, the compound type, and
also the nature of the stimulus (43). According to the horme-
sis theory, glucocorticoids mediate the anti-inflammatory
effect under physiological stress, such as CR, due to the
inhibition of key inflammatory transcriptional regulators
[e.g. activator protein-1 (AP-1) and NF-κB] (44). Cortisol
reduces the degradation and phosphorylation of nuclear
factor of kappa light polypeptide gene enhancer in B-
cells inhibitor-alpha (IκBα) in a dose-dependent manner,
demonstrating a significant inhibitory effect on NF-κB and
MAPK pathway activities (45).

In summary, CR modulates hormonal activities, induces
mild to moderate oxidative stress according to the hormesis
hypothesis, and subsequently triggers several intracellular
signaling pathways resulting in the regulation of UPR,
autophagy activity, and thus the inhibition of inflammation.

Role of CR in the maintenance of both oxidative and
inflammatory homeostasis
A delicate balance between the protective and damaging
redox effects of glucose exists (46). Beside their role in
oxidative defense at low concentration under nonpatho-
logical conditions, high concentrations of ROS and other
reactive species (RS) have deleterious effects via inducing
an uncontrolled oxidative stress. Mitochondrial metabolism
results in the production of numerous ROS (36, 47). This
uncontrolled oxidative stress is tightly associated with the
establishment of inflammation. Evidence suggests that the
mechanisms by which intensive oxidative stress induces
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FIGURE 1 Calorie restriction and anti-inflammatory effects. Calorie restriction (CR) promotes a switch in gut microbiota composition and
favors protecting bacteria which produce anti-inflammatory SCFAs, improve intestinal integrity and permeability, and limit bacterial toxin
internalization. CR is detected by the decrease in serum glucose concentration and subsequent decrease of mitochondrial activity. On the
one hand, hypoglycemia decreases anabolic hormones (e.g. insulin, GH, and IGF1), as well as sex and thyroid hormones, increases the
expression of the catabolic cortisol, and subsequently inhibits the MAPK pathway (i.e. RAS/RAF/MEK/ERK) and the PI3K/Akt/mTOR
pathway. On the other hand, the inhibition of ERK avoids mTOR activation and subsequently induces autophagy activity, which
contributes to the suppression of inflammation by downregulation of both IFN and proinflammatory cytokine responses. Inhibition of
mTOR also inhibits HIF1, a transcription factor involved in the upregulation of the inflammation related genes (e.g. cytokines, chemokines,
iNOS, and COX-2) as well as in the mediation of the proinflammatory effect of ROS and the activation of NF-κB (34, 35). Moreover, the
decrease of mitochondrial activity activates AMPK and downstream regulators such as sirtuins and transcription factors (e.g. FoxO3A and
FoxO1) and subsequently activates PGC-1α. PGC-1α is a major inhibitor of NF-kB and activates the anti-inflammatory nuclear receptor
PPAR. The activation of AMPK activates the nuclear factor-E2 related-factor 2 (NRF2)-dependent response to oxidative stress, which
extends the inhibition of NF-kB and promotes autophagy-dependent repression of inflammation. Moreover, activation of AMPK decreases
reticulum stress and triggers the switch from glucose to ketones which is a global metabolism modification consisting of 1) the decrease
of the anabolic pathways and glucose utilization, 2) the increase of adipose tissue lipolysis and the production of ketone bodies (e.g. BHB),
and also 3) modulation of adipokine and hormone secretion by adipose tissue. In summary, BHB and adiponectin inhibit inflammation
through activation of the AMPK regulation network. In contrast, circulating amounts of leptin, a proinflammatory hormone produced by
the white adipose tissue decreased. Therefore, CR-dependent inhibition of NF-kB and of PI3K signaling pathways contribute to the
maintenance of the oxidative status and have an anti-inflammatory effect through the inhibition of NLRP3, the decrease of
proinflammatory markers, the increase of anti-inflammatory IL-10, and the improvement of anti-inflammatory Treg and M2 cells
polarization. Akt, AKT serine/threonine kinase; AMPK, AMP-activated protein kinase; BHB, β-hydroxybutyrate; CCL2, C-C motif chemokine
ligand 2; COX-2, cyclooxygenase-2; CR, calorie restriction; CRP, C-reactive protein; CXCL9, C-X-C motif chemokine ligand 9; ER stress,
endoplasmic reticulum stress; ERK, extracellular signal-regulated kinase; FOXO, forkhead box O; f-PUFA, free-PUFAs; GH, growth hormone;
GPx, glutathione peroxidase; GSH, glutathione; G-to-K switchover, glucose-ketone switchover; HIF1, hypoxia-inducible factor 1; HO-1,
heme oxygenase-1; IGF-1, insulin-like growth factor-1; IGF-R, insulin-like growth factor-receptor; iNOS, inductible nitric oxide synthase;
LKB1, liver kinase B1; MEK, Raf, Ras, serine/threonine kinase; MnSOD, manganese superoxide dismutase; mtETC, mitochondrial electron
transport chain; mTORC1/2, mammalian target of rapamycin-1/2; mtROS, mitochondrial reactive oxygen species; NLRP3, pyrin-containing
receptor 3; NRF2, nuclear factor erythroid 2-related factor 2; PGC1-α, peroxisome proliferator-activated receptor-γ coactivator 1-α; PI3K,
phosphatidylinositol 3-kinase; PPAR, peroxisome proliferator-activated receptor; PPP, pentose phosphate pathway; PRx, peroxiredoxin;
ROS, reactive oxygen species; SOD2, superoxide dismutase 2; T3, triiodothyronine; TLR, toll-like receptor.
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chronic inflammation relies on the ROS ability to activate
cell signaling cascades that include IκB kinase and MAPKs,
which further turn on NF-κB.

CR-induced hypoglycemia and subsequent activation of
SIRT1/AMPK regulating network activates Nuclear Factor
E2 related Factor (NRF2) to promote a response to oxidative
stress through increasing the expression of antioxidant
enzymes [e.g. superoxide dismutase 2 (SOD2), catalase,
glutathione peroxidase (GPx), and peroxiredoxin (PRx)],
decreasing the expression of RS productive enzymes [e.g.
inductible nitric oxide synthase (iNOS)], and increasing
mitochondrial biogenesis. Moreover, redirecting of glucose
into the pentose phosphate pathway (PPP) reduces NADP+

concentration and maintains redox homeostasis under CR
conditions (46).

Thus, CR favors a protective redox state and limits
systemic inflammation by the activation of antioxidant
enzymes.

CR-induced metabolic switch and regulation of
inflammation by lipid compounds
The activation of both “SIRT1/AMPK regulatory network”
and PPAR receptors, and conversely inhibition of the PI3K
signaling pathway have critical metabolic consequences such
as the increase of lipolysis and ketogenesis and the shift of
substrate utilization for energy production from glucose to
fatty acids and ketone bodies (24). This metabolic switch
[named Glucose-Ketone (G-to-K) switchover] improves
cellular metabolic flexibility and bioenergetic efficiency.
Thereby, CR increases circulating concentrations of ketone
bodies and free fatty acids (FFAs) (48).

β-hydroxybutyrate (BHB) is a major endogenous ketone
body produced under CR conditions (49). Besides being
an important substitute to glucose as an energy substrate,
BHB is also a signaling molecule that plays a key role in the
regulation of numerous proteins and physiological processes
by its ability to bind to histones, transcription factors and
transcription coregulators, or enzymes (e.g. SIRT) to regulate
their activities. In particular, high concentrations of BHB
resulting from the G-to-K switchover activates PGC-1α and
maintains the suppression of NF-κB activity (24, 50, 51). In-
hibition of the nucleotide-binding domain leucin-rich repeat
(LRR) and pyrin-containing receptor 3 (NLRP3) inflamma-
some with BHB is independent of the classical starvation reg-
ulated mechanisms such as AMPK, ROS, autophagy, or the
inhibition of glycolysis (51). Regarding their structure, FFAs
have a differential effect on NLRP3 inflammasome activation.
SFAs promote inflammasome activation and IL-1β secretion.
High concentrations of ω-3 PUFAs compete with ω-6 PUFAs
for the same enzymes, thus reducing the production of
arachidonic acid-derived proinflammatory eicosanoids (e.g.
prostaglandin E2, leukotriene B4, and the thromboxane 2
series) that have chemotactic and procoagulant actions, and
increasing the synthesis of anti-inflammatory eicosanoids
(e.g. prostaglandin E3, leukotriene B5, and the thromboxane
3 series) that have immunomodulatory effects (52, 53).

Briefly, metabolic adaptation to CR leads to the produc-
tion of lipids with anti-inflammatory proprieties.

CR-induced adipose tissue remodeling and inhibition of
inflammation
CR-dependent lipolysis leads to an important remodeling
of the adipose tissue. Beside its major function in energy
storage, white adipose tissue (WAT) is also a major endocrine
tissue by secreting adipokines. Their secretory profile differs
according to the size of adipocytes. Indeed, small adipocytes
secrete more adiponectin, less monocyte chemotactic protein
1 (MCP-1), and less TNFα than large adipocytes (which
characterize obesity) (54). CR-triggered lipolysis promotes
a decrease of fat mass, WAT remodeling, and increases
circulating concentrations of adiponectin, which prevents
inflammation through the activation of AMPK signaling
pathways and the subsequent inhibition of NF-κB (24, 55–
59). In addition, several studies report that CR decreases the
production of both leptin and proinflammatory cytokines,
which contribute significantly to the low-grade inflammatory
state in obese patients (56, 58, 60–63).

In brief, CR induces adipose tissue remodeling and
changes WAT endocrine functions that correct the chronic
metainflammation.

Role of CR in the regulation of the immune response
and inflammatory markers
CR-dependent downregulation of the PI3K and NF-κB path-
ways promotes the inhibition of the NLRP3 inflammasome
and restricts the production of proinflammatory cytokines
(Figure 1) (64–66). Numerous studies have reported that
CR strategies correlate with a decrease of proinflammatory
markers [e.g. C-reactive protein (CRP), IL-6, and TNF-α] at
the circulating level, as well as at the tissue level [e.g. liver
(33, 67), brain (65, 68, 69), or intestine (69)] in the context of
different types of diseases (56, 70, 71).

A high concentration of adiponectin inhibits macrophage
differentiation and shifts macrophage polarization from
proinflammatory macrophages 1 (M1) to a macrophages
2 (M2) state (59, 72, 73). M2 macrophages mediate anti-
inflammatory effects by restraining M1 proinflammatory
activities, protecting adipocyte functions, and maintaining
adipose tissue metabolic homeostasis by their involvement
in adipose tissue remodeling following body weight loss.
M2 macrophages are also involved in the browning of WAT
which has several beneficial metabolic effects such as increas-
ing energy expenditure and reducing adiposity. However, the
mode of CR differentially alters macrophage infiltration in
adipose tissue and might explain the contradictory results
such as infiltration of M1 macrophages in obese women
(74) or inflammatory inflexibility in obese mice (75). Finally,
adiponectin has anti-inflammatory effects on endothelial
cells, cardiomyocytes, and fibroblasts (55, 76).

Additionally, CR modulates the immune response to
antigenic stimuli. Nutritional glucose and lipids activate
both leukocytes toll-like receptor (TLR)-2 and TLR-4 and
thus trigger acute postprandial inflammatory responses,
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which attenuates anti-inflammatory molecules such as IL-
10. Noteworthy, the compensatory response of immune cells
to macronutrients is less effective in obese patients. Short-
term CR prevents an exacerbated inflammatory process
(77, 78). Indeed, CR decreases the expression of TLR-
4 in the liver and similarly, adiponectin decreases TLR-4
expression on the macrophage surface which inhibits the
production of proinflammatory chemokines and upregulates
the production of anti-inflammatory cytokines (33, 67,
79, 80).

On the whole, CR induces the production of anti-
inflammatory rather than proinflammatory macrophages,
resulting in the decrease of proinflammatory markers as well
as the decrease of the TLR response to antigenic stimulation.

Gut microbiota changes induced by CR
Many studies have shown the role of gut microbiota as
drivers of chronic inflammatory diseases (15, 50, 81). The
intestinal microbiota is a key actor of the maintenance
of a healthy status and its composition depends on many
environmental conditions and particularly on nutritional
intake (82–85). Indeed, diet plays a fundamental role in
shaping gut microbiome composition and function. It is
well known that the Westernized diet, characterized by a
high dietary intake of saturated fats and refined sugars
together with a low intake of fiber, promotes deleterious gut
microbiota, impacts intestinal permeability, and represents
a growing risk factor associated with chronic inflammation
(86, 87).

Over the last decade, knowledge of gut microbiota
and metabolic changes that result from CR has substan-
tially increased. Diet composition and age of models are
the major factors that may influence the CR impact on
gut microbiota (88, 89). Studies of the CR effect on
gut microbiota have been performed in animal, as well
as human models. The fasting regimens utilized were
10% to 40% calorie restricted based on either a normal
or high-fat diet for animal studies (89, 90), or 700 to
1500 kcal/d for human studies (91, 92). Firmicutes, Bac-
teroidetes, Proteobacteria, and Actinobacteria are the main
phyla in the gut microbiota; however, several studies have
shown that CR-induced alterations in the relative abundances
of these bacteria varied (93, 94). Some studies reported
that IF (24 h feeding/24 h fasted) reduced the Bacteroidetes
population at the expense of Firmicutes (95), whereas CR
(25% less than the daily ration) enriched Bacteroidetes and
greatly reduced the Firmicutes/Bacteroidetes ratio, which in
turn enhances metabolic and oxidative parameters (94). The
inconsistent results might be due to the variable diversity
of the microbes present under a specific phylum, and
dietary intervention may have led to changes in low-level
taxa without affecting the relative abundance of a major
phylum. Indeed, CR restructures the intestinal microbiota
composition of diabetic mice with enrichment of species of
the genus Lactobacillus, Oscillospira, and Ruminococcus and
reduction of species of the genus Akkermansia, Bacteroides,
and Bifidobacterium (95). These changes favor a healthy

microbiota and the production of both SCFAs and lactate
(81), which improve the regeneration of the intestinal
crypts (96, 97) and permeability and thus prevents gut
leakage (98). Other studies have shown an increased relative
abundance of probiotic microbes, such as Bifidobacterium
and Lactobacillus in CR-treated mammals which may explain
some of the benefits of CR given the acknowledged role of
these genera in promoting intestinal homeostasis (90, 94,
99). Moreover, the increased abundances of these probiotics
correlated with decreases in body weight, total cholesterol,
and triglycerides, and thus Lactobacillus growth might be
correlated to a diet-dependent effect on lipid metabolism in
subjects under CR conditions (90, 99, 100). The circulating
LPS-binding protein (LBP), an inflammatory biomarker was
also reduced after CR intervention (45-d 25% restricted
diet for mice and 28-d 800 kcal/d diet for humans). The
antigen translocation from the intestine to the blood might
be considerably reduced with CR intervention, due to the
decreased abundance of Gram-positive bacteria (91, 101).

In summary, shaping gut microbiota by CR suggests
that subjects can establish a balanced intestinal microbiota
composition which is efficient in promoting intestinal home-
ostasis and attenuating local and systemic inflammation, and
thus providing health advantages to the host.

CR in humans: feasibility and effects on inflammatory
markers
Evidence for the potential anti-inflammatory mechanisms of
CR in humans is more limited (Table 2), and most of the
studies addressing this aspect have been developed in obese
patients. Circulating concentrations of serum amyloid A
protein, IL-6, CRP, TNF-α, and IFN-γ were reduced in obese
patients after CR, improving their general inflammatory
profile (102–104). Nevertheless, whether the reduction in
the systemic concentrations of proinflammatory molecules is
due to the reduction in adipose tissue mass and adipocyte-
secreted cytokines (i.e. adipokines), or involves a direct
effect on immune cells (i.e. macrophages, lymphocytes) after
CR (102–104) is still controversial. We focused here on
landmark studies addressing this topic and studies with data
on inflammatory markers.

Observational studies
A 2014 meta-analysis of 30 cohort studies that included
healthy young men and women examined whether Ramadan
fasting altered biomarkers in addition to body weight (105).
Some of these studies have reported that Ramadan fasts
are associated with significantly lower concentrations of
inflammatory markers, such as CRP, IL-6, and TNF-α (106,
107). Previous studies have shown that Ramadan fasting
practiced by patients with type 2 diabetes (T2D) for 15 to
21 d leads to a statistically and clinically significant reduction
in hemoglobin A1c (HbA1c) concentrations, suggesting that
glycemic control is improved substantially during Ramadan
fasting in this population (108). Ramadan is the most
common form of TRF, and it results in transitory body weight
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TABLE 2 Human studies on effects of caloric restriction on inflammatory markers

Subjects Caloric restriction strategy Inflammatory markers Reference

68 healthy individuals: 40 (20
men & 20 women) in CR
group vs. 28 (14 men & 14
women) in ad libitum (AL)
group.

Age: 20–40 y
BMI <25

Food and beverage restriction
during 12 h/d for 1 mo

↓ CRP
↓ IL-6
↓ total cholesterol/HDL ratio

(HDL risk factor)
↓ homocysteine

Aksungar et al. (2007) (106)

29 individuals with type 2
diabetes (15 men & 14
women).

Age: 45–70 y
BMI >30

Time-restricted fasting (TRF)
(Ramadan) for 15 d

↓ Hemoglobin A1c (HbA1c) (↑
glycemic control)

↓ body fat mass
↓ visceral adiposity

Yeoh et al. (2015) (108)

10 individuals with asthma.
Age: N/A
BMI >30

Alternate day calorie restriction
(ADCR) with <20% of their
normal calorie intake on the
intervening days for 8 wk

↓ Serum cholesterol
↓ TG
↓ oxidative stress markers

(8-isoprostane, nitrotyrosine,
protein carbonyls, and
4-hydroxynonenal adducts)

↓ TNF-α
↓ BDNF

Johnson et al. (2007) (21)

36 healthy individuals with risk
factors for atherosclerosis: 18
(15 men and 3 women) in CR
group vs. 18 consuming
Western diet.

Age: 35–82 y
BMI <25

Caloric restriction (CR) with
∼30% less energy as
compared to a Western diet
group for 3–15 y

↓ CRP
↓ systolic & diastolic blood

pressure (cardiometabolic risk
factor)

↓ TNF-α
↓ IL-6

Fontana et al. (2004) (109)

56 healthy individuals with risk
factors for age-associated
diseases: 28 (24 men & 4
women) in CR group vs. 28 (24
men & 4 women) consuming
Western diet.

Age: 42–64 y
BMI <25

Caloric restriction (CR) with
∼30% less energy as
compared to a Western diet
group for an average of 7 y

↓ HDL-C
↓ TG/HDL-C
↓ total cholesterol
↓ adiponectin
↓ fasting glucose
↓ fasting insulin

Fontana et al. (2010) (110)

48 healthy nonobese and
sedentary individuals.

Age: 26–48 y
25 < BMI <30

Caloric restriction (CR) with: 12
assigned to control group, 12
assigned to CR (25%) group,
12 assigned to CR (12.5%) /
exercise (12.5%) group, and 12
assigned to low-calorie liquid
diet group for 6 mo

↓ DNA damage
↓ fasting insulin
↓ oxidative stress markers

Heilbronn et al. (2006) (111)
Larson-Meyer et al. (2006) (112)
Redman et al. (2007) (113)
Civitarese et al. (2007) (114)

48 healthy nonobese individuals
(18 men & 30 women).

Age: 50–60 y
23 < BMI <30

Caloric restriction (CR) with: 10
assigned to control group, 19
assigned to CR (20%) group,
and 19 assigned to exercise
(20%) group for 1 y

↓ CRP
↓ oxidative damage
↓ LDL-cholesterol
↓ total cholesterol/HDL ratio

(HDL risk factor)
↓ leptin
↓ insulin
↑ insulin sensitivity
↑ adiponectin

Racette et al. (2006) (115)
Villareal et al. (2006) (116)
Fontana et al. (2007) (117)
Hofer et al. (2008) (118)

46 healthy nonobese individuals.

Age: 24–42 y
25 < BMI <30

Caloric restriction (30% CR) for
1 y

↓ CRP
↓ PGE2
↑ T-cell functions

Pittas et al. (2006) (119)
Das et al. (2007) (120)
Ahmed et al. (2009) (121)

218 healthy nonobese
individuals.

Age: 21–51 y
(men aged 21–50 y whereas
women aged 21–47 y to avoid
menopause)

22 < BMI <28

Caloric restriction (25% CR) for
2 y

↓ CRP
↓ TNF-α
↓ LDL-cholesterol
↓ TG
↓ total cholesterol
↓ systolic & diastolic blood

pressure (cardiometabolic risk
factor)

Rickman et al. (2011) (122)
Rochon et al. (2011) (123)
Ravussin et al. (2015) (124)

BDNF, brain-derived neurotrophic factor; CRP, C-reactive protein; N/A, not available; PGE2, prostaglandin E2; TG, triglyceride.
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loss, with mixed evidence for improvements in inflammatory
marker concentrations.

On the other hand, human asthma studies involving
10 subjects with a BMI over 30 kg/m2 which were maintained
for 8 wk on an alternate day calorie restriction (ADCR)
dietary regimen in which they are at ad libitum, whereas
consuming <20% of their normal calorie intake on the
intervening days resulted in the improvement of asthma-
related symptoms. Nine of the subjects adhered to the
diet and lost an average of 8% of their initial weight
during the study. Regarding their asthma-related symptoms,
control improved significantly within 2 wk of diet initiation;
these changes persisted for the duration of the study. The
improved clinical findings were associated with decreased
concentrations of serum cholesterol and triglycerides, as
well as striking reductions in markers of oxidative stress.
Indicators of inflammation, including TNF-α and brain-
derived neurotrophic factor (BDNF), were also significantly
decreased by ADCR. Compliance with the ADCR diet was
high, symptoms and pulmonary function improved, and
oxidative stress and inflammation declined in response to the
dietary intervention (21).

An ancillary study which was carried out on data collected
in members of the CR Society whose participants follow
severe self-imposed CR with Optimal Nutrition, called the
CRON study, showed that individuals following severe self-
imposed CR are lean (BMI 19.7 ± 1.8), voluntary restricting
their caloric intake (∼1800 kcal/d) for an average of 15 y,
and consuming ∼30% less energy compared with a group of
individuals (matched for age, sex, and socioeconomic status)
consuming a regular Western diet (109). All cardiometabolic
risk factors in the members of the CR Society were lower
than in the general population. Interestingly, several serum
proinflammatory markers such as CRP (109), TNF-α, and IL-
6 were low (110). At the molecular level, the positive impact
on several pathways such as PI3K/AKT and AMPK/SIRT
further supports the anti-inflammatory potential of CR (125)
(Table 2).

Randomized controlled trials
The CALERIE (Comprehensive Assessment of Long-term
Effects of Reducing Intake of Energy) trials initiated by
the US National Institute of Aging were the first controlled
clinical trials of CR (111, 113, 115, 124, 122, 123).

The CALERIE-1 project was composed of 3 pilot studies
looking at the short- and mid-term effects of CR at 6 (111,
113) and 12 mo (115). CR was achieved through different
modalities: 1) reduced calorie intake (CR), 2) increased
exercise energy expenditure, or 3) a combination of both CR
and exercise (113, 115, 114, 116–118, 120, 119).

In the CALERIE-1 trial conducted at Pennington Biomed-
ical in Louisiana, a reduction of energy intake alone (25%
CR) was compared to a combined reduction in energy
intake (12.5%) and a 12.5% increase in energy expenditure
through exercise (−12.5% energy intake +12.5% energy
expenditure = 25% CR), a positive weight loss control group
that through a very low-calorie diet achieved a 15 kg weight

loss, and a weight-maintenance control group (111, 113).
Although the metabolic profile of study participants was
significantly improved with CR, various factors that are
associated with cardiovascular disease (e.g. blood pressure,
LDL, HDL, fibrinogen, homocysteine), and proinflammatory
markers (e.g. CRP and TNF-α) were not influenced by this
diet (126, 127). This is likely explained by the young age of
individuals enrolled in this trial as well as their relatively good
health status at inclusion. However, a decrease in markers
of oxidative stress was reported in subjects following a CR
especially DNA damage and SOD activity (111, 114).

In the CALERIE-1 trial conducted at Washington Univer-
sity in St. Louis, 48 overweight (BMI: 23.5–29.9) individuals,
aged 50–60 y, were randomized for 1 y to 20% CR or
20% increase in energy expenditure by means of endurance
exercise or allocated to a control group of healthy lifestyle
(115). CR reduced the serum concentration of CRP (116,
117). Furthermore, both CR and exercise-induced weight
loss resulted in a significant reduction in oxidative damage to
DNA and RNA measured ex vivo in white blood cells (118).

In the CALERIE-1 trial conducted at Tufts University in
Boston, 46 young (aged 24–42 y) overweight (BMI: 25–29.9)
individuals were randomized to low- versus high-glycemic
load during 30% CR (120). Serum concentrations of CRP
were reduced in the 30% low-glycemic CR group, but not
in the 30% high-glycemic CR group (119). Moreover, 30%
CR significantly improved T-cell functions (i.e. delayed-type
hypersensitivity response and proliferative response of T cells
to T-cell mitogens) and reduced prostaglandin E2 (PGE2)
production (121).

Thereafter, a phase 2 multicenter trial (i.e. CALERIE-
2) was conducted to investigate the effects at 2 y of a
25% CR in leaner and younger individuals. The CALERIE-
2 study enrolled 218 healthy, young, and middle-aged
(21–51 y), nonobese men and women (124, 122, 123).
This large trial demonstrated that mild CR improves car-
diometabolic risk factors, even when implemented in healthy
lean or slightly overweight young and middle-aged individu-
als. Many metabolic and inflammatory markers such as total
cholesterol, LDL-cholesterol, triglycerides, CRP, TNF-α, and
blood pressure decreased significantly and inversely HDL-
cholesterol increased in the CR group (124, 122, 123).

In summary, beyond the beneficial effects of CR on
the metabolic and cardiovascular profile, multiple lines of
evidence indicate that CR also has anti-inflammatory effects
in humans. Trials of CR in patients with immune-mediated
inflammatory diseases are eagerly awaited (Table 2).

Conclusion
CR which reduces calorie intake without malnutrition has
been shown to exert an anti-inflammatory effect and to
extend lifespan in rodent and primate models, and it has been
an area of active research for >80 y.

CR appears to promote weight loss and may improve
metabolic health. There are a variety of fasting diets which
manipulate meal timing or eating frequency and involve
a severe or complete restriction of energy intake for a
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consistent window of 8 to 12 h. Data from observational,
experimental, and clinical studies strongly indicate that
maintaining a healthy body weight and preventing the
accumulation of abdominal fat are essential to prevent
multiple chronic diseases and to promote healthy aging.
However, there is insufficient data to determine the optimal
CR, including the length of the fasting interval, the number of
fasting days per week, the degree of energy restriction needed
on fasting days, and recommendations for dietary behavior
on nonfasting days. Moreover, one may assume that there
may be great interindividual and intraindividual variation in
the human response to a CR.

Measuring tissue-specific effects of CR using genomic,
proteomic, and metabolomic techniques in both animals and
humans will foster understanding of the complex biological
processes involved in the anti-inflammatory and antiaging
effects of this dietary regimen. A growing body of literature
suggests that CR can trigger several biological pathways
(i.e. increased autophagy and mitochondrial respiratory
efficiency), which can result in a host of beneficial biolog-
ical effects including modifications in energy metabolism,
oxidative stress, insulin sensitivity, inflammation, autophagy,
neuroendocrine function, and induction of hormesis re-
sponse, in addition, these CR periods have also been shown
to have antimutagenic, anticarcinogenic, and antibacterial
effects (128). Indeed, CR favors anti-inflammatory intestinal
microbiota, reduces gut permeability, and results in blunted
postprandial endotoxemia (129, 130) and systemic inflam-
mation (131), which are typically elevated in obesity.

To conclude, CR has opened new approaches to assess the
effects of fasting on metabolism, physiology, and behavior.
Although animal experiments have produced great results in
preventing or reversing chronic metabolic diseases, the un-
derlying mechanisms remain to be explored. More rigorous
human studies are also needed to assess the mechanisms and
efficacy of CR in a wide range of diseases. In the coming
years, research will continue to explore many unresolved
questions. What are the long-term benefits and risks of the
various eating patterns? Which fasting-related strategies are
feasible as a long-term practice? What specific biological
effects on inflammatory diseases are triggered by a particular
CR strategy? If a specific way of CR is recommended, at what
age is it best to start, for which diseases, and is it safe to
continue as you get older?

Whether long-term CR is feasible, safe, and effective
for reducing inflammation in humans is not known, and
publications of these comprehensive data from both the
observational studies and randomized controlled trials will
go a long way toward providing suitable information for
evaluation. If proven to be efficient, these dietary regimens
may offer promising nongenetic, nonpharmacological exper-
imental intervention to improve healthspan at the population
level with multiple public health benefits.
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