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ABSTRACT

The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct
metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic
pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient
uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production
to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting
nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also
examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies for targeting
each cancer tumor, novel techniques must be developed, such as new tracers for positron emission tomography/computed tomography scan
and immunohistochemical markers to characterize the metabolic phenotype of cancer cells and their microenvironment. Pending personalized
strategies that specifically target all metabolic components of cancer development in a patient, simple metabolic interventions could be tested in
clinical trials in combination with standard cancer therapies, such as short cycles of fasting or the administration of sodium citrate or weakly toxic
compounds (such as curcumin, metformin, lipoic acid) that target autophagy and biosynthetic or signaling pathways. Adv Nutr 2021;12:1461–1480.
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Introduction
The incidence of various cancers [colorectal cancer (CRC),
hepatocellular carcinoma (HCC), etc.] is strongly correlated
with metabolic disorders such as diabetes, fatty liver dis-
ease, and obesity; hence, counteracting these conditions is
mandatory for the prevention of cancer and the optimization
of treatment (1). The metabolism of cancer cells differs
from that of normal cells due to epigenetic defects, gene
mutations, and metabolic reprogramming, resulting in the
upregulation of oncogenic proteins and signaling pathways,
and the inactivation of key suppressors such as tumor
protein 53 (TP53) (2, 3). Current anti-cancer treatments
(chemotherapy, immunotherapy, and targeted therapies) that
target a specific aspect of cancer cell development, such as
uncontrolled replication or deregulated molecular pathways,

frequently show poor or transient efficacy, thus emphasizing
the need for new strategies. Current research is focused on
the interaction between the intrinsic metabolism of cancer
cells, the tumor microenvironment (TME), and the host
to develop strategies needed to improve standard therapies.
This review aims to clarify current issues (summarized in
Figure 1), presenting their rationales, proof of concepts,
limits, and drawbacks.

Current Status of Knowledge
Cancer cell metabolism
The Warburg effect.
Cancer cells display enhanced glucose uptake and convert
a significant amount of glucose into lactic acid, even in
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the presence of oxygen. In this so-called “Warburg effect”
(4), a substantial part of glycolysis intermediates sustains
biosynthesis processes. Inappropriate expression of pyruvate
kinase (PK) in its PK muscle embryonic isozyme 2 (PKM2)
embryonic dimeric form (less active than the adult tetrameric
form) creates a bottleneck at the end of glycolysis, thus
promoting the accumulation of glycolytic intermediates up-
stream. Therefore, the main branched pathways of glycolysis
are promoted, in particular, the hexosamine biosynthetic
pathway (HBP), the pentose phosphate pathway (PPP), the
glycerol pathway, and the serine-glycine-folate-methionine
pathway (SGFMP) (5) (Figure 2). Of note, the oxidative PPP
generates reduced NAD(P)H H+, which is required for redox
balance, nucleotides, and fatty acid (FA) synthesis (FAS) (6).

Abnormal glucose consumption by cancer cells also
sustains fast ATP production. Glycolysis is regulated by
phosphofructokinase-1 (PFK1), the activity of which is stim-
ulated by low cytosolic concentrations of ATP, citrate, and
basic intracellular pH induced by decreased mitochondrial
functioning (7). The extracellular acid pH favors cancer
invasiveness and resistance to chemotherapy (CT) (7).

From a molecular point of view, the Warburg effect is
related to pyruvate dehydrogenase (PDH) inhibition by pyru-
vate dehydrogenase kinase 1 (PDK1), a process promoted
by hypoxia-inducible factor 1 alpha (HIF-1α) and protein
kinase B (PKB or AKT) (2). Several oncogenes, in particular
the myelocytomatosis viral oncogene (MYC) and the Kristen
rat sarcoma viral oncogene homolog (RAS), promote HIF-
1α and the Warburg effect, a reductive metabolism also
sustained by signaling pathways such as phosphoinositide-3-
kinase–PKB/Akt (PI3K-PKB/Akt), and mammalian target of
rapamycin (mTOR) (8–11). Concomitantly, key suppressors,
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such as TP53, inhibiting glycolysis, and phosphatase and
tensin homolog (PTEN), inhibiting PI3K/AKT/mTOR, are
inactivated (8–11). Key oncogenic drivers involved in cancer
cell metabolism reprogramming are listed in Table 1.

Importantly, lactate excreted in the TME by monocar-
boxylate transporter (MCT) 4 (MCT4) promotes invasive-
ness and angiogenesis and suppresses the immune response
(12, 13). Aerobic glycolysis is associated with concomitant
mitochondria downregulation, a process that limits the
production of reactive oxygen species (ROS) and allows
active cell proliferation (14).

In summary, the Warburg effect is associated with re-
sistance to apoptosis, CT, and radiotherapy (RT). A high
uptake of 18F-fluoro-2-deoxyglucose (18F-FDG) in positron
emission tomography/computed tomography scanning re-
flects an increase in glucose consumption in the tumor,
and correlates with higher resistance to treatment and poor
survival (15). Therefore, the high reliance on glycolysis can
constitute a vulnerability in many aggressive cancer cells,
which is especially important to target.

Glutaminolysis.
Glutamine metabolism provides the molecules and amine
groups for nucleotide synthesis, in particular during the S
phase progression (16), and reloads the tricarboxylic acid
(TCA) cycle into α-ketoglutarate (AKG), a molecule derived
from glutamate. Glutamine can also sustain lipid synthesis,
by supporting citrate formation either by the TCA cycle or by
a pathway involving the carboxylation of AKG and a reverse
isocitrate dehydrogenase (IDH) reaction (9). Therefore,
glutaminase 1, regulating the conversion of glutamine to
glutamate, appears to be a key target for specific inhibition.

ATP citrate lyase links glycolysis with de novo lipid
synthesis.
ATP citrate lyase (ACLY) has a pivotal role in cancer
cell metabolism because its activity links glycolysis and/or
glutaminolysis with lipid and sterol synthesis, protein acety-
lation, isoprenylation, and glycosylation of proteins (17).
ACLY converts citrate into acetyl-CoA and oxaloacetate
(OAA). Acetyl-CoA sustains histone acetylation allowing
transcription (18) and/or the de novo FAS required for
membrane replication and the modification of proteins.
Acetyl-CoA carboxylase (ACC) catalyzes and regulates the
first step of FAS, a pathway sustained by fatty acid synthase
(FASN) and leading to palmitate (19). Although palmitate,
the most common FA in the human body (20–30% of
total FAs), can be provided by the diet, most cancer cells
synthesize de novo palmitate and FA independently of
nutrient availability (19).

OAA can undergo a transamination reaction to form
aspartate, a molecule required for nucleotide and polyamine
synthesis. OAA metabolism also sustains the regeneration
of pyruvate by the malic enzyme (ME) reaction. This
reaction regenerates NADPH H+, a cofactor required for
FAS and nucleotide synthesis, and the regeneration of
reduced glutathione, an antioxidant molecule. Pyruvate
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FIGURE 1 Key figure summarizing the different metabolic strategies which enable inhibition of cancer development.

can sustain lactate production, the TCA cycle, or
gluconeogenesis. Opened by pyruvate carboxylase (PC),
this later pathway is truncated in cancer cells because
fructose-1,6-bisphosphatase (FBPase; regulating the exit)
is inactivated, in particular, because of a low citrate
concentration, a physiological activator of FBPase (20).
Thus, in cells lacking glucose, PC redirects the carbon flux
from the glutaminolysis and/or β-oxidation of FAs (FAO)
toward gluconeogenesis sustaining nucleotide synthesis.

Cancer cell metabolism is not inherently glycolytic.
Several studies have demonstrated that numerous cancer
cells may rely on predominant oxidative or intermediate
metabolism (21–23). In particular, the lactate that is released
by cancer cells expressing MCT4 can be assimilated by cells
expressing MCT1. In these cells, lactate is recycled as fuel for
mitochondrial oxidation after conversion into pyruvate by
reversed lactate dehydrogenase-5 (LDH-5) functioning (22,
24). This mode of ATP production can efficiently support
the metabolism of oxidative cancer cells and immune-
suppressive cells, a glucose-sparing process for cancer cells
relying on dominantly glycolytic metabolism (25).

Furthermore, cells growing in a lipid-rich environment
(such as ovarian cancer cells, triple-negative breast cancer
cells) can be supported by active FAO (26, 27). Cancer
stem cells frequently show both glycolytic and mitochon-
drial functioning (28), increasing their survival and main-
taining their stemness properties by the upregulation of
FAO (29).

Targeting cancer cell metabolism
The inhibition of metabolic pathways is a promising strategy
to inhibit growth of cancer cells and enhance the efficacy of
current therapy.

Inhibition of aerobic glycolysis.
Glucose uptake can be targeted by inhibitors of glucose
transporter 1 (GLUT1) (30) or hexokinase 2 (HK2) (31,

32). Theoretically, the inactivation of 1 of the 10 glycolytic
enzymes may disrupt glycolysis [for lists of inhibitors, see
Akins et al. (33), Abdel-Wahab et al. (34), and Table 2].
Targeting PFK1, the key regulatory enzyme of glycolysis, as
well as GAPDH, a limiting enzyme at the end of glycolysis
(because its functioning requires NAD+), provides a rational
strategy to limit glycolytic flow. Similar considerations apply
to the inhibition of the 2 enzymes sustaining ATP production
[phosphoglycerate kinase 1 (PGK1) and tetrameric PKM2],
since their blockade may cause an energy crisis leading to cell
death in clones that are strongly reliant on glycolysis (35).
The inhibition of branched pathways can be attempted to
counterbalance the nucleotide and polyamine biosynthesis
required for cell growth: 1) HBP sustaining protein glyco-
sylation (required for transcription, epigenetics, signaling,
and bioenergetics) can be inhibited by quercetin, a natural
flavonoid (36); 2) oxidative PPP can be targeted by glucose
6-phosphate dehydrogenase (G6P) inhibition, and nonox-
idative PPP by transketolase 1 (TKL1) inactivation (37); 3)
SGFMP can be targeted by the concomitant inactivation
of PGK1 and phosphoglycerate dehydrogenase (PHGDH)
regulating this pathway (38). Targeting the entrance and exit
of aerobic glycolysis is particularly effective as shown by the
concomitant inhibition of glucose-6-phosphate isomerase
(GPI), LDH-5, and lactate export regulated by MCT1/4
(39). Pan glycolytic inhibitors could be particularly effective
as the alkaline agent 3-bromopyruvate (3-BP), targeting
several enzymes such as HK2 and PKM2 (40). However,
to date, its toxicity has not been determined in phase 1
studies.

Most notably, several enzymes such as PKM2,
GAPDH [and also 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 3 (PFKFB3) promoting PFK1 activity]
display nonglycolytic functions, promoting cell cycle
progression by periodical translocation (directly or through
their products) into the nucleus [for review, see Icard
et al. (41)]. Hence, pharmacological inhibition of these
multifunctional enzymes can be particularly effective in
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FIGURE 2 The metabolism of cancer cells relying on the Warburg effect. Cancer cell metabolism is supported by glycolysis,
glutaminolysis, and/or FAO. Glycolysis is enhanced: PFK1 is promoted by F2,6P produced by PFKFB3. Dimeric embryonic PKM2 creates a
bottleneck at the end of glycolysis promoting branched pathway activities: PPP provides R5P for nucleotide synthesis, the DHAP pathway
provides G3P for triglyceride synthesis, and SGFMP sustains protein and glutathione synthesis, as well as one-carbon metabolism required
for methylation processes (in particular of epigenome and genome), and for polyamine formation. The Warburg effect is related to PDH
inhibition by PDK1, a process stimulated by HIF1 and AKT. Lactate produced by LDH5 is expulsed by MCT4. Due to PDH inactivation,
acetyl-CoA is produced by FAO or derives from oxidation of AKGα, which enters the Krebs cycle (also named the TCA cycle). Cytosolic
citrate derives from mitochondrial export or from carboxylation of AKG deriving from glutaminolysis. ACLY transforms citrate into OAA and
acetyl-CoA. Acetyl-CoA sustains lipid synthesis and histone acetylation while OAA sustains aspartate synthesis or pyruvate and lactate
formation. Glycolysis is green, PPP is blue, amino acid synthesis is purple, lipid and hormone pathways are orange, and the glutamine
pathway is gray. ACLY, ATP citrate lyase; AKG, α-ketoglutarate; Akt, protein kinase B; DHAP, dihydroxyacetone phosphate; FA, fatty acids;
FAO, fatty acid β-oxidation; F6P, fructose 6-phosphate; F1,6P, fructose-1,6-bisphosphate; F2,6BP, fructose-2,6-biphosphate; G, glucose; G6P,
glucose 6-phosphate; GA3P, glyceraldehyde 3-phosphate; GLS1, glutaminase 1; GLUT1, membrane glucose transporter 1; Glycerol-3P,
glycerol-3-phosphate; HIF1α, hypoxia inducible factor 1 alpha; HK, hexokinase; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; LDH5, lactate
dehydrogenase 5; MCT, monocarboxylate transporter; NADPH,H+ , nicotinamide adenine dinucleotide phosphate; OAA, oxaloacetate;
PDH, pyruvate dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1; PEP, phosphoenolpyruvate; PFK1, phosphofructokinase 1;
PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PGK1, phosphoglycerate kinase 1; PK, pyruvate kinase; PKM2, embryonic
pyruvate kinase; PPP, pentose phosphate pathway; R5P, ribose 5-phosphate; SGFMP, serine-glycine-folate-methionine pathway; TCA,
tricarboxylic acid; TPI, triosephosphate isomerase; 2-PG, 2 phosphoglycerate; 3-PG, 3 phosphoglycerate; 1,3-BPG, 1,3-bisphosphogylcerate.

reinforcing cyclin-dependent kinase (CDK) inhibitors. For
example, GAPDH sustains entrance in mitosis (42), and
therefore its inactivation could reinforce inhibitors of CDK1,
aurora kinase, and polo-like kinase 1, regulating cell cycle
progression toward mitosis. The efficiency of anti-angiogenic
drugs could also be increased by glycolysis inhibitors. Indeed,
the benefit of anti-angiogenic therapy is generally short-term
in both preclinical models and clinical trials, because these
agents induce chronic hypoxia in tissues, which favors the
emergence of high glucose-dependent phenotypes through
HIF-1 activation and/or possibly the selection of pre-existing
resistant cancer clones (43).

Modulation of mitochondrial functioning and autophagy.
Promoting mitochondrial activity can reverse the Warburg
effect, counteracting tumor progression (44). This can be
obtained by redirecting the glycolytic carbon flux toward
mitochondria through the promotion of PKM2 tetrameric
functioning (45) and/or PDH activity either by lipoic acid
(46) or dichloroacetate [a molecule reversing the inhibition
of PDK1 (47)]. The inhibition of lactate production, export,
or recycling can also favor the reactivation of mitochondrial
functioning (39).

However, promoting oxidative functioning can be delete-
rious, particularly if it stimulates: 1) the activity of mutated
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TABLE 1 Key oncogenic drivers and signaling pathways involved in cancer cell metabolism1

Pathway (reference) Anomaly Target Effect

PI3K-AKT-mTOR (48–50) Activation ↑PDK1
↑GLUT1 (51)
↑HK2 (51)
↑SREBP
Induction of HIF-1

Stimulation of glucose transport and glycolysis
Increased FAS
Suppression of autophagy with increased net protein

synthesis

RAS-RAF-MEK-MAPK (52) Activation Induction of HIF-1 Increased glucose transport
Inhibition of OXPHOS
Increased FAS

PTEN (51) Loss Activation of AKT Stimulation of glucose transport and glycolysis
Increased FAS

HIF-1 (49, 53, 54) Increase ↑GLUT1 (51)
↑HK2 (51)
↑PDK1
↑SREBP
↑SHMT2

Increased glucose transport
Inhibition of OXPHOS
Increased FAS
Serine-glycine conversion and increased one-carbon

metabolism
c-MYC (55, 56) Amplification ↑GLUT1 (51)

↑LDH-A
↑SHMT2
↑HK2 (51)
↑PFK1
↑MCT4
↑OXPHOS

Stimulation of glucose transport and glycolysis
Increased lactate synthesis and extrusion
Increased GLUT1 (51) glutaminolysis
Increased FAO
Serine-glycine conversion and increased one-carbon

metabolism

p53 (57–59) Loss/inactivation ↓TIGAR (51)
↑PGM
↓OXPHOS
↑G6PD
↑SREBP

Stimulation of glucose transport and glycolysis
Increased PPP
Increased FAS

LKB1/AMPK (60, 61) Loss/inactivation Activation of mTOR and HIF1
Inhibition of p53
↓OXPHOS
↑SREBP

Stimulation of glycolysis
Increased oxidative stress during glucose deprival
Increased FAS

STAT3 (62) Activating mutation Induction of HIF-1
↑PDK1
↓OXPHOS

Increased glucose transport
Inhibition of OXPHOS
Increased FAS

1AKT, protein kinase B; AMPK, AMP-activated protein kinase; c-MYC, c-myelomatosis viral oncogene; FAO, fatty acid oxidation; FAS, fatty acid synthesis; GLUT1, glucose transporter
1; G6PD, glucose-6-phosphate 1-dehydrogenase; HIF-1, hypoxia-inducible factor; HK2, hexokinase 2; LDH-A, lactate dehydrogenase A; LKB1, liver kinase B1; MAPK,
mytogen-activated protein kinase; MCT4, monocarboxylate transporter 4; MEK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; OXPHOS, oxidative
phosphorylation; PDK1, pyruvate dehydrogenase kinase 1; PFK1, phosphofructokinase 1; PGM, phosphoglycerate mutase; PI3K, phosphatidylinositol-3-kinase; PPP, pentose
phosphate pathway; PTEN, phosphatase and tensin homolog; RAF, rapidly accelerated fibrosarcoma; RAS, Kristen rat sarcoma viral oncogene homolog; SHMT2, serine
hydroxymethyltransferase; SREBP, sterol regulatory element-binding protein; STAT3, signal transducer and activator of transcription 3; TIGAR, tumor protein 53–induced glycolysis
and apoptosis regulator.

enzymes in the TCA cycle, with overproduction of molecules
acting as oncometabolites (such as succinate and fumarate),
which alter the methylation of the genome and promote
resistance to CT (63), and 2) the mobility of some cellular
subclones as shown in breast cancer models (64, 65),
probably by increasing ROS production because high con-
centrations of ROS play a major role in the metastatic process
(66). Importantly, metformin could limit ROS production
by inhibiting the complex I of oxidative phosphorylation
(OXPHOS) (67), a major source of ROS, with complex III.

However, the benefit of metformin is controversial [as
shown in renal cancer (68)], probably because this molecule
can activate the key sensor of energy, AMP-activated protein
kinase (AMPK), which might favor cell survival in some
contexts (69). Indeed, AMPK promotes ATP generation by
several processes favoring survival, such as 1) FAO activation
(70), 2) mitochondrial biogenesis through activation of

the peroxisome proliferator-activated receptor γ coactivator
(PGC)-1ɑ (71), 3) and autophagy, providing molecules for
catabolic pathways and thus an energy supply to endure
metabolic and cytotoxic stress (72). Autophagy is a cellular
process that recycles damaged organelles, superfluous pro-
teins, and lipids. Initially regarded as a cancer-suppressive
mechanism, autophagy is now most often considered to
be a survival process, which allows cancer cells, especially
“autophagy-dependent” cells such as RAS-induced lung
cancer cells (73), to overcome stressful conditions such as
exposure to CT (74, 75).

The complex mechanisms supporting autophagy include
preserving the quality and abundance of mitochondria.
Autophagy is regulated by the mammalian ortholog of
the yeast autophagy-related gene 6 (ATG6/BECN1) and
TP53, which enhances mitochondrial function and ATP
production (75). Combining autophagy inhibitors (such as
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TABLE 2 List of metabolic inhibitors tested in preclinical models1

Main targeted pathways
Metabolic inhibitors tested

in vitro (reference) Metabolic inhibitors tested in vivo Experimental tumor type

Glycolysis
GLUTs Fasentin (76)

STF-31 (77)
Ritonavir (78)
Silybin (79)
Phloretin (80)
WZB-117 (81)

Breast cancer
Bladder cancer
Breast cancer
NSCLC

HK2 Astragalin (82)
Resveratrol (83)

Lonidamine (84)
2-Deoxyglucose (85)
Genistein (86)
Benserazide (87)

Prostate and ovarian cancers
Breast and prostate cancers
HCC
CRC

PFK1
PFK2/PFKFB3
GAPDH
PKM2
LDH-A

Oxamate (88) Sulforaphane (89)
Citrate (90)
PFK158, 3PO (91)
3-Bromopyruvate (92)
Apigenin (93)
FX11 (94)

Triple-negative breast cancer
Pancreatic cancer
Ovarian and cervical cancers
Gastric cancer

HCC
Esophageal cancer

IGF signaling
IGF-1R/IR NVP-AEW541 (95)

BMS-536924 (96)
AG-1024 (97)

BMS-754807 (98)
GSK1904529A (99) GSK1838705A

(100)
Picropodophyllin (101)
PQ 401 (102)

Pancreatic cancer
Osteosarcoma
Glioma Rhabdomyosarcoma

Glioma

Mitochondrial functioning
PDK1 — Dichloroacetate (103) NSCLC
PDH — Lipoic acid (PDH activator) (104) Breast cancer
OXPHOS inhibition Niclosamide (105) Gamatrinib (106) Prostate cancer
Complex I Menadione (107) Metformin (108)

Phenformin (109)
CRC
Ovarian cancer

Complex II (or SDH) 3-Bromopyruvate (110) — —
Complex III — Antimycin A (111) Lung cancer
Complex V Oligomycin (112) Bedaquiline (113) Lung cancer
Mitochondrial biogenesis Doxycycline

Tetracycline (114, 115)
Azithromycin (116) CRC

Lactate exchanges
MCT1 — AZD-3965 (117) Burkitt’s lymphoma

Amino-acid metabolism
ASCT2 (SLC1A5) Benzylserine (118) V-9302 (119)

GPNA (120)
CRC
NSCLC

GLS1 Acivicin (121)
Zaprinast (122)

CB-839 (123) NSCLC

IDH — Ivosidenib (IDH1) (124)
Enasidenib (IDH2) (125)

AML
AML

Lipid metabolism
CPT1 Etoximir (126) Avocatin B (127) AML
ACLY Cucurbitacin B (128) Hydroxycitrate (129) NSCLC

Bladder cancer and melanoma
FAS inhibition Orlistat (130) Epigallocatechin-3-gallate (131)

Cerulenin (132)
Breast cancer
CRC

Mevalonate and
cholesterol

— Statins (133) Ovarian cancer

Redox homeostasis
Antioxidants inhibition Auranofin (134) Disulfiram (135)

Arsenic trioxide (136)
Gossypol (137)

Testicular cancer
HCC
HNC

Glutathione biosynthesis Imexon (138) Buthionine sulfoximine (139) Lung cancer

1ACLY, ATP citrate lyase; AML, acute myeloid leukemia; CRC, colorectal cancer; FAS, fatty acid synthesis; GLS1, glutaminase 1; GLUT, glucose transporter; GPNA,
L-γ -glutamyl-p-nitroanilide; HCC, hepatocellular carcinoma; HK2, hexokinase 2; HNC, head and neck carcinoma; IDH, isocitrate dehydrogenase; IGF, insulin-like growth factor;
LDH-A, lactate dehydrogenase A; MCT1, monocarboxylate transporter 1; NSCLC, non–small cell lung carcinoma; OXPHOS, oxidative phosphorylation; PDH, pyruvate
dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1; PFK, phosphofructokinase; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PFK158,
1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one; SDH, succinate dehydrogenase; V-9302, 2-amino-4-bis(aryloxybenzyl)aminobutanoic acid; 3PO,
3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one.
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chloroquine) with glycolysis and/or OXPHOS inhibitors
(such as metformin or curcumin) can result in anti-cancer
activity as shown in studies in vitro and in vivo, probably
by depriving cancer cells of energy (140). Curcumin has
demonstrated multiple anti-cancer mechanisms, and in
association with metformin can result in a synergistic effect
by suppressing signaling pathways that promote glycolysis
such as PI3K/AKT/mTOR and epidermal growth factor
receptor/signal transducer and activator of transcription 3
(EGFR/STAT3) (141, 142). Metformin is currently being
tested in trials with chloroquine in solid cancers with IDH
mutated genes (high-grade chondrosarcoma, glioma, and
intrahepatic cholangiocarcinoma) (143). Metformin is also
currently being tested with EGFR tyrosine kinase inhibitors
in advanced or metastatic non–small cell lung cancer
(NSCLC) with EGFR mutations (NCT01864681).

Inhibition of amino acid and FA metabolism (uptake and
transformation).
l-Asparaginase dramatically improved the treatment of acute
lymphoblastic leukemia by transforming l-asparagine (an
essential molecule for these cells) into aspartate and ammo-
nia (NH4+) (144, 145). Thus, dietary deprivation of specific
amino acids, and inhibition of membrane transporters, can
be efficient in counteracting cancer cell growth.

For example, glutamine starvation can inhibit the pro-
liferation of cancer cells, especially those that are highly
consuming of this amino acid. Platinum-resistant ovarian
and lung cancer cells (146–149) appear particularly sensitive
to glutamine deprivation, a strategy restoring the cisplatin
response (146). In ovarian cancer cells, MYC promotes
glutamine addiction by increasing glutamine uptake and
GLS1 expression and also promotes cisplatin resistance (147,
148). Thus, targeting the main plasma membrane transporter
of glutamine [alanine serine cysteine preferring transporter
2 (ASCT2) also known as SLC1A5] and GLS1 could be an
important strategy to inhibit platinum-resistant cancer cells
(147–149). Importantly, in several models of tumor-bearing
mice (colon, lymphoma, and melanoma xenograft cancers),
GLS1 inhibition by 6-diazo-5-oxo-L-norleucine (DON) re-
duced tumor growth and activated cytotoxic effector T cells
(150). DON inactivated oxidative and glycolytic metabolism
of cancer cells while it promoted oxidative metabolism and
the activation of effector T cells (150).

Arginine deprivation arrests the growth of various cancer
cells (such as sarcomas and HCC, malignant melanoma
and pleural mesothelioma, prostate and renal cancer cells,
and cisplatin-resistant ovarian cancer), because these cancer
cells do not synthesize sufficient arginine (108, 151). This
results from the epigenetic silencing of the gene promoter
of argininosuccinate synthetase (ASS1), the rate-limiting
enzyme of arginine synthesis; therefore, these cancer cells
become auxotrophic to arginine (151). Consequently, an
arginine deprivation diet [as realized by arginine deiminase
(ADI-PEG20) administration] can inhibit the growth of
cancer cells with ASS1 deficiency, as shown by preclinical
studies—in particular, in sarcomas (152).

Methionine starvation can promote the therapeutic re-
sponse of CT-resistant RAS CRC cancer xenografts and RT-
resistant mutated KRAS (Kristen rat sarcoma viral oncogene
homolog) soft tissue sarcoma with TP53 deficiency (153).
However, methionine starvation diets may have a dual
effect, promoting liver cancer in some experimental studies
(154). Therefore, diet strategies targeting amino acids must
be conducted with a clear understanding of the specific
metabolism of the various cancer tumors.

Inhibiting membrane transporters might also be an
efficient strategy in altering the proliferation of cancer cells
and/or stimulating the immune response. For example, l-
cysteine is imported into cancer cells and myeloid-derived
suppressor cells (MDSCs) by the l-cystine (L-CSSC) trans-
porter, a carrier not expressed in CD8+ T cells (155).
Therefore, inhibition of this transporter can suppress cancer
cell growth and promote a cytotoxic immune response
(156).

Counteracting anaplerosis, the process of reloading the
TCA cycle with intermediates (OAA, AKG, and fumarate)
that have been extracted for biosynthesis (in what are called
anaplerotic reactions) can inhibit cancer cell growth. For
example, the inhibition of PC (the enzyme that produces
OAA) decreases the growth of breast and lung cancer cells
(157, 158) while the inhibition of the mitochondrial pyruvate
carrier (MPC) arrests the proliferation of various cancer cells
lines (159). However, in apparent contrast, promoting the
activity of MPC can decrease the growth of cancer cell lines
that predominantly rely on glutamine (160, 161). Further
studies must clarify the specific metabolism supporting
cancer tumor development in vitro and in vivo. Of note,
translocases of the outer and inner mitochondrial membrane
(TOMM and TIMM, respectively) carry hundreds of proteins
into the mitochondria (162). Targeting these translocases, in
particular TOMM20, could be useful in reducing the growth
of cancer cells, as shown by knockdown of TOMM20 in a
xenograft mouse model of colon cancer (163).

Inhibition of lipid metabolism can also be an important
strategy as many cancer cells activate de novo FAS (164).
Thus, ACLY and FASN are key targets for specific inhibition
(17, 90, 164), as well as all enzymes sustaining cholesterol
and mevalonate pathways (for a list of inhibitors, see Table 2
and Table 3). Targeting FAO can also be an option, especially
for counteracting cancer cells sustained by lipid catabolism
(26, 27).

The “citrate strategy” recapitulates many advantages of
metabolic interventions.
The rationale of the “citrate strategy” is based on the decrease
in citrate cytosolic concentration induced by the Warburg
effect (90) and/or upregulation of ACLY observed in numer-
ous cancer cells (17). Low citrate concentrations promote
PFK1 activity and FBPase inactivity since citrate physiolog-
ically regulates these key enzymes. Through fructose-1,6-
bisphosphate (PFK1 product), the proliferative RAS-PI3K-
AKT pathway is promoted, and therefore the Warburg effect
and ACLY are concomitantly activated in a feedback loop
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(174–176). In various cancer models, the administration of
high concentrations of citrate (∼50 times the physiological
concentration) inhibits cancer cell proliferation by several
mechanisms: the promotion of apoptosis by caspase 3 and
9 activation with the extinction of the anti-apoptotic factor
Mcl-1 (177); increasing sensitivity to cisplatin (177, 178);
inactivation of PFK1 with decreased ATP production (179);
inhibition of the insulin-like growth factor (IGF) I (IGF-I)
and its type I receptor (IGF-IR); inactivation of PI3/AKT
pathway and activation of the PTEN suppressor; reversion
of dedifferentiation and increased T-lymphocyte response
(180–182).

Citrate is a product of very low toxicity as it is an endoge-
nous metabolite characterized by a very short half-life and a
rapid and complete metabolism (183, 184). Its only toxicity
in humans and mammals is due to its chelating properties
on calcium and other divalent cations. Administered in
excess, citrate induces hypocalcemia, which causes muscle
spasms and convulsions, and also a risk of hemorrhage (183,
184). The potentially severe and eventually lethal effects
of acute hypocalcemia are usually reversed and cured by
the intravenous administration of calcium chloride (184,
185). Citrate is commonly used in continuous veno-venous
hemofiltration, in which clinical signs of hypocalcemia
(such as tingling) are detected regularly; blood calcium
concentrations are monitored and hypocalcemia is avoided
by administering a calcium-containing liquid as a preventive
measure (185, 186). Extrapolating the results of preclinical
models using citrate as anti-cancer treatment (179–182), the
active dose in humans is probably much lower than that used
in continuous venous hemofiltration. However, the citrate
strategy should only be tested in phase 1/2 clinical trials to
determine its adverse effects and toxicity, mode and duration
of administration, and its efficacy. Disturbance of the acid-
base balance will also be avoided by the appropriate addition
of bicarbonate (187).

Bridging cell metabolism to the TME
The emergence of immunotherapy as an efficient treatment
in some cancers demonstrated the impact of targeting the
TME. Tumor stroma contains a wide array of noncancer-
ous cells, including cancer-associated fibroblasts (CAFs),
adipocytes, endothelial cells, macrophages, myeloid-derived
cells, natural killer (NK) cells, and other immune cells,
including T and B lymphocytes. Schematically, cytotoxic
immune cells comprise the following: CD8+ T, T-helper
(Th) 1 and Th17 subpopulations of CD4+ T lymphocytes
(CD4+Th1/Th17), dendritic cells (DCs), NK cells, and
proinflammatory tumor-associated macrophage (TAM) 1
(TAM1). Immunosuppressive cells comprise regulatory T
cells (Tregs; a subgroup of CD4+ T cells), MDSCs, and anti-
inflammatory TAM2 cells [for review, see Caruana et al.
(188)]. Of note, tumor-infiltrating lymphocytes (TILs) are of-
ten organized to form tertiary lymphoid structures together
with DCs (189). The high consumption of nutrients by cancer
cells contributes to exhaustion (nonresponsiveness) of cyto-
toxic immune cells, while waste products secreted by cancer

cells (lactate, NO, polyamines, adenosine, and NH4+) further
stimulate local immunosuppression and/or the proliferation
of cancer cells (190). For example, adenosine generated from
ATP degradation exerts local immunosuppression (191). The
manipulation of the chemical milieu can promote a hostile
TME for cancer development and may be an “ecological”
strategy, which could improve cancer therapy.

How to improve the cytotoxic immune response?.
The development of cancer cells is influenced by the
number, nature, and activity of immune cells within tumors.
Immunotherapy aims to restore the activity of cytotoxic T
lymphocytes, and this strategy has dramatically improved
the prognosis in certain types of cancers. The immune
checkpoints programmed death (PD)-1 (PD-1) and its ligand
(PD-L1), as well as T-lymphocyte–associated protein 4
(CTLA-4) are located on the membrane of T cells; they favor
the inhibition of the cytotoxic function of TILs and stimulate
immunosuppressive Tregs (188).

The dense infiltration of tumors with active TILs and
proinflammatory TAM1 correlates with a better outcome
(192, 193). Shifting T cells from a quiescent state to a
highly active effector phenotype (activation, proliferation,
migration, and differentiation with cytokine secretion) is
a process that requires the large availability of nutrients
(glucose, glutamine, and FA) and the rapid production of
energy provided by glycolysis and OXPHOS (194, 195).
The inhibition of PD-1 and PD-L1 results in an intense
activation of glycolysis-dependent CD8+ T cells, leading
to the secretion of IFN-γ (196, 197). TAM1 activation
also results from the activation of glycolysis, PPP, and FAS
(198). However, cancer cells outsmart the proliferation and
activation of cytotoxic TILs and TAM1 by diverting nutrients
for their own profit—in particular, glucose and amino acids
(196–198). As a result, the loss of nutrients in the TME
alters the cytotoxic function of effector T cells while it favors
the anti-inflammatory effect of immunosuppressive cells. Of
note, immunosuppressive cells are less demanding in glucose
than cytotoxic T cells, and are mainly supported by FAO
(26). Deprived in nutrients, T-cytotoxic cells progressively
enter a dysfunctional and exhausted state, associated with
the downregulation of glycolysis and OXPHOS, and loss of
mitochondria induced by endoplasmic reticulum stress (199,
200). In this context, immune tolerance is promoted, while
glucose and other nutrients are left for use in cancer cell
proliferation.

Two main strategies can counteract the imbalance that
is beneficial for cancer cells, and these strategies can be
combined if they are well tolerated: 1) counteracting the
absorption of nutrients by cancer cells and immunosuppres-
sive cells, thus redirecting these nutrients to cytotoxic cells,
and 2) suppressing secretion and recycling of waste products
in the TME where they promote immunosuppressive cell
activation.

The first strategy—that is, inhibition of nutrient uptake
(glucose, glutamine, arginine, methionine, and FAs) and/or
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their conversion in cancer cells—has been partly described
above. In this setting, the inhibition of arginase 1 (ARG1)
promotes the activation of cytotoxic and proinflammatory
cells, while anti-inflammatory and immunosuppressive cells
are inhibited (199). Another example is targeting tryptophan
metabolism, which can both counteract cancer cell growth
and promote the activation of cytotoxic cells. Indeed, trypto-
phan is transformed by indoleamine 2–3 dioxygenase (IDO)
into kynurenine, an immunosuppressive molecule. IDO can
be inhibited by molecules such as indoximod (201, 202), but
also by inhibitors of cyclooxygenase (COX)-2 (COX-2) as it
produces prostaglandin E2 (PGE2), which upregulates IDO.
COX-2 inhibition can be of particular importance because
it concomitantly blocks ARG1 in MDSCs (203). PGE2 also
binds to E type prostanoid 4 (EP4) promoting activation of
immunosuppressive cells such as MDSCs; thus, several EP4
antagonists are currently being tested in clinical trials (203).
In addition to amino acid metabolism, it could be important
to target lipid metabolism, since lipid accumulation in
the TME promotes cancer development, suppressing the
immune response, particularly in prostate cancer (204). FAO
inhibition could act against immunosuppressive cells (such
as Tregs), relying preferentially on FA catabolism for their
activation and/or maturation (205).

The second main strategy targets waste products secreted
and recycled in the TME where they favor immunosuppres-
sion by various mechanisms described in detail elsewhere
(206, 207). As an example, the adenosine pathway can be
blocked by inhibitors of adenosine-generating enzymes (such
as CD73) and/or adenosine receptors [for a list of ongoing
trials, see Allard et al. (208)]. The inhibition of lactic acid
metabolism can be attempted by using diclofenac (209), LDH
inhibitors such as oxamate (210), MCT1/4 inhibitors (159),
or by promoting PDH functioning by molecules such as
lipoic acid (46) or dichloroacetate (211). Lactate transporter
inhibition, in particular, targeting MCT1, was found to be
a promising strategy for stopping cancer cell growth (159,
211), reducing the risk of metastasis in melanoma mouse
models (212). Targeting an extracellular acid pH could be
attempted as this pH decreases drug penetration in cancer
cells and stimulates immunosuppression (213). Reversing the
pH on both sides of the cellular membrane by the inhibition
of Na+/H+ exchanger (NHE) 1 (NHE1) can slow down the
proliferation process (214, 215). However, the redundancy of
membrane pH-regulating proteins including carbonic anhy-
drases (CAs), NHEs, Na+/HCO3− co-transporters (NBCs),
and MCTs prevents effective pH reversing if a sole individual
protein is targeted (215). Interestingly, the oral administra-
tion of bicarbonate prevents the occurrence of metastases in
breast cancer mouse models (216). In preclinical studies, the
administration of sodium bicarbonate favors the penetration
of cytotoxic drugs (doxorubicin, in particular) (217, 218),
increases the response to mTOR inhibitors (218), and stimu-
lates TILs in tumors (219). Sodium citrate is also a basic salt,
increasing cytotoxic response to drugs such as cisplatin and
T-cell infiltration in tumors (179–182). Co-administration or
pretreatment of clinical doses of proton pump inhibitors in

patients receiving cisplatin and fluorouracil results in lower
extracellular acidification, enhancing the sensitivity of the
tumor cells to anti-cancer agents (220).

Targeting nonimmune cancer-associated cells, such as
CAFs.
CAFs produce fibronectin and rich proline molecules (such
as type I and III collagen), which, along with type IV collagen
(entering the basement membrane produced by cancer cells)
(221, 222), form a fibrotic tumor stroma stimulated by
hypoxia and HIF-1 (223, 224). A thick tumor stoma leads to
a “desmoplastic reaction” of poor prognosis, which increases
interstitial fluid pressure and constitutes a physical barrier
against drug delivery and antitumor immune response (221).
Thus, targeting these cells can be important in establishing
a TME hostile to cancer cell development. As CAFs use
glycolysis to produce lactate for cancer cells, a process
known as the “reverse Warburg effect” (224), targeting lactate
secretion and exchanges by the aforementioned strategies
can participate in the inhibition of CAF activity, thus
counteracting cancer cell development.

Targeting the perverted metabolism of the host
supporting the growth of the “cancer parasite”
Beyond the vicious exchanges occurring between cancer cells
and their environmental niche, the tumor takes advantage
of aberrant metabolic exchanges with its host, consuming
muscles and fat reserves, and leading to cachexia (225).
Cancer tumor can be viewed as a metabolic “parasite”
sustained by daily food intake and liver gluconeogenesis,
the latter pathway being supplied by glycerol (derived from
lipolysis), alanine (derived from proteolysis), and lactate
secreted by hypoxic tumor cells and muscles. Alanine
consumption promotes proteolysis, loss of muscle, and finally
the occurrence of sarcopenia (225), whereas lactate secreted
by tumors can constitute a primary source of carbons for
the TCA cycle of many cells in tissues and organs, except
for the brain (226). This general recycling participates in
glucose sparing for cancer cells—in particular, for highly
glycolytic cells, which are often hypoxic and resistant to
therapies (227). However, the metabolic requirements of the
tumor-parasites should be less important than the distant
metabolic effects exercised by the tumor on the “host,”
and the tumor burden is <1% in many cancers, even at
an advanced stage (228). The relations between cancer and
the host are complex and involve numerous interconnected
factors, including the following 1) chronic inflammation with
deregulated mixes of cytokines (in particular IL-6) secreted
by various cells (cancer cells, immune cells, CAFs, and organs
cells, in particular, of the liver) (229); 2) nutritional status
and adipose tissue composition and conversion of white
into brown fat, promoted in particular by PGC1ɑ, a central
modulator of cell metabolism (230); and 3) endogenous
hormone (in particular insulin and IGFs) synthesized by
almost any tissue and supporting insulin resistance, diabetes,
and obesity (231).
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Targeting the deregulated lipid metabolism sustaining
cancer development.
Excess consumption of caloric food promotes obesity, in-
sulin resistance with increased circulating concentrations
of insulin and IGFs, triglycerides, and nonesterified FAs
(NEFAs). NEFAs trigger nonalcoholic fatty liver disease by
endoplasmic reticulum stress, inflammation, necrosis, and
fibrosis; all of these factors promote carcinogenesis and the
development of liver cancer in particular (232, 233). Many
factors contribute to this lipotoxic pathogenic sequence, such
as free lipotoxic FA, several arachidonic and sphingolipid
molecules, high expression of altered triglyceride lipase
and acylcarnitines, as well as insulin resistance, cytokine
production, micro-RNA (miRNA) dysregulation, NSCLC,
and altered intestinal microbiota (234–236). The arachidonic
pathway that promotes tumor growth could be targeted by
natural products such as curcumin, resveratrol, and berber-
ine (236). Upregulating the concentrations of proapoptotic
sphingolipids (as ceramide and sphingosine) could also be
beneficial (237).

Targeting the altered insulin–IGF-I pathway that pro-
motes cancer development.
The insulin–IGF-I axis and its downstream effectors are
involved in cancer metabolism as observed in several cancer
models and cohorts of patients (238–240). Insulin resistance
is frequent in cancer patients, a process characterized by
increased hepatic gluconeogenesis. Unlike in type 2 diabetes,
cancer patients have normal fasting glucose with high,
normal, or low concentrations of insulin (241). The complex
role of the IGF family (IGF-I and IGF-II) ligands, IGF-IR1–3,
insulin receptor (IR), and IGF-binding proteins (IGFBP1–6)
in the mechanisms of insulin resistance in cancer patients
still requires exploration [for review, see Denduluri et al.
(238) and Bowers et al. (239)]. The increased expression of
IGF-I, IGF-II, and IGF-IR has been observed in a variety of
malignancies (242, 243). Of note, IGF-IR gene mutations
have been rarely documented in cancer and no evidence
links IGF-IR mutation with cancer prognosis (242, 244).
IGF-I signaling activates PI3K/AKT, thus promoting glucose
metabolism with the inhibition of glucagon expression and
secretion (239, 244). IGFBPs regulate IGF-I availability and
have an essential role in subverting glucose metabolism and
promoting cancer growth and insulin resistance (239, 240).
In a mouse model of acute myeloid leukemia, leukemia
cells induced a high secretion of IGFBP1 in adipose tissue,
which promoted a diabetic state and leukemia progression;
thus, in this situation, anti-IGFBP1 and antidiabetic drugs
could be beneficial (244). Of note, IGF-IR–specific inhibitors
were disappointing in trials—in particular, because IGF-
IR is expressed ubiquitously and shares high homology
with IR, while compensatory growth factor signaling
demonstrates some redundancy with IGF-IR signaling
(245). Interestingly, in vitro studies showed that several
miRNAs and lipoic acid inhibits IGF-IR (246, 247), while
small molecules can displace IGF-I from the IGF-I–IGFBP

complex, thus suppressing IGF-I–induced proliferation
(248).

Dietary interventions could protect healthy cells from
the cytotoxic effects induced by chemotherapeutic
drugs on cancer cells
The maintenance of a sufficient high BMI and/or a stable
weight is a pledge of quality of life and response to anti-
cancer therapies. In this context, proposing a diet may appear
illogical and conterproductive. However, preclinical exper-
iments have shown that fasting (FS) and caloric restriction
(CR) increase the effectiveness of CT and RT by promoting
cytotoxic stress, acute inflammation, and immune responses
(249–251). In mice, 48–72 h of FS protects from the toxic
side effects of CT (such as platinum-based drug combina-
tions or doxorubicin and etoposide), reverses CT-induced
DNA damage on healthy cells, improves regeneration of
hematopoietic stem cells, and favors an effective immune
response (251–254). Interestingly, FS and CR downregulate
IGF-IR and PI3K/mTOR signaling pathways, thus arresting
the proliferation of healthy cells (such as cells of the bone
marrow, gastrointestinal tract, hair follicles, and heart),
which switches their metabolism in an oxidative mode for
repair and survival (252, 253, 255). In contrast, cancer cells
continue to proliferate as they are strongly programmed by
oncogenic factors to replicate. This distinct reaction supports
the concept of “differential stress resistance” (DSR) (250, 251,
255–257).

The switch from glycolysis to oxidative metabolism—
supporting DSR—is promoted by AMPK, which enhances
FAO and consequently supplies cells with ATP and NAD+

molecules (258). In healthy cells, proliferation is arrested
and repair is regulated by various genes such as TP53,
CDKN1, sirtuin 3 (SIRT3), and the protein kinase forkhead
box protein O3 (FOXO3) (259, 260). Concomitantly, ROS
neutralization is promoted by the mitochondrial NAD+-
dependent protein Sirt3, a deacetylase that stimulates super-
oxide dismutase 2 (MnSOD2) and inhibits the Warburg effect
(260). In contrast, these censoring controls are frequently
altered in cancer cells, which survive and continue to
replicate, supported by altered mechanisms of autophagy,
AMPK, and poly (ADP ribose) polymerases (PARPs) (261–
263). However, repeated cycles of CR or FS associated with
RT and CT could be lethal for cancer cells, in contrast
to healthy cells that could better recover from metabolic
stress (257, 264, 265). Interestingly, such metabolic strategies
could improve the immune cytotoxic response in tumors,
as suggested experimentally (265). DSR suggests therapeutic
windows for metabolic interventions that could be associated
or interspersed between CT, RT, or immunotherapy sessions
to improve the cytotoxic effect on the tumor while protecting
healthy cells.

In this setting, the significance of ketone body (KB) diets
(KBDs) may appear more problematic, although proposed
as a “metabolic therapy” in particular for brain tumors
(266). The rationale of these diets—low in carbohydrates
and rich in fat—is to starve tumor cells in glucose because
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KBs (produced by the liver) cannot be metabolized by
cancer cells, which lack relative mitochondrial enzymes
(267). In contrast to tumor cells, many tissues and organs,
in particular the brain, heart, and muscles, can use 3β-
hydroxybutyrate (3β-OHB)—the main KB—as an efficient
source of energy. Furthermore, 3β-OHB inhibits histone
deacetylation in cancer cells, thus arresting their division
(23). Accordingly, some studies have shown that KBDs
reduce tumor growth [for review, see Branco et al. (267)],
deplete TME in immunosuppressive cells, ad decrease the
expression of inhibitory checkpoints (268). However, in other
preclinical studies, KBDs had no effect and might even
accelerate breast cancer growth (21, 23). These contradictory
results could be related to the fact that many cancer cells
display an oxidative metabolism and thus likely consume
FA and KBs (269, 270). Furthermore, it is noteworthy that
few studies (mainly carried out in cultured murine cells)
demonstrate the assumption that cancer cells have lost
enzymes metabolizing KBs (271). Moreover, some subclones
can adapt to glucose starvation by promoting their glucose
uptake, in particular through the overexpression of GLUT1
(272, 273) or by increasing their glutamine dependency
(274). Therefore, the efficiency and relevance of KBDs
warrant further demonstration by rigorous clinical trials,
taking also into account that these diets are not easy to
follow, often inducing significant weight loss. The results (not
currently available) of randomized trials testing KBDs with
CT and RT will clarify the benefits and relevance of KBDs
[for recent lists of clinical trials associating KBDs and RT, see
Icard et al. (275)].

Concluding Remarks and Future Perspectives
There is a novel and increasing interest in metabolic inter-
ventions to improve the results of conventional therapies.
However, as we have described, preclinical studies have
shown that there is no universal cancer cell metabolism, and
thus no universal metabolic strategy capable to arrest the
growth of all cancer cells, every time. However, the addiction
of numerous cancer cells to glucose could be their Achilles
heel, a vulnerability that should be targeted, especially in
cells relying on strong aerobic glycolysis. This is of primary
interest because these cells are often the most hypoxic
and treatment-refractory cells, and thus sustain recurrence
and metastasis (276). Otherwise, several experimental stud-
ies have shown that drug-resistant cancer cells can be
re-sensitized by targeting metabolic pathways supporting
their development (277). As an example, 5-fluorouracil (5-
FU)–resistant CRC cancer cells are destroyed if 5-FU is
combined with an inhibitor of OXPHOS (278). Similar
considerations apply to the glutamine addiction in platinum-
resistant cancer cells such as ovarian cancer cells (74).
However, the metabolism of cancer cells can adapt to various
changes related to nutritional conditions or enzymatic
inhibitions by developing alternative pathways. For example,
glucose deprivation induces a decrease in ATP production,
which can be counterbalanced by an increasing production
sustained by OXPHOS and FAO (26), and this condition can

sometimes induce the selection of mutations that increase
glucose uptake and glutaminolysis (272, 274). Acetyl-CoA—
a key molecule in cell metabolism—can be obtained from
several sources such as citrate and/or acetate (279), but also
from glycolysis through transketolase-like 1 activity (37).
Thus, reducing the concentration of acetyl-CoA in cancer
cells may be difficult, almost impossible. The same is true
for ribose 5-phosphate (R5P) because its synthesis can be
supported by the oxidative part and/or the nonoxidative part
of PPP, sustained by glycolysis or truncated gluconeogenesis.
This latter pathway can be sustained by glutaminolysis and/or
FAO. However, despite this adaptability, the metabolism of
cancer cells can be inhibited by several strategies that can
be simplified as follows: limiting the absorption of nutrients
essential for cell growth; inactivating key regulatory and/or
limiting enzymatic reactions; targeting metabolic enzymes
linked with other processes that sustain cancer proliferation,
such as cell cycle progression; stopping the production of
ATP to cause an energy crisis; redirecting nutrients to
cytotoxic immune cells; and suppressing waste secretion and
recycling in TME.

However, without a comprehensive picture of whether
metabolism supports the development of a particular tumor
in vivo at a specific time, it is quite impossible to define the
pathways or enzymes, which should be targeted in priority,
considering also that the supplementation or starvation (in
particular for KBs and several amino acids) may have dual ef-
fects. Furthermore, promoting oxidative metabolism instead
of reductive metabolism (and vice versa) may paradoxically
select resistant and/or metastatic cell clones (64, 65). Thus,
while awaiting the development of new methods capable
of specifying the metabolism of tumors in vivo, it may
be advisable to concomitantly or sequentially target the
glycolytic and oxidative behavior of cancer cells, and also to
favor short cycles of “metabolic interventions” rather than
prolonged interventions, which can select resistant clones
and require stricter compliance. Further studies and clinical
trials will define the modalities of metabolic interventions,
their place among current treatments, their toxicity, and their
repercussion on body physiology and immune response. It
is time to develop new classifications including markers of
cancer cell metabolism, immune response, and metabolic
disorders to develop personalized treatments based on
deeper knowledge of the specific metabolic vulnerabilities of
both tumor and host, and actively test simple and inexpensive
metabolic strategies that could improve the results of anti-
cancer treatments.
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