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The genomic landscape of 85 advanced
neuroendocrine neoplasms reveals subtype-
heterogeneity and potential therapeutic targets
Job van Riet 1,2,3,11, Harmen J. G. van de Werken 1,2,11✉, Edwin Cuppen4,5, Ferry A. L. M. Eskens3,

Margot Tesselaar6, Linde M. van Veenendaal6, Heinz-Josef Klümpen7, Marcus W. Dercksen8, Gerlof D. Valk9,

Martijn P. Lolkema 3,10, Stefan Sleijfer3,10 & Bianca Mostert 3✉

Metastatic and locally-advanced neuroendocrine neoplasms (aNEN) form clinically and

genetically heterogeneous malignancies, characterized by distinct prognoses based upon

primary tumor localization, functionality, grade, proliferation index and diverse outcomes to

treatment. Here, we report the mutational landscape of 85 whole-genome sequenced aNEN.

This landscape reveals distinct genomic subpopulations of aNEN based on primary locali-

zation and differentiation grade; we observe relatively high tumor mutational burdens (TMB)

in neuroendocrine carcinoma (average 5.45 somatic mutations per megabase) with TP53,

KRAS, RB1, CSMD3, APC, CSMD1, LRATD2, TRRAP and MYC as major drivers versus an overall

low TMB in neuroendocrine tumors (1.09). Furthermore, we observe distinct drivers which

are enriched in somatic aberrations in pancreatic (MEN1, ATRX, DAXX, DMD and CREBBP) and

midgut-derived neuroendocrine tumors (CDKN1B). Finally, 49% of aNEN patients reveal

potential therapeutic targets based upon actionable (and responsive) somatic aberrations

within their genome; potentially directing improvements in aNEN treatment strategies.
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Neuroendocrine neoplasms (NEN) are a heterogeneous and
uncommon tumor type. It can arise from any of the
neuroendocrine cells distributed widely throughout the

body. As outlaid by the International Agency for Research on
Cancer and World Health Organization, a clinical distinction is
made between the poorly differentiated neuroendocrine carci-
nomas (NEC) and the more differentiated neuroendocrine
tumors (NET)1,2, the latter are further subdivided based on their
primary site in pancreas (pNET), gastro-intestinal tract or lung.
Further distinctions are made based upon grade (as assessed by
Ki-67 or MIB-1 staining as a measure of proliferation index),
differentiation, histology (small-cell vs. large-cell) and function-
ality (the presence or absence of hormone secretion resulting in
typical clinical syndromes dependent upon the predominant
hormone that is secreted). Tumor grade and differentiation are
associated with prognosis, and all the aforementioned factors
affect the choice of treatment. However, also in small subgroups
of NEN, such as well-differentiated low-proliferating pNET,
marked clinical and genetic heterogeneity occur, as well as vastly
different responses to treatment with only few mutant genes such
as DAXX, ATRX, and MEN1 serving as prognostic markers3–6.
Thus, the parameters by which NEN are currently classified do
not sufficiently separate patients and tumors according to prog-
nosis and response to therapy. Nonetheless, certain anti-tumor
therapies (i.e., sunitinib and everolimus) have been registered for
distinct NEN-subtypes. Hence, there is a high unmet need to
better classify and understand these diverse tumors, ultimately
leading to more tumor- or patient-tailored therapeutic strategies.

Thus far, limited whole-exome sequencing (WES) and whole-
genome sequencing (WGS) data are available for NEN, probably
reflecting the rarity of this disease. Currently, pNET have been
characterized most extensively; 81 primary tumors were subjected
to WGS as part of the PCAWG project7 and another set of pri-
mary pNET (n= 102) was described by Scarpa et al.5. In addition,
smaller series using diverse sequencing approaches of varying
resolution on primary NET subtypes have been published; which
include genomic studies on pNET (WES and targeted sequencing;
n= 10 and 58, respectively)4, DNA methylation and RNA-
sequencing of pNET (n= 32 and n= 33, respectively)3, well-
differentiated carcinoid (SNP-array; n= 29)8, NEC (targeted
sequencing; n= 63)9 and two studies on a multi-institution
cohort of small intestine NET (SI-NET) using combined
approaches of targeted sequencing (n= 81), WES (n= 48;
n= 29) and WGS (n= 15)10,11. These studies have shown that
NET have a relatively stable genome and only few commonly
observed driver mutations and allelic imbalances, often associated
with their primary tissue of origin. Previously associated genetic
drivers of NET include the cell-cycle regulator CDKN1B in SI-
NET10–13, chromatin-remodeling genes (DAXX, ATRX, MEN1,
and SETD2), DNA-repair genes (CHEK2, BRCA2, and MUTYH),
mTOR-related genes (TSC2, PTEN, and PIK3CA) and the
oxygen-sensing modulator VHL14 in pNET3–5,7,15 whilst NEC is
associated with aberrations in TP53, RB1, MYC, CCND1, KRAS,
PIK3CA/PTEN and BRAF9,16–18. However, these studies were all
performed on primary tumor specimens, whilst a patient gen-
erally dies from the consequences of metastatic disease. In addi-
tion, we know from other tumor types that marked heterogeneity
can occur between primary and metastatic tumor cells19–22, due
to inherent genomic instability and/or the influence of targeted or
cytotoxic treatment on the tumor genome. These discrepancies
should be taken into account when assessing a patient’s prognosis
and possible treatment options, and can be better understood
through thorough genomic characterization of metastases. To
date, analysis of metastatic NET is limited to two studies
describing series of five patients with NET originating in the
pancreas and the small intestine (or midgut), respectively23,24.

These studies have shown focal amplification of MYCN con-
comitant with loss of APC and TP53 in one sample as important
metastatic genetic aberrations. For NECs, only two series of WGS
of the primary tumors of (1) five cervical and (2) 12 genitourinary
NECs have been published25,26.

In this work, WGS was performed on 85 biopsies from patients
with locally advanced or metastatic (advanced) NEN (aNEN); a
single biopsy per patient was selected for analysis. The vast
majority of these biopsies are taken from metastatic lesions
(n= 70 out of 85) whilst for 15 patients suffering from metastatic
or incurable locally advanced disease, their treating physician
judged a biopsy of a metastasis too high-risk or not feasible, and
instead had a biopsy taken from their primary lesion at the time
of locally advanced or metastatic disease. All aNEN patients
underwent these biopsies as part of their participation in the
Dutch CPCT-02 and DRUP studies27,28. We report on the pre-
sence of genomic alterations, mutational and rearrangement
signatures for the whole aNEN cohort and reveal genomic
characteristics and alterations distinguishing aNEC from aNET.
Furthermore, we make a genomic distinction between pancreas-
and midgut-derived aNET. In addition, we investigate the pre-
sence of actionable genetic alteration within aNEN patients,
which might render them eligible for off-label or experimental
systemic treatments to extend therapy options.

Results
Overview of included patients within the CPCT-02 aNEN
cohort and whole-genome sequencing. A total of 108 patients,
originally classified as having a neuroendocrine neoplasm, were
included in the CPCT-02 and DRUP studies and had a primary or
metastatic tumor biopsy taken in parallel with a blood control
(Fig. 1). Five patients were excluded because of missing or with-
drawn informed consent, and another five had non-evaluable
biopsies due to low (<20%) tumor cell percentage or low DNA yield.
Thirteen biopsies were excluded because of incomplete clinical
records, misclassifications of the tumor (based on additional checks
of the medical records), or were duplicate biopsies from the same
patient. An overview of the aNEN patient inclusion per participating
Dutch center (n= 13) can be found in Supplementary Fig. 1a.

The aNEN cohort is represented by 37 females and 48 males
with a median age of 62 (Q(uartile)1–Q3: 57–68) and 61 (Q1–Q3:
56–68) years, at time of biopsy, respectively (Fig. 1c). In total, 69
NET and 16 NEC were included. The primary tumor location in
the midgut was most common (n= 41, 48%), followed by
pancreas (n= 23, 27%) and unknown (n= 12, 14%) (Fig. 1b).
Most of the tumor biopsies were taken from liver metastases, and
a minority from relapses at the primary site (Fig. 1d).

To gain more in-depth knowledge of the pathological
information of this cohort, we requested pathological reports of
primary tumor and/or metastatic tumor tissue as available in the
nationwide (Dutch) PALGA registry. Of note, these tissues were
often not acquired at the time of biopsy for the CPCT-02 study.
For the majority of patients, pathology reports on metastases and/
or the primary tumor were available (Supplementary Data 1). In
the minority, the pathological record of a previous primary
biopsy or resection specimen was assessed.

We also characterized our cohort with regard to previously
administered systemic anti-tumor treatment. Sixty-nine percent of
patients had not undergone any previous anti-tumor treatment,
31% had undergone a large variety of previous treatments, mainly
consisting of somatostatin analogs, radioisotopes, chemotherapy,
and targeted therapy (Supplementary Fig. 1d).

The tumor biopsies and corresponding peripheral blood
controls from the 85 distinct patients were whole-genome
sequenced using paired-end protocols, to a median mean read
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coverage of 107× (Q(uartile)1–Q3: 99×–116×) and 38x (Q1–Q3:
35–42×), respectively to a median in silico estimated tumor cell
purity of 0.7 (Q1–Q3: 0.5–0.82).

The mutational landscape of advanced neuroendocrine neo-
plasms reveals differences related to primary localization and
degree of differentiation. The overall mutational landscape of
aNEN (n= 85; Fig. 2) reveals two strikingly distinct genomic
populations of neuroendocrine neoplasms, i.e., the aNEC and aNET
populations. The aNEC (n= 16) reveals diploid to triploid genomes
and a median tumor mutational burden (TMB) of 5.45 somatic
mutations per Mb (Q1–Q3: 3.84–8.85), which is in the mid-range of
TMB known for human primary cancers29. However, the aNET
(n= 69) are hallmarked by a relatively stable diploid tumor genome
with only few, but specific, chromosomal arm aberrations and
harbors the lowest overall TMB of only 1.09 (Q1–Q3: 0.79–1.52) of
all metastatic cohorts within the CPCT-02 study27.

The somatically acquired and whole-genomic mutational
landscape of aNEC (n= 16) revealed a median of 13,996 single-
nucleotide variants (SNVs; Q1–Q3: 9465–22,830), 1.756 small
insertions and deletions (InDels; Q1–Q3: 752–2,245), 114
multiple-nucleotide variants (MNVs; Q1–Q3: 49–198), 150 struc-
tural variants (SVs; Q1–Q3: 82–264) and an overall diploid to
triploid genome (Q1–Q3: 1.9–3.1; Supplementary Fig. 2). Con-
cordant with the lower TMB of the aNET (n= 69), the aNET
revealed a median of 2870 SNVs (Q1–Q3: 1995–3904), 254 InDels
(Q1–Q3: 185–325), 19 MNVs (Q1–Q3: 12–27), 17 SVs (Q1–Q3:
7–53) and an overall diploid genome (Q1–Q3: 1.9–2.19). The
discrepancy in mutational load between aNEC and aNET also
held true when inspecting only the coding regions, in which
aNEC revealed a higher number of SNVs, InDels, MNV
compared to aNET (Supplementary Fig. 2a). Similarly, aNEC
displayed elevated numbers of all SV classes (translocations,
deletions, tandem duplications, insertions and inversions; Sup-
plementary Fig. 2d).

Fig. 1 Overview of patient inclusion and subclassification of biopsies. a Flowchart of patient inclusion. From the CPCT-02 cohort, single biopsies from 85
distinct patients with advanced (metastatic or locally advanced) neuroendocrine neoplasms (aNEN) were selected. From the total pool of available whole-
genome sequenced aNET samples. If multiple derived aNET biopsies from the same patient were available, we selected the aNET biopsy with the highest
tumor cell purity. The tumor and matching blood sample (reference) were whole-genome sequenced to a median read coverage of 107 and 38 (paired-
end) reads per base, respectively. Filtering criteria in which patients were excluded are highlighted in red. The final inclusion of aNEN patients is depicted in
green. b Subclassification of aNEN based on primary localization. The 85 aNEN were subclassified, based on their primary localization, into six major
categories; gastric, hindgut, lung, esophagus, pancreas, and midgut; whilst samples with indeterminable localization were categorized as unknown. The
number of aNET (in blue) and aNEC (in red) are shown per category. c Age distribution stratified by gender of the aNEN cohort. Observed median per
variable displayed in a boxplot with individual data points (aNET and aNEC are depicted as blue and red points respectively). The median, interquartile
range (IQR), and 1.5× the IQR are represented by a solid black line, box, and whiskers, respectively. d Barplot of generalized location of the tumor biopsy.
Absolute and relative (in brackets) frequency of aNET (blue) and aNEC (red) biopsy locations. Credit: Created with BioRender (https://biorender.com/).
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The majority of somatic coding mutations for all aNEC and all
aNET (n= 3333 and 3663; SNV, InDel, and MNV) were found to
be predicted missense variants (52% in aNEC vs. 52% in aNET),
followed by synonymous variants (18% vs. 21%). The number of
genes harboring somatic mutations within their coding regions
differed between aNEC and aNET. Over the entire aNEC cohort
(n= 16), 2845 distinct mutant genes were observed, versus 3112
distinct genes within the entire aNET cohort (n= 69). Per
sample, a median of 150 (Q1–Q3: 127–270) versus 37 (median;
Q1-Q3: 26–51) genes harboring mutations within coding regions
were observed for aNEC and aNET samples, respectively;
revealing that aNEC harbor greater numbers of mutant genes
compared to aNET.

The median genome-wide ratio of transitions (Ti; A↔G or
T↔ C) to transversions (Tv; C↔A, C↔G, T↔A or T↔G)
within aNEC was found to be 0.78 Ti\Tv (Q1–Q3: 0.72–1.02) vs.

1.52 Ti\Tv (Q1–Q3: 1.12–2.20) in the coding regions. For aNET
the median genome-wide and coding Ti\Tv were found to be 1.09
(Q1-Q3: 0.98–1.32) and 1.42 (Q1-Q3: 1–1.96), respectively
(Supplementary Fig. 2f).

High-TMB (≥10) are often associated with DNA-repair
deficiency and/or tumors with sensitivity for immune therapy,
e.g., checkpoint inhibitors. Four aNEC samples, all from
unknown origin, and a single pancreatic aNET showed this
high-TMB genotype (Fig. 2a). One aNET displayed signs of
BRCA2-associated homologous recombination deficiency
(HRD), as determined using the CHORD classifier which is
mainly based on deletions with flanking microhomology and
1–100 kb structural duplications (Fig. 2j; Supplementary Fig. 3).
Further inspection revealed that this aNET harbored a somatic
frameshift mutation within RAD51C, a known HRD-associated
gene30–33.

Fig. 2 Landscape of large-scale genomic alterations detected in aNEN, ordered by differentiation grade (NEC/NET) and primary localization. Overview
of genome-wide characteristics of the aNEN cohort ordered by aNEC/aNET and primary localization on decreasing median tumor mutational burden. For
each aNEN (n= 85), the following tracks are shown: a Number of genomic mutations per megabase over the entire genome (TMB). Threshold for high
TMB (≥10) is shown by a horizontal red dotted line. Y-axis is shown in log10-scale. b Total number of structural variants (green) including deletions,
tandem duplications, translocations, inversions, and insertions as detected by GRIDSS. Y-axis is shown in log10-scale. c Relative frequency of each of the
structural variant categories; deletions in orange, tandem duplications in red, translocations in blue, inversions in light-blue, and insertions in yellow.
dMean genome-wide ploidy, ranging from 0 (red) to 4 (green; tetraploid). Common diploid status is shown in white. Suspected whole-genome duplication
(WGD) events have been marked by an asterisk (*). e Relative contribution of the COSMIC single-base substitution mutational signatures (v3; n= 67).
Proposed etiology of signatures is denoted below. f Relative frequency of the pyrimidine point mutations (SNV) in their six categories. g Relative frequency
of Doublet Base Substitution (DBS) categories. h Presence of chromothripsis; aNEN with chromothripsis are shown in pink. i Presence of kataegis; aNEN
with ≥1 kataegis events are shown in red. j Status of homologous recombination deficiency (HRD), as determined by CHORD; aNEN with BRCA1/2-
associated HRD are shown in red. k Differentiation grade of the aNEN; aNEC in red, aNET in blue. l Primary localization of the aNEN. m Origin of the
respective pathological record used to determine differentiation grade and proliferation index. n Differentiation grade based on the pathological record: 1
(sky-blue), 1–2 (teal), 2 (dark blue), 2–3 (orange), 3 (red), atypical carcinoid (green) and not available (N/A; white). o Proliferation index (KI67 / MIB1)
from 0 to 100 based on the pathological record.
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Regional hypermutation (kataegis). Regional hypermutation
(kataegis) was detected in five aNEC; Fig. 2i; Supplementary
Fig. 4). Canonically, kataegis is associated with APOBEC activity
and indeed, four out of five (80%) of these kataegis events pre-
dominantly showed the canonical TpCpW context associated
with APOBEC alterations34. In addition, in the five samples
harboring kataegis, the absolute contribution of APOBEC single-
base substitution (SBS) mutational signatures (2 & 13) was
significantly higher (median 45 vs. 533; p < 0.01; Wilcoxon rank-
sum test) compared to aNEN without kataegis (n= 80).

Chromothripsis. Multiple distinct aNEN (four aNEC and two
aNET; 7%) revealed the presence of chromothripsis, a cata-
strophic phenomenon of the shattering and interchromosomal
recombination of one or more chromosomes (Fig. 2h; Supple-
mentary Fig. 5). Strikingly, four of the six observed chromo-
thripsis events from distinct aNEN (two aNEC and two aNET)
involved the same chromosome, namely chromosome 12. Within
these four aNEN, we observed possible evidence for extra-
chromosomal DNA due to copy-number oscillations between one
low (CN ≤ 4) and one very high (CN ≥ 10) states, consistent with
the presence of double minutes35–37.

Catalog of the cohort-wide mutational signatures provide
biological insights into treatment effect. Different mutational
processes, such as exposure to exogenous or endogenous muta-
gens and defective DNA-repair mechanisms generate unique
combinations of mutational trinucleotide contexts which are
reflected in mutational signatures38,39. To determine these
mutational signatures within aNEN, we performed de novo
mutational signature analysis and determined the contribution of
previously described SBS mutational signatures (COSMIC v3).
The de novo mutational signature assessment revealed seven
signatures, denoted as Sig. A to Sig. G, (Supplementary Fig. 6b, h,
i) which all strongly correlated to previously known mutational
signatures (Supplementary Fig. 6a–f). In particular, we observed
samples with large relative contributions (>20%) of de novo
signatures similar to the known signatures associated with aging
(SBS1 & 5; Sig A and D), APOBEC activity (SBS2 & 13; Sig B.),
tobacco smoking (SBS4; Sig F.), alkylating agents exposure
(SBS11; Sig E.), 5-Fluorouracil exposure (SBS17a-b; Sig. C.) and
MUTYH mutations (SBS36; Sig. G.).

Overall, the mutational signature profiles do not differ greatly
within the aNEN cohort. SBS5 (n= 48; putative clock-like), SBS8
(n= 45; possibly late-replication errors40), SBS40 (n= 22;
Unknown), SBS3 (n= 16; HRD-like), SBS1 (n= 10; clock-like),
SBS39 (n= 7; Unknown), and SBS9 (n= 5; polymerase η (POLH)
activity) were classified as dominant signatures (i.e., contributed
at least 10% of total contribution within ≥5 aNEN; Fig. 2e). When
comparing between our major subgroups (aNEC, midgut- and
pancreas-derived aNET), we observed significant (q ≤ 0.05)
differences for five previously described SBS mutational signa-
tures (Supplementary Fig. 6g). The relative contribution of SBS3
(HRD-like) and SBS5 (clock-like) was lower in aNEC compared
to midgut- and/or pancreas-derived aNET whilst conversely,
SBS18 (reactive oxygen species) was elevated in aNEC. In
addition, SBS8 (possibly late-replication errors) was elevated in
midgut-derived aNET compared to the others. Finally, the
relative presence SBS40 (unknown) was higher in pancreas-
derived aNET compared to others.

Two included aNEC of unknown primary localization are
characterized by high-TMB (≥10) and SBS4, which is associated
with smoking; likely due to tobacco mutagens. This could reflect
that these metastases could be primary lung non-small-cell lung
cancer. However, as no somatic coding mutations in canonical

lung cancer-associated genes were observed and the clinicopatho-
logical data of these patients did not point to any different primary
tumor other than a NEC, it seems unlikely that these could be
primary non-small-cell lung cancers. Smoking has also been
implicated as a risk factor for pulmonary and extrapulmonary
NEC such as those of the urinary bladder and the esophagus41.

Strikingly, the only high-TMB (pancreatic) NET was strongly
characterized by SBS11, which exhibits a mutational pattern
resembling that of alkylating agents, with a strong enrichment for
C/T (G > A) transitions. Previously, an association between
treatment with the alkylating agent temozolomide and SBS11
mutations has been found38,42. This same patient showed the
highest TMB with a TMB of 21.3 (median TMB of NET: 1.09)
and was treated with a combination of 5-fluorouracil and
streptozocin before undergoing a biopsy for the CPCT-02 study.
Streptozocin is a capable of DNA alkylation and inhibition of
DNA synthesis, and its mechanism of action closely resembles
that of temozolomide.

One aNET was strongly characterized by SBS36, associated
with base excision repair (BER) deficiency due to MUTYH
alterations, C > A mutations and previously also seen in
pancreatic NET42–44. Strikingly, this tumor did not harbor
specific somatic alterations within MUTYH but possessed a
heterozygous germline pathogenic missense mutation within
MUTYH (c.527A>G / p.Tyr176Cys; rs34612342) coupled with a
complete loss of a single chromosome 1, resulting in subsequent
loss of heterozygosity.

Driver catalog of aNEN. We next performed an unbiased driver
gene discovery analysis by performing GISTIC245 to detect
recurrent somatic copy-number alterations and dN/dS46 to detect
genes under positive (or negative) selection pressure on the entire
aNEN cohort and separately on all aNET and aNEC samples.
With this analysis, we detected eighteen focal deletion peaks and
two focal copy-number amplifications peaks throughout the
genome (q ≤ 0.1) and ten genes enriched with non-synonymous
mutations (q ≤ 0.1; Fig. 3 and Supplementary Fig. 7). Within these
focal peaks, several oncogenes and tumor suppressors were pre-
sent which could be the potential target of the copy-number
alteration. These genes, which have been previously associated as
driver genes in NET and/or pan-cancer cohorts5,11,27, are shown
in Fig. 3 for all aNEN with a distinction between aNEC and
aNET. We detected several previously known tumor suppressors
and oncogenes such as TP53, KRAS, MEN1, RB1, CDKN1B,
DAXX, and APC enriched with non-synonymous mutations (q ≤
0.05) as well three additional genes (LPCAT2, SETD2, and
CREBBP) just above the statistical threshold value (q ≤ 0.1). By
overlapping known drivers within the observed focal amplifica-
tion and deletion peaks, we detected a plethora of putative drivers
with copy-number alteration; such as deletions of TP53,
CDKN2A, CDKN2B, CDKN1B, PTPRD, DR1, CBFA2T3, PLCG2,
ANKDR11, IRF8, LINC01881, PRKN, ZNF407, common fragile
sites such as DMD, FHIT and MACROD2, and amplifications of
genes such as PCAT1/MYC and MDM2. Furthermore, focal
deletions of additional genes such as CAMTA1, DLUE1/2,
TRIM13, KCNRG, FXD1 were found in ≤2 samples (Supple-
mentary data 1). Large perturbations on chromosome 12q15
(MDM2) were observed within aNEN harboring chromothripsis
(Supplementary Fig. 5). Furthermore, we could detect a single in-
frame fusion of the common fusion-partner EWSR1 seen in
pNET5. Moreover, we observed only two genes harboring hotspot
coding mutations (on base-level) which were shared between
three samples (ZNF829 and KRAS) and seven genes between two
samples (UHRF1BP1L, CDKN1B, MEN1, LEKR1, OR5L1,
CTNNB1, and GNAS; Supplementary data 1).
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Fig. 3 Putative drivers and NEN-associated genes within the aNEN cohort as detected by unbiased discovery (dN/dS, GISTIC2) and literature.
Overview of putative drivers harboring coding mutations within ≥3 aNEN. We show putative drivers as detected by dN/dS and/or GISTIC2 and
supplemented this list with additional NEN-associated drivers. aNEN and genes are sorted based on mutually exclusivity of the depicted putative drivers. In
addition, genes found to be mutually exclusive between our major subgroups are highlighted in the respective color of the enriched subgroup;
Supplementary Fig. 8e). This overview depicts the genomic features and the somatic inventory for the entire aNEN cohort (n= 85). a Number of genomic
mutations per megabase over the entire genome (TMB). Threshold for high-TMB (≥10) is shown by a horizontal red dashed line. Y-axis is shown in log10-
scale. b Mean genome-wide ploidy, ranging from 0 (red) to 4 (green; tetraploid). Diploidy is shown in white. Suspected whole-genome duplication (WGD)
events have been marked by an asterisk (*). c Relative contribution of the COSMIC single-base substitution mutational signatures (v3; n= 67). Proposed
etiology of signatures is denoted below. d Overview of coding mutation(s) per aNEN, (light-)green or (light-)red backgrounds depict copy-number
aberrations whilst the inner square depicts the type of (coding) mutation(s). The adjacent bar plots represent the relative proportions of mutational
categories per gene, the percentage of aNEC (in red) and aNET in blue harboring mutation and the dN/dS and/or GISTIC2 support, per analysis.
e Presence of chromothripsis; aNEN with chromothripsis are shown in pink. f Presence of kataegis; aNEN with ≥1 kataegis events are shown in red. g Status
of homologous recombination deficiency (HRD), as determined by CHORD; aNEN with BRCA1/2-associated HRD are shown in pink. h Differentiation grade
of the aNEN; aNEC in red, aNET in blue. i Primary localization of the aNEN. j Origin of the respective pathological record used to determine differentiation
grade and proliferation index. k Differentiation grade based on the pathological record: 1 (sky-blue), 1-2 (teal), 2 (dark blue), 2–3 (orange), 3 (red), atypical
carcinoid (green) and not available (N/A; white). l Proliferation index (KI67/MIB-1) from 0 to 100 based on the pathological record.
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We observed an overall heterogeneous pattern of putative
drivers, the most frequently putative driver was found to be
CDKN2A/B (n= 17; 14), followed by TP53 (n= 17), CDKN1B
(n= 11), PTPRD (n= 11), KRAS (n= 11), MEN1 (n= 11) and
RB1 (n= 11). Strikingly, a significant portion of the total aNEN
cohort had no mutual putative driver(s) (9 out of 85; 11%) and
only contained patient-specific putative drivers.

We next investigated whether any form of mutational
enrichment, such as somatic alterations within certain genes
(mutations and/or copy-number alterations) or evidence of large-
scale events (kataegis and chromothripsis), could be related to
one of our three major subgroups relating to subtype or primary
localization; being aNEC (n= 16), pancreas- (n= 20), and
midgut-derived aNET (n= 39). Using a one-sided Fisher’s exact
test (with Benjamini–Hochberg correction) on relevant genes
(n= 20) captured within either within our dN/dS and GISTIC2
analysis or present as mutant genes with either mutations or
copy-number alterations within 20% of each major subgroup, we
detected the enrichment of at least one such event(s) within these
subgroups (Supplementary Fig. 8e).

Within aNEC, an enrichment of alterations within TP53 (88%
of aNEC), KRAS (50%), RB1 (50%), CSMD3 (44%), APC (31%),
CSMD1 (31%), LRATD2 (31%), PCAT1/MYC (31%), TRRAP
(25%), and presence of kataegis (31%) and chromothripsis (25%)
could be appreciated (q ≤ 0.05). Likewise, within pancreas-derived
aNET, an enrichment was seen for MEN1 (40% of pancreas-
derived aNET), DAXX (25%), DMD (25%), SETD2 (25%), ATRX
(20%) and CREBBP (20%) whilst midgut-derived aNET revealed
enrichment of CDKN1B alterations (23% of midgut-
derived aNET).

Genomic differences relating to primary localization of aNET.
Due to distinct prognosis and previous genetic associations, we
investigated genome-wide differences in regards to primary
localization within the aNET population (n= 69). We observed
several genome-wide differences relating to primary localization
(Fig. 2, Supplementary Fig. 8), such as the median genome-wide
TMB; ranging from 1.05 (aNET-Midgut; Q1–Q3: 0.75–1.4) and
1.07 (aNET - Unknown; Q1–Q3: 0.84–1.53) to 1.27 (aNET -
Other; Q1–Q3: 1.10–1.44) and 1.35 (aNET-Pancreas; Q1–Q3:
0.9–2.12). A similar pattern was detected regarding the number of
distinct genes with coding mutations. Midgut-derived aNET also
presented a surprisingly low number of SVs compared to the
other aNET subpopulations.

Next, we investigated possible differences in putative drivers
between our major aNET subpopulations, being midgut- (n= 39)
and pancreas-derived (n= 20) aNET (Fig. 4, Supplementary
Fig. 8). The copy-number profiles (GISTIC2) of both populations
differed, in which midgut-derived aNET presented focal deletion
peaks at 9p21 (CDKN2A/B), 11q23 (7 possible driver genes),
12p13 (CDKN1B), 13q14 (17 genes), 14q24 (20 genes) and 16q23
(5 possible driver genes; common fragile site) coupled with an
overall flat diploid profile. Pancreas-derived aNET presented a
different profile harboring focal deletion peaks at 2q37
(LINC01881), 9p21 (CDKN2A/B) and Xp21 (DMD; common
fragile site gene) couples with a more instable genomic profile,
including several samples with large-scale chromosomal losses
(Supplementary Figs. 7 and. 8c). When investigating the
statistically significant large-scale copy-number alterations of
the chromosomal arms, we also detect striking differences
between the major subgroups (Supplementary Fig. 9). Within
aNEC, we detected a large number of samples (69%) harboring a
loss of 22q. Midgut-derived aNET revealed amplifications of
chromosome 4p/q, 5p/q, 7p/q, 10p/q, 14p/q, 20p/q and loss of 9p/q in
various samples (~30%) and a loss of 18p/q in 66% of samples.

This re-confirms the high frequency of chromosome 18 loss in
midgut-derived NET and the association with DDC47, as DCC
(18q21.2) is the most recurrently mutated gene on chromosome 18
in our cohort also (n= 6) together with CDH7 (n= 6; 18q22.1).
Finally, over half of pancreas-derived aNET revealed amplifica-
tions of chromosome 5p/q, 7p/q, 9q, 12p/q, 13q, 14p/q, 17p/q, 18p/q,
19p/q, 20p/q and loss of 22q.

Unbiased driver gene analysis (dN/dS) on midgut-derived
aNET presented CDKN1B whilst pancreas-derived aNET revealed
MEN1, DAXX, and SETD2. Several genes (present in ≥2 samples)
were found only, or predominately, within midgut-derived aNET:
CDKN1B, KMT2A, PSIP1, and PTPRD (Fig. 4; Supplementary
Fig. 8e). Conversely, MEN1, DAXX, DMD, SETD2, ATRX,
CREBBP, DST, KDR, PTPRC, and TSC2 were found to be
mutated only within pancreas-derived aNET. Several midgut-
derived aNET (n= 9; 23%) did not readily present a shared
mutual driver and only harbored somatic mutations in private or
as-of-yet unassociated cancer driver genes.

Clinically actionable mutations. We observed forty-two aNEN
(49%) harboring one or more target-specific or general somatic
aberrations which are known as possible (and responsive) drug-
gable targets against currently available (or under development)
treatment agents. Twenty-one aNEN (24%) harbored somatic
aberrations corresponding to a treatment that is currently regis-
tered for NEN or specifically for the NEN subtype of that parti-
cular patient (Fig. 5, Supplementary data 1). In addition, 14
patients (16%) could benefit from therapies that are off-label, but
are commonly considered best practice for NEN. Another seven
patients (8%) could benefit from drugs which are registered for
another indication but not currently administered in NEN
treatment. We found RB1 (n= 11), KRAS (n= 11), MTAP
(n= 8), high-TMB ( ≥ 10; n= 5), RICTOR (n= 4), and TP53
(n= 4) to be the most frequently observed (target-specific or
general) somatic aberrations which granted eligibility to various
possible treatment options. In total, 10 midgut-derived aNET
(26%) and 11 pancreas-derived aNET (55%) revealed potentially
responsive alterations in various genes and most strikingly,
almost all aNEC (94%) revealed potential responsive targets due
to RB1 and/or KRAS mutations or toward checkpoint inhibitors
due to high TMB (≥10).

Discussion
Historically, NEN has long been considered as a difficult malig-
nancy to diagnose, monitor, and treat due to presentation of an
inherently wide spectrum of disease progression, cellular differ-
entiation and low mutational burden, resulting in few targetable
mutations and a relatively stable tumor genome. Indeed, aNET is
characterized by the lowest TMB of all metastatic cohorts
sequenced in the CPCT-02 study27. This study is the first to have
an in-depth look into the whole genome and mutations of a large
cohort of 85 advanced NEN from various primary localizations
and differentiation grades. The relatively large number of
unknown primary tumor localizations in this aNEN cohort
(n= 12; 14%) reflects the difficulties in daily clinical practice to
determine the site of origin for aNEN. Recently, we have become
more aware of the phenomena of trans-differentiation, in which a
NEC arises within a pre-existing adenocarcinoma of for instance
the lung or prostate. However, in the six aNEC patients with an
unknown primary tumor, no molecular clues, such as TMPRSS2-
ERG fusions were found pointing to a specific tissue of origin.

In our aNEN cohort, it is apparent that the molecular land-
scape of aNEC is markedly dissimilar from that of the more
differentiated aNET, in terms of mutational burden (median
TMB of 5.45 vs. 1.09, respectively), genomic stability, and distinct
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Fig. 4 Putative drivers and NEN-associated genes within the pancreas- and midgut-derived aNET as detected by unbiased discovery (dN/dS,
GISTIC2) and literature. Overview of putative drivers harboring coding mutations within at least two pancreas- and/or midgut-derived aNET. We show
putative drivers as detected by subgroup-specific dN/dS and/or GISTIC2 and supplemented this list with additional NEN-associated drivers. aNET and
genes are sorted based on mutually exclusivity of the depicted putative drivers. Same layout as Fig. 3, except the adjacent middle-outer bar (in d) depicts
the percentage of pancreas-derived m(NET) in green and midgut-derived aNET in blue. In addition, genes found to be mutually exclusive between our
major subgroups are highlighted in the respective color of the enriched subgroup (aNET-Pancreas (green and aNET-Midgut (blue); Supplementary Fig. 8e).
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mutant (driver) genes. With respect to TMB, four aNEC and a
single aNET presented a high-TMB genotype (TMB ≥ 10) which
could render these patients eligible for immune-based therapies
such as checkpoint inhibitors48,49.

The single high-TMB pancreas-derived aNET presented a
striking contribution of the mutational signature associated with
alkylating agents (temozolomide) and was previously treated with
a combination of 5-fluorouracil and the alkylating antineoplastic
agent streptozotocin. The mechanism of action for streptozocin
closely resembles that of temozolomide as both react with DNA
by undergoing substitution reactions forming a methyldiazonium
ion, resulting in methylation of primarily N7 guanine (67%). They
both induce high levels of DNA methylation, and recognition and
repair of this methylation results in single- and double-strand
DNA breaks50. To the best of our knowledge, no data have been
published on a correlation between hypermutation and strepto-
zocin treatment, but as streptozocin and temozolomide so closely
resemble each other in their mechanism of action, one can
hypothesize the same mechanism to occur in streptozocin-treated
patients. It would be interesting to investigate whether prior
treatment with streptozocin or temozolomide indeed induces
high-TMB in aNEN, and if so, whether pre-treatment with
streptozocin or temozolomide could render these tumors more
sensitive to checkpoint inhibition. Likewise, temozolomide (with
capecitabine) for advanced pancreatic NETs has shown to be an
effective therapy for these patients51. Similarly, we observed a
large contribution of the mutational signature associated with
BER deficiency due toMUTYH aberrations in the second highest-
TMB aNET, and indeed this patient harbored a pathogenic
germline MUTYH allele coupled with a complete somatic loss of
the respective chromosomal arm. MUTYH abnormalities have
also previously described to occur in pancreatic NET5. A single

aNET presented a BRCA2-genotype associated with HRD but did
not harbor (somatic) mutations within BRCA2. It did harbor a
somatic mutation in RAD51C, a gene known to be involved with
homologous recombination and repair of DNA.

Concerning genomic stability, we observed evidence of chro-
mothripsis, a large-scale and catastrophic chromosomal rear-
rangement, within six aNEN (four aNEC, two aNET). Strikingly,
four out of six chromothripsis events occurred on chromosome
12. In addition, we observe the first occurrence of localized
hypermutation (kataegis) in five aNEC. Kataegis encompasses a
pattern of localized hypermutations, which has been identified in
various, but not all and to a varying degree, cancer types52,53.
These regions of kataegis often co-localize with regions of genetic
rearrangements. Kataegis is thought to arise from frequent
genomic C-to-U deamination events as a result of APOBEC-
family enzyme activity, a DNA cytosine deaminase which was
recently identified as an internal and thus far unrecognized source
of DNA damage and mutagenesis in various cancer types54. More
recently, kataegis, rather than TMB, microsatellite instability or
mismatch repair deficiency, was found to independently correlate
with PD-L1/PD-L2 expression, and could thus be a marker in
response to immune checkpoint inhibition55.

Using unbiased driver gene analysis (dN/dS and GISTIC2) on
the aNEN cohort, and on aNEC/aNEC separately to explore
putative driver genes, we (re-)discovered 10 genes to be enriched
with non-synonymous mutations (TP53, CDKN1B, KRAS,MEN1,
RB1, CREBBP, APC, DAXX, LPCAT2, and SETD2) and detected
18 focal deletion and 2 focal amplification peaks overlapping with
a plethora of (driver) genes, including deletions of TP53,
CDKN2A, CDKN2B, CDKN1B, PTPRD, CBFA2T3, CAMTA1,
ANKDR11, LINC00881, PRKN, ZNF407 and fragile site genes
FHIT, DMD and MACROD2, and amplifications of PCAT1/MYC

Fig. 5 Clinically actionable somatic alterations observed within aNEN. a Overview of distinct aNEN harboring current clinically actionable alterations for
on- and off-label NEN therapies. The highest NEN-therapy option (ranked as on-label NEN subtype (green), on-label NEN (dark blue), off-label for NEN
(pink), off-label for other cancer types but currently available (orange) and drugs in development (turquoise) per distinct aNEN is shown. b aNEN harboring
current clinically actionable alterations, per gene. Full description: aNEN harboring current clinically actionable alterations, per gene. The highest NET-
therapy option per aNEN and gene is shown. Bottom track represents the categorized primary localization of the aNEN (aNEC in red, midgut-derived aNET
in blue, non-midgut/pancreas-derived aNET in orange, pancreas-derived aNET in green and aNET of unknown origin in black) whilst the right-hand side
figure shown the number of samples harboring a somatic alteration within the given gene and the proposed level of therapy.
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and MDM2. Investigation of mutational enrichment within our
major subgroups revealed that somatic alterations in TP53, KRAS,
RB1, CSMD3, CSMD1, MYC, APC, LRATD2, and TRRAP, as well
as the presence of chromothripsis and kataegis was enriched
within aNEC. Within pancreas-derived aNET, we report the
enriched presence of mutant MEN1, DAXX, DMD, SETD2,
ATRX, and CREBBP, whilst midgut-derived aNET showed pre-
ference for CDKN1B alterations.

As previously mentioned, the majority of these detected
somatic aberrations have been previously associated to primary
NEN in regards to their tissue of origin. These include
the associations with midgut-derived NET (CDKN1B)10,13, lung
NET (FHIT)56–58, pNET (TP53, MEN1, ATRX, DAXX and
SETD2)3–5,7,15 and NEC (TP53, KRAS, MYC, APC and RB1,
and chromothripsis)17,18,59,60. Aberrations within CDKN2A and
CDKN2B have been associated to gastro-intestinal NETs61,62 and
have been observed with increased mutational frequency within
metastatic pNET compared to primary pNET and is associated to
poor prognosis63.

A recent large-scale study utilizing organoids derived from
gastroenteropancreatic neuroendocrine (GEP) neoplasms also
revealed similar genomic landscapes and (mutually exclusive)
enrichment for drivers such as TP53, RB1, APC, and MYC within
NEC for GEP-NEN organoids and chromosome-wide loss of
heterozygosity within both NET and NEC tissues64. Con-
cordantly, mutational enrichment of drivers within one popula-
tion (i.e. pancreas-derived NET) does not imply exclusivity; e.g.,
MEN1 aberrations were also found to be (sporadically) present
within GEP-NECs and within a single NEC of our cohort.

Other frequently altered genes within our aNEN cohort
are associated with various other malignancies (PTPRD56,
CBFA2T365, ANKRD1166–68, and MDM269) or genomic
instability (DMD and PRKN57, MACROD2)70. In particular,
CSMD1 and CSMD3 (CUB And Sushi Multiple Domains 1 and 3)
were found almost exclusively mutated within aNEC (31% and
44% of aNEC, respectively) yet have not previously obtained
much attention in context to aNEC. CSMD1, a regulator of
complement activation and inflammation, has been proposed as a
tumor suppressor gene in advanced oral, gastric, prostate and
breast cancer and subsequent loss of CSMD1 functionality is
associated to poor prognosis and enhanced proliferation, migra-
tion and invasion71–74. Moreover, CSMD3 is reported as fre-
quently mutated in lung cancers and associated with proliferation
of airway epithelial cells75 and has been recently also reported as
enriched within NEC compared to NET76. Taken together, this
prompts further investigation for CSMD1 and CSMD3 as aNEC-
related drivers.

Currently, the choice of treatment in an individual aNEN
patient is, apart from factors such as comorbidity and patient
preference, determined by primary tumor localization, prolifera-
tion index (as determined by Ki-67 or MIB-1 staining), and
somatostatin expression. The distinction based on primary tumor
localization stems from the different embryologic structures the
tumor can originate from, e.g. foregut, midgut or hindgut. When
comparing the various origins of the aNEN at a genomic level, we
conclude that aNEN harbors a strikingly low TMB compared to
cancers29, yet do observe slight deviations on total TMB; ranging
from 1.05 (aNET-midgut; Q1–Q3: 0.75–1.4) and 1.07 (aNET—
unknown; Q1-Q3: 0.84–1.53) to 1.27 (aNET—other; Q1–Q3:
1.10–1.44) and 1.35 (aNET-Pancreas; Q1–Q3: 0.9–2.12) to 5.45
(aNEC; Q–Q3: 3.8–8.85). In addition, when we compared the two
largest groups of aNET per primary localization (midgut and
pancreas), we can readily distinguish between the two subtypes
based on somatic mutation and copy-number profiles. Yet
strikingly, many midgut-derived aNET (n= 9; 23%) did not
present a mutual driver gene but each was characterized by

distinct sets of mutated genes reflecting the heterogenous nature
of the malignancy.

Almost half of aNEN (n= 42; 49%) harbored a specific
genomic alteration or genotype for which an FDA-approved drug
is currently available, either on (registered for that indication) or
off label. Thus, WEG revealed 49% of aNEN patients harboring
clinically relevant and potentially targetable somatic aberrations
which could possibly extend their treatment repertoire. It should
be noted that we do not yet know whether these identified
associations between genomic alterations and specific drugs
indeed translate into clinical response in these patients. However,
for instance, when looking at TMB as a predictive factor for
checkpoint inhibitors, it was recently shown that TMB-high
aNEC can respond to pembrolizumab77. These drugs are cur-
rently not readily available for these patients, but could provide
new treatment options in the future. When deciding upon a new
line of systemic treatment, a metastatic biopsy could always be
considered, preferably in the context of a study, as this could shed
light upon additional and effective treatment options for these
late-stage patients with otherwise few remaining treatment
options. In the Netherlands, we have the DRUP study active, a
study in which patients for whom no standard treatments are
currently available and whom might be treated with anticancer
treatments outside of their approved label based on the presence
of actionable mutations in their tumors28.

In this current study exploring the largest whole-genome
sequenced aNEN repository to date (n= 85), we focused on the
genetic aberrations driving aNEN and analyzed several additional
aspects of genomic instability, such as SVs, kataegis, chromo-
thripsis, and HRD. This study improves our understanding of the
complex molecular makeup of (m)NEN and reveals that the
underlying genomic alterations could be exploited for better
distinction of tumor subgroups and new treatment options. This
study furthermore underscores that whilst the number of genetic
aberrations is increased27, the inventory of somatic drivers does
not significantly change between primary and metastatic NEN.
The major advantages of characterizing the genomic landscape of
metastatic NEN lie within the identification of potentially
actionable targets and treatment-induced (resistance-)mechan-
isms within the late-stage disease.

In addition, the recent major collaborative efforts in acquiring,
(whole-genome) sequencing and releasing several large-scale pan-
cancer datasets comprising both primary and metastatic malig-
nancies, such as the PCAWG78 and CPCT-0227, could spark
insights and the development of methods on how to fully inter-
rogate and map the whole tumor genome, including the still
relatively unexplored non-coding regions. This could deduce new
shared oncogenic mechanisms but also, by contrast, reveal driving
forces unique to (m)NEN. Within this presented aNEN reposi-
tory, the full range of the somatic principles driving this enig-
matic disease are likely still hidden from us but ever-present.

Methods
Patient cohort and study procedures. Patients with aNEN were recruited under
the study protocol (CPCT-02 Biopsy Protocol, ClinicalTrial.gov no. NCT01855477;
Suppl. Note 1) of the Center for Personalized Cancer Treatment (CPCT) within the
CPCT-02 and the DRUP (The Drug Rediscovery Protocol (DRUP Trial), Clin-
icalTrial.gov no. NCT02925234) studies. All analyzed biopsies were taken prior to
treatment within the DRUP trial. The CPCT-02 (NCT01855477) and DRUP
(NCT02925234) clinical studies were approved by the medical ethical committees
of the University Medical Center Utrecht and the Netherlands Cancer Institute,
respectively. Patients were eligible for inclusion if the following criteria were met:
(1) age ≥18 years; (2) locally advanced or metastatic solid tumor; (3) indication for
new line of systemic treatment with registered anticancer agents; (4) safe biopsy
according to the intervening physician. All patients have given explicit consent for
WEG and data sharing for cancer research purposes. The study procedures con-
sisted of the collection of matched peripheral blood samples for reference DNA
and image-guided percutaneous biopsy of the preferred metastatic site or, if no
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high-quality metastatic biopsy was available, a biopsy of the primary tumor site was
collected. For the current study, patients were included for biopsy between May 10,
2016 and July 17, 2018 resulting in a cohort of 85 distinct patients from 13 Dutch
hospitals (Supplementary data 1).

Collection of the pathological records and generalization of pre-treatment(s).
Primary tumor characteristics of the 85 included aNEN patients were checked
within the nationwide network and registry of histo- and cytopathology in the
Netherlands (PALGA)79.

From PALGA, we collected the differentiation grade and proliferation index
(Ki67/MIB-1) based on the pathological records of the patient-specific primary
and/or any metastatic lesion. If more than one pathological report was available, we
chose to include the report most close in date, but always prior to, the biopsy for
the CPCT-02 study.

The pre-treatment(s) of aNEN patients prior to the collection and sequencing of
the tumor biopsy has been collected and generalized on treatment classification.
Out of all included aNEN patients (n= 85), 26 patients received pre-treatment
according to our clinical records.

Collection, sequencing, and processing of aNEN biopsies. Blood samples were
collected in CellSave preservative tubes (Menarini-Silicon Biosystems, Huntington
Valley, PA, USA) and shipped by room temperature to the central sequencing
facility at the Hartwig Medical Foundation. Tumor samples were fresh-frozen in
liquid nitrogen directly after the procedure and send to a central pathology tissue
facility. Tumor cellularity was estimated by assessing a hematoxylin-eosin stained
6-micron section. Subsequently, 25 sections of 20 microns were collected for DNA
isolation. DNA was isolated with an automated workflow (QiaSymphony) using
the DSP DNA Midi kit for blood and QiaSymphony DSP DNA Mini kit for tumor
samples according to the manufacturer’s protocol (Qiagen). DNA concentration
was measured by Qubit™ fluorometric quantitation (Invitrogen, Life Technologies,
Carlsbad, CA, USA). DNA libraries for Illumina sequencing were generated from
50–100 ng of genomic DNA using standard protocols (Illumina, San Diego, CA,
USA) and subsequently whole-genome sequenced in a HiSeq X Ten system using
the paired-end sequencing protocol (2 × 150bp) for both the biopsy and matched
blood sample.

Subsequent alignment, somatic mutation detection, and in silico tumor cell
percentage estimation were performed in a uniform manner as detailed by Priestley
et al.27. Briefly, paired-end sequencing reads were aligned against the human
reference genome (GRCh37) using BWA-mem (v0.7.5a)80. Duplicate reads were
marked and small insertion and deletions (InDels) were realigned using GATK
IndelRealigner (v3.4.46). Prior to somatic SNV and InDel variant calling, base
qualities were recalibrated using GATK BQSR (v3.4.46)81. Somatic SNV, InDels,
and MNV were called by Strelka (v1.0.14) using the matched peripheral blood
WGS sample for matched-normal variant calling82.

Additional in-depth settings and optimizations of the HMF pipeline are
described by Priestley et al.27 and tools are available at https://github.com/
hartwigmedical/.

The somatic mutations (SNV, InDels, and MNV) were further annotated with
Ensembl Variant Effect Predictor83 (VEP, version 99, cache 99_GRCh37) using
GENCODE (v33) annotations in tandem with the dbNSFP84 plugin (version 3.5,
hg19) for gnomAD85 population frequencies. SIFT86 and PolyPhen-287 scoring was
applied for additional functional effect prediction.

During downstream analysis, we only retained SNV, InDels, and MNV which
passed all of the following heuristic filters; default Strelka filters (PASS-only),
gnomAD exome (ALL) allele frequency <0.001, gnomAD genome (ALL) <0.005,
not present in ≥5 samples from the Hartwig Medical Foundation germline panel-
of-normals (GATK Haplotyper) and not present in ≥3 samples from the Hartwig
Medical Foundation Strelka-specific somatic blacklist.

Putative protein-altering (coding) or high-impact (e.g., splicing) mutations were
aggregated per sample and gene by selecting the most deleterious annotated effect
(from VEP) on any known overlapping gene-wise transcript (except those
transcripts flagged as retained intron and nonsense-mediated decay). In addition,
SVs with a Tumor Allele Frequency (TAF) ≥ 0.1, as calculated by PURPLE and
GRIDSS88, that overlapped only partly with the respective coding sequences (i.e.,
not all exons of the respective gene), were annotated as ‘SV’ mutations. Multiple
coding mutations and/or SV per gene were annotated as ‘multiple mutations’.

Discovery of somatic SVs, copy-number alterations, and in-frame fusions of
EWSR1 was performed using the GRIDDS (v2.9.3), PURPLE (v2.47) and LINX
(v2.47) suite88. During the downstream analyses, we only retained somatic SVs
passing all default QC filters (PASS-only) and with an upstream and/or
downstream TAF ≥ 0.1.

Mean read coverages of the reference and tumor samples were calculated using
Picard Tools (v1.141; CollectWgsMetrics) based on GRCh3789. Genomic and
coding TMB was calculated as previously described by van Dessel et al. (2019)90.
Briefly, the number of somatic mutations (SNVs, InDels and MNVs) was divided
over the total mappable bases and the superset of coding sequences, respectively.

Discovery of genes under evolutionary selection. We performed a dN/dS ana-
lysis on somatic mutations (SNV and InDels) using dndscv46 (v0.0.1.0) on

respective genome sequences and transcript annotations using a custom transcript
database based on ENSEMBL91 Genes (v99)/GENCODE (v33) annotations. We
performed a dN/dS analysis over the entire NEN cohort (n= 85) and four separate
dN/dS analysis on the major subgroups (aNEC; n= 16, NET; n= 69, aNET-midgut;
n= 39 and aNET-pancreas; n= 20). Genes-of-interest were selected based on the
statistical significance, corrected for multiple hypothesis testing (Benjamini-Hoch-
berg), which integrated all mutation types (missense, nonsense, essential splice-site
mutations and InDels; qglobal_cv ≤ 0.1) and/or without InDels (qallsubs_cv ≤ 0.1).

Detection and annotation of recurrent copy-number alterations. To detect
recurrent copy-number alterations, we performed a GISTIC245 (v2.0.23) analysis
over the entire aNEN cohort and, again, four separate GISTIC2 analysis on the
major subgroups (aNEC, aNET and pancreas- and midgut-derived aNET).

GISTIC2 was performed using the following settings:
gistic2 -b <inputFolder> -seg <inputSegmentation> -refgene hg19.UCSC.

add_miR.140312.refgene.mat -genegistic 1 -gcm extreme -maxseg 4000 -broad 1
-brlen 0.98 -conf 0.95 -rx 0 -cap 3 -saveseg 0 -armpeel 1 -smallmem 0 -res 0.01 -ta
0.1 -td 0.1 -savedata 0 -savegene 1 -qvt 0.1.

Genes were annotated to GISTIC2 peaks (q ≤ 0.1) based on the following
strategy;

(1) GISTIC2 focal peaks (all_lesions.conf_95.txt) were overlapped to genes
(from verified and manually annotated loci, no pseudogenes or read-
throughs and from standard chromosomes; n= 36574) from GENCODE
(GRCh37; v33), taking into consideration only the genes overlapping with at
least 100 base pairs within the detected GISTIC2 peak.

(2) If a GISTIC2 focal peak overlapped with multiple GENCODE genes, a
combined database containing known drivers detected in a metastatic pan-
cancer dataset (CPCT-02)27, COSMIC Cancer Gene Census (v85)92,
OncoKB Cancer Gene Census (June 2019)93 Martincorena et al.46, and
Priestley et al.27 were used to further pinpoint the possible target gene(s)
(n= 1272), e.g., if a GISTIC2 peak overlapped both PTEN and near-adjacent
non-driver gene, only PTEN would be chosen as possible gene. The list of all
overlapping GENCODE94 (v33) genes per GISTIC2 peak can be found in
Supplementary data 1.

(3) If no overlapping genes were found, GISTIC2 peaks were annotated with the
nearest GENCODE (v33) protein-coding gene (n= 19,988).

Genes detected as deep amplifications or deep deletions within GISTIC2 focal
peaks were considered as GISTIC2-derived driver genes in this cohort.

Mutational signature analysis. Mutational signatures based on the trinucleotide
contexts of SNVs were performed, using the MutationalPatterns package (1.10.0)95

and as previously described90. The 96 SBS mutational signatures (COSMIC v3) as
established by Alexandrov et al. (2019)42, (matrix Sij; i= 96; number of trinu-
cleotide motifs; j= number of signatures) were downloaded from COSMIC (as
deposited on May 2019). The proposed etiology of each SBS signature was derived
from Alexandrov et al. (2019)29, Petljak et al.42, Angus et al.19 and Christensen
et al. (2019)96.

In addition, de novo mutational signature analysis by MutationalPatterns was
performed based on the max. number of relevant signatures as assessed using the
NMF R package97 (v0.21.0) with 1000 iterations (Supplementary Fig. 6d). By
comparing the cophenetic correlation coefficient, residual sum of squares and
silhouette, we opted to generate seven custom de novo signatures. Custom
signatures were correlated to existing (COSMIC v3) mutational signatures using
cosine similarity.

Per sample, mutational signatures with less than five percent relative
contribution were categorized into the “Filtered (<5%)” category.

Detection of chromothripsis. Shatterseek35 (v0.4) using default parameters was
used to detect chromothripsis-like events. As input, we used the rounded absolute
copy numbers (as derived by PURPLE) and SVs with an TAF ≥ 0.1 at either end of
the breakpoint. The male sex chromosome (chrY) was excluded. The criteria for a
chromothripsis-like event were based on the following criteria: (a) total number of
intra-chromosomal SVs involved in the event ≥25; (b) max. number of oscillating
CN segments (2 states) ≥7 or max. number of oscillating CN segments (3 states)
≥14; (c) total size of chromothripsis event ≥20 megabase pairs (Mbp); (d) satisfying
the test of equal distribution of SV types (p > 0.05); and (e) satisfying the test of
non-random SV distribution within the cluster region or chromosome (p ≤ 0.05).

Classification of homologous recombination deficiency genotypes. To deter-
mine HRD due to possible loss of function of BRCA1 and/or BRCA2 (amongst
others), we utilized the Classifier for HRD with default settings (CHORD; v2.0).
CHORD uses a random-forest approach to classify samples into HR-deficient/HR-
proficient categories31. Briefly, we make use of CHORD;31 a random-forest-based
classifier designed to classify samples with evidence of HRD (BRCA1-type, BRCA2-
type or otherwise) by using all the information captured within all the somatic
small mutations and somatic SVs of whole-genome sequenced samples. If a sample
contains sufficient HRD-related genomic scars (SVs) and additional markers for
HRD, that sample will be classified as HR-deficient (HRD).
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Detecting enrichment of mutant genes within major subgroups. To determine
the enrichment of mutant genes within our major subgroups (aNEC, midgut- and
pancreas-derived aNET), we generated a list of potential driver genes based on
captured genes through our dN/dS (q ≤ 0.1) analysis and/or present within the focal
amplification and deletion peaks captured by GISTIC2. We extended this list by
selecting genes which contained a coding mutation in ≥20% of a respective sub-
group or which harbored a deep amplification or deletion in ≥20% of the respective
subgroup (i.e., 20% of the respective subgroup contained coding mutations and/or
≥20% contained a copy-number alteration, irrespective of coding mutation). Using
this list of genes (n= 20), we performed a one-sided (enrichment) Fisher’s exact
test with Benjamini–Hochberg correction between each pairwise comparison per
major subgroup against the remaining major subgroups (e.g., aNEC vs. the com-
bined group of midgut- and pancreas-derived aNET).

Inventory of clinically actionable somatic alterations and putative therapeutic
targets. Current clinical relevance of somatic alterations in relation to putative
treatment options or resistance mechanisms and trial eligibility was determined
based upon the following databases; CiViC98 (Nov. 2018), OncoKB93 (Nov. 2018),
CGI99 (Nov. 2018) and the iClusion (Dutch) clinical-trial database (Dec. 2020)
from iClusion (Rotterdam, the Netherlands). The databases were aggregated and
harmonized using the HMF knowledgebase-importer (v1.7). This list was manually
corrected for discrepancies and subsequently, we curated the linked putative
treatments for current on- and off-label aNEN and aNEN-subtype treatment
options, as defined within the Netherlands by the Dutch Medicines Evaluation
Board (“College ter Beoordeling van Geneesmiddelen; CBG)100.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The WGS and corresponding clinical data used in this study was made available by the
Hartwig Medical Foundation (Dutch nonprofit biobank organization) after signing a license
agreement stating data cannot be made publicly available via third-party organizations.
Therefore, the data are available under restricted access and can be requested upon by
contacting the Hartwig Medical Foundation (https://www.hartwigmedicalfoundation.nl/
applying-for-data/) under the accession code DR-03627. Within this manuscript, we
furthermore made use of the actionable gene-variant and associated drug databases of
CiViC (01-Nov-2018; https://civicdb.org/downloads/01-Nov-2018/01-Nov-2018-Clinical
EvidenceSummaries.tsv), OncoKB (Nov. 2018; https://www.oncokb.org/actionableGenes),
CGI (Nov. 2018; https://www.cancergenomeinterpreter.org/biomarkers) and the iClusion
(Dutch) clinical trial database (Dec. 2020) from iClusion (Rotterdam, the Netherlands;
Suppl. Data 1). The remaining data are available within the Article, Supplementary
Information or available from the authors upon request.

Code availability
Next to the initial processing workflows and software which are available at https://
github.com/hartwigmedical/, any additional custom code and scripts used within this
study (processing, analysis, and visualization) have been deposited on Bitbucket under
the GPL-3.0 License: https://bitbucket.org/ccbc/dr-036_anen/.
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