Table 2.
DREAM 4 dataset benchmark.
GRN inference method | Net1 | Net2 | Net3 | Net 4 | Net 5 | Score | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
AUROC | AUPR | AUROC | AUPR | AUROC | AUPR | AUROC | AUPR | AUROC | AUPR | ||
KBoost (2020) | 0.74 | 0.15 | 0.85 | 0.31 | 0.84 | 0.25 | 0.82 | 0.27 | 0.85 | 0.32 | 55.93 |
GRNBoost2 (2019) | 0.64 | 0.08 | 0.65 | 0.10 | 0.70 | 0.17 | 0.69 | 0.14 | 0.72 | 0.11 | 20.78 |
PLSNET (2016) | 0.70 | 0.13 | 0.83 | 0.28 | 0.79 | 0.21 | 0.82 | 0.21 | 0.78 | 0.18 | 49.08 |
ENNET (2013) | 0.73 | 0.17 | 0.81 | 0.26 | 0.81 | 0.29 | 0.82 | 0.29 | 0.82 | 0.28 | 52.66 |
TIGRESS (2012) | 0.61 | 0.06 | 0.60 | 0.08 | 0.60 | 0.06 | 0.69 | 0.09 | 0.67 | 0.11 | 12.66 |
GENIE3 (2010)a | 0.75 | 0.16 | 0.73 | 0.16 | 0.78 | 0.23 | 0.79 | 0.21 | 0.80 | 0.20 | 37.72 |
aWinner of the DREAM 4 challenge which included 11 algorithms.
The best performance in each column is in bold.