Table 4.
Results summary of running time and performance.
GRN inference method | IRMA on | IRMA off | Total running time (mins) | DREAM 4 M challenge | Total running time (mins) | DREAM 5 | Total running time (mins) | ||
---|---|---|---|---|---|---|---|---|---|
AUROC | AUPR | AUROC | AUPR | ||||||
KBoost (Matlab, 2020) | 0.67 | 0.31 | 0.83 | 0.52 | 0.001 | 55.93 | 0.025 | > 300 | 8.6 |
GRNBoost2 (Python, 2019) | 0.58 | 0.21 | 0.63 | 0.29 | 0.12 | 20.78 | 0.42 | 54.30 | 68.48 |
PLSNET (Matlab, 2016) | 0.74 | 0.34 | 0.76 | 0.51 | 0.02 | 49.08 | 1.63 | 37.03 | 141.36 |
ENNET (R, 2013) | 0.56 | 0.25 | 0.82 | 0.49 | 0.001 | 52.66 | 0.86 | > 300 | 382.46 |
TIGRESS (Matlab, 2012) | 0.61 | 0.28 | 0.71 | 0.39 | 0.06 | 12.66 | 0.65 | 22.63 | 455.77 |
GENIE3 (Matlab, 2010) | 0.67 | 0.30 | 0.82 | 0.46 | 0.003 | 37.72 | 1.60 | 40.74 | 806.75 |
The best performance in each column is in bold.