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Summary
With the increasing availability of large-scale GWAS summary data on various complex traits and diseases, there have been tremen-

dous interests in applications of Mendelian randomization (MR) to investigate causal relationships between pairs of traits using

SNPs as instrumental variables (IVs) based on observational data. In spite of the potential significance of such applications, the val-

idity of their causal conclusions critically depends on some strong modeling assumptions required by MR, which may be violated

due to the widespread (horizontal) pleiotropy. Although many MR methods have been proposed recently to relax the assumptions

by mainly dealing with uncorrelated pleiotropy, only a few can handle correlated pleiotropy, in which some SNPs/IVs may be asso-

ciated with hidden confounders, such as some heritable factors shared by both traits. Here we propose a simple and effective

approach based on constrained maximum likelihood and model averaging, called cML-MA, applicable to GWAS summary data.

To deal with more challenging situations with many invalid IVs with only weak pleiotropic effects, we modify and improve it

with data perturbation. Extensive simulations demonstrated that the proposed methods could control the type I error rate better

while achieving higher power than other competitors. Applications to 48 risk factor-disease pairs based on large-scale GWAS sum-

mary data of 3 cardio-metabolic diseases (coronary artery disease, stroke, and type 2 diabetes), asthma, and 12 risk factors confirmed

its superior performance.
Introduction

Mendelian randomization (MR) has been widely applied to

assess causal relationships between pairs of complex traits

(called exposures and outcomes, respectively) using ge-

netic variants as instrumental variables (IVs) for observa-

tional data. The practice is not only motivated by funda-

mental scientific questions on causal relationships, but

also largely facilitated by recent advances in human ge-

netics with increasing availability of large-scale GWAS

summary data on various complex traits and of the

simplicity of such analyses. However, the validity of such

an analysis critically depends on the IV assumptions,

which are often violated due to the widespread genetic

(horizontal) pleiotropy, leading to biased inference and

false conclusions.1,2 The three assumptions on a valid IV,

as shown in Figure 1, are listed below:

(A1) The IV is associated with the exposure X; i.e., gis
0.

(A2) The IV is not associated with the outcome Y condi-

tional on the exposure X; i.e., ai ¼ 0.

(A3) The IV is not associated with unmeasured

confounder U; i.e., fi ¼ 0.

Among the three, the first assumption is more

straightforward to handle by using highly significant

SNPs as IVs. The violation of assumption A2 introduces
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so-called uncorrelated pleiotropic effects, for which

some MR methods, such as MR Egger regression,3,4

have been proposed and applied. The most challenging

is assumption A3, introducing so-called correlated pleio-

tropic effects. Under our general causal model as shown

in Figure 1, the total effects of IV gi on the outcome Y

can be decomposed into two parts: that mediated

through exposure X, bYi;M ¼ q$ðgi þbXU $fiÞ, and other

direct effect (not mediated through X), bYi;D ¼
ai þ bYU$fi. It is clear that, under the violation of

assumption A3, we have fis0, leading to the correlation

of the mediated and direct effects bYi;M and bYi;D, and

thus the violation of the instrument strength indepen-

dent of direct effect (InSIDE) assumption required by

MR-Egger regression and other methods (e.g., RAPS)5,6

that model the direct effects ai’s as independent random

effects; in turn, these methods have to impose that the

pleiotropic effect of any SNP must be uncorrelated

with its SNP-exposure association.

Here we propose a simple MR method based on con-

strained maximum likelihood and model averaging, de-

noted cML-MA, that is robust to the violation of both as-

sumptions A2 and A3; i.e., it is robust to invalid IVs with

uncorrelated or correlated pleiotropic effects. Table 1

compares our proposed cML-MA with some most popu-

lar and new methods that are all applicable to GWAS

summary data. Our method depends only on the ‘‘plural-

ity valid’’ assumption: in large samples, while (Wald)
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A B Figure 1. Causal model with exposure X
and outcome Y
(A) Three IV assumptions.
(B) A general causal model.
ratio estimates of the target causal effect from invalid IVs

will take different values, ratio estimates from all valid

IVs should approach the true causal effect and thus the

valid IVs form the largest group of SNPs among all the

groups giving different ratio estimates.7,8 This assump-

tion is weaker than the ‘‘majority valid’’ assumption,

which states that more than 50% of the SNPs being

used are valid IVs. It is noted that three new methods

with this or other weak assumptions, MR-Mix, MR-Con-

tMix, and CAUSE, impose a normal mixture model with

more unknown parameters to estimate, while our pro-

posed cML-MA does not impose such an assumption

and estimates only a minimum number of necessary pa-

rameters. It is well known that mixture models are statis-

tically difficult to estimate with small numbers of SNPs/

IVs. This brings up an important point: in addition to its

modeling assumptions, another key factor determining

the performance of a method is how it is implemented.

This point might explain why our cML-MA performed

better than MR-Mix, MR-ContMix, and CAUSE as to be

shown. Another example is the MR-Weighted-Mode

method: although it imposes minimum modeling as-

sumptions as cML-MA, it is difficult to estimate the

mode of a distribution with small numbers of SNPs/IVs,

leading to often its poor performance as shown by

others9,10 and to be confirmed later too. A similar argu-

ment in the discussion section will be made on the

advantage of our method over two other related ones,

MR-Lasso and MR-PRESSO: all three share the basic

idea of selecting/removing invalid IVs, but due to their

different implementations, they perform quite differ-

ently. As shown by previous studies,9–11 existing MR

methods may not perform well with inflated type I errors

and/or biased estimates, especially with a high propor-

tion of invalid IVs among a small number of SNPs,

prompting an urgent need for more robust and efficient

MR methods. Here we develop an efficient algorithm, an

effective model selection criterion, a model averaging

approach and its variant based on data perturbation

for such a purpose; our proposed cML-MA and its

data perturbation-based variant are simple and easy to

implement while imposing less stringent modeling as-

sumptions, and as to be shown, perform consistently

better than other methods across a wide range of

scenarios.
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Material and methods

Overview
Suppose that we havem independent SNPs,

g1;g2;/;gm, as IVs,X is the exposure, Y is the

outcome, and U is the hidden confounder.
Under the true causal model as shown in Figure 1, we obtain the

total effects of gi on X and on Y as bXi and bYi, respectively:

bXi ¼ gi þ bXU$fi;
bYi ¼ q$ðgi þ bXU$fiÞ þ ai þ bYU$fi ¼ q$bXi þ ri;

(Equation 1)

where ri ¼ ai þ bYU$fi represents the direct/pleiotropic effects of

IV gi on outcome Y, not mediated by exposure X. If gi is a valid

IV, IV assumptions A2 and A3 would imply ai ¼ 0 and fi ¼ 0,

respectively, leading to ri ¼ 0. For an invalid IV with ris0, its

(Wald) ratio is biased for q: bYi=bXisq. Our goal is for unbiased

inference of the causal effect q in the possible presence of some

(unknown) invalid IVs with the corresponding (unknown) ris0.

From two independent GWAS summary datasets for traits X

and Y, respectively, we obtain the estimated marginal effect sizes

of gi’s on X and Y (and their standard errors) as bbXiðbsXiÞ andbbYiðbsYiÞ, i ¼ 1;/;m. Asymptotically (or approximately) we havebbXi � NðbXi; bs2
XiÞ and bbYi � NðbYi; bs2

YiÞ for i ¼ 1;/;m. With Equa-

tion 1, we have the log-likelihood function (up to a constant) as

L

�
q; fbXi; rig;

�bbXi; bbYi; bs2
Xi; bs2

Yi

��
¼

� 1

2

Xm
i¼1

0BBB@
�bbXi � bXi

�2

bs2
Xi

þ

�bbYi � q$bXi � ri

�2

bs2
Yi

1CCCA; (Equation 2)

which, for simplicity, may be written as Lðq;fbXi; rigÞ. Throughout
we use fbXi; rig ¼ fðbXi; riÞ : i¼ 1;2;.;mg to represent a set of the

parameters, and similarly for fbbXi; bbYi; bs2
Xi; bs2

Yig. Under the

constraint that the number of the invalid IVs is K, a given integer,

we can obtain the constrained maximum likelihood estimate

(cMLE) bqðKÞ and its standard error SEðbqðKÞÞ. We prove that with

correctly selected valid IVs, the cMLE is consistent and asymptot-

ically normal. Accordingly, we can construct normal-based confi-

dence intervals (CIs) or conduct significance testing for q. In prac-

tice, since K is unknown, we propose a Bayesian information

criterion (BIC) to select K consistently before drawing inference

on the true causal effect q; this is our proposed cML-BIC. For finite

(especially small) sample sizes, due to model selection errors, such

a proceduremight have slightly inflated type I error rates as shown

in the supplemental material andmethods. Instead, to account for

model selection uncertainty, we propose a model averaging

approach,21 called cML-MA-BIC, or cML-MA for short. We obtain

multiple estimates bqðKÞ, each based on a selected model with each

value of 0 % K < m � 1, then take their weighted average as our

final estimate of the causal effect and draw inference accordingly;

the weights are determined by the BIC values of the models, in

which those more likely models (with lower BIC values) are given

higher weights. More details are given below.



Table 1. Comparison of different MR methods, including whether valid IV assumption A2 or A3 can be violated

Method A2 A3 Key assumptions Implementation challenges/performance

cML-MA U U plurality valid controlling type I errors with high power

MR-Mix12 U U plurality valid; bbYi � qbbXi � a mixture of
normals

biased to the null, thus conservative

MR-ContMix9 U U plurality valid; bqi � ð1 � qÞNðq;
SEðbqiÞ2Þ þ qNð0;j2 þSEðbqiÞ2Þ; NOME

difficult to pre-choose a fixed value for
tuning parameter c

CAUSE13 U U <50% IVs have correlated pleiotropy; gifi ¼
0; bXU ¼ 1; bXi ¼ gi or fi; bbYi � ð1 �
qÞNðqbXi þri;s

2Þ þ qNððqþbYU ÞbXi þri;s
2Þ

difficult to estimate some parameters
depending on the hidden confounder U;
sensitive to assumption of gifi ¼ 0

MR-Lasso14 U U plurality valid;7 some condition on the
exposure-association strengths of invalid IVs
relative to that of valid IVs to ensure
consistency;15 NOME

depending on the heterogeneity criterion for
choosing the tuning parameter for the Lasso
penalty

MR-Weighted-Mode16 U U plurality valid sensitive to the difficult bandwidth selection
for mode estimation

MR-Weighted-Median3 U U majority valid robust to outliers; low powered; sometimes
biased

MR-PRESSO1 U x majority valid; InSIDE; Good delete-1 causal
estimates

inflated type I errors; unable to completely
remove invalid IVs

MR-Egger17 U x InSIDE: fi ¼ 0; ai � Nðm; t2Þ for a small m
(but no normality needed for a large m);
NOME

often biased and low powered

MR-RAPS6 U x InSIDE: fi ¼ 0; ai � Nð0; t2Þ if overdispersion
is specified

may be sensitive to directional pleiotropy;
robust to outliers with Tukey’s loss

MR-IVW (RE)18,19 U x balanced pleiotropy; NOME sensitive to directional pleiotropy; low
powered

MR-IVW (FE)18,19 x x all IVs are valid; NOME efficient when all IVs are valid; sensitive to
invalid IVs

The notations are defined in Figure 1 and Equation 1, and q is the (unknown) proportion of invalid IVs while bqi ¼ bbYi=bbXi and SEðbqiÞ are theWald ratio estimate of q
based on SNP i and its standard error, respectively. NOME refers to no measurement error assumption: the variance of any IV-exposure association estimate is
negligible.20
Estimation and selection consistency with the cMLE
We develop some (asymptotic) theory to support our proposed

method (for fixed m as n increases). Denote B0 ¼
fijri s0; i¼ 1;/;mg the set of truly invalid IVs, and its size

jB0j ¼ K0. Suppose that n1 and n2 are the sample sizes of the

two GWAS summary datasets forX and Y, respectively. With Equa-

tion 2, we obtain the cMLEs by solving

min
q;bXi ;ri ;1%i%m

�L

�
q; fbXi; rig;

�bbXi; bbYi; bs2
Xi; bs2

Yi

��
subject to

Xm
i¼1

Iðri s0Þ ¼ K:

(Equation 3)

Here Ið $Þ is the indicator function and K is a tuning parameter rep-

resenting the unknown number of invalid IVs. Denote the cMLEs

from Equation 3 as bqðKÞ, bbXiðKÞ, and br iðKÞ for i ¼ 1;/;m, and bBK ¼
fijbr iðKÞs0; i¼ 1;/;mg the estimated set of invalid IVs. We pro-

pose a Bayesian information criterion (BIC) based on GWAS sum-

mary data to select the best K in a candidate set K:

BIC Kð Þ ¼ �2L bq Kð Þ; bbXi Kð Þ;br i Kð Þ
n o� �

þ log nð Þ$K: (Equation 4)

Here n could be either n1 or n2; we recommend using n ¼min(n1,

n2). We select bK ¼ argminK˛KBICðKÞ, and estimate bBbK ¼
fi : br iðbKÞs0g as the set of invalid IVs (and its complementbBbK c ¼ f1;/;mg � bBbK as the set of valid IVs).
The Americ
Now we state two assumptions used to prove the selection con-

sistency of our proposed BIC.

Assumption 1. (Plurality valid condition.) Suppose that B0 is the

index set of the true invalid IVs with K0 ¼ jB0j. For any

B4f1;/;mg and jBj ¼ K0, if BsB0, then the (m � K0) ratios

fri =bXi; i˛Bcg are not all equal.

Assumption 2. (Orders of the variances and sample sizes.) There

exist positive constants lX; lY ; ln and uX; uY ; un such that we have

lX=n1%bs2
Xi%uX=n1, lY=n2%bs2

Yi%uY=n2, and ln$n2%n1%un$n2 for

i ¼ 1;/;m.

Assumption 2 says that the two sample sizes n1 and n2 are com-

parable and that variance bs2
Xi or bs2

Yi is of order 1/n1 or 1/n2, which

is satisfied by the usual least-squares or maximum likelihood esti-

mates obtained from GWAS summary data. We also note that the

sample sizes for the SNPs/IVs being used may vary; as long as they

are comparable (in the sense as defined in assumption 2), we can

take their minimum in each GWAS dataset as the corresponding

sample size n1 or n2. With assumptions 1 and 2 we prove (in the

supplemental material and methods) that our proposed BIC

consistently selects invalid IVs.

Theorem1.With assumptions 1 and 2 satisfied, if K0˛K, we have

PðbK ¼ K0Þ/1 and PðbBbK ¼ B0Þ/1 as n1, n2/N.

As shown in the supplemental information, it was confirmed

that in the simulations the proposed BIC selected increasing pro-

portions of the correct models as the sample size increased.

After correctly selecting (and implictly removing) invalid IVs,

our proposed cMLE of q is the same as the maximum profile
an Journal of Human Genetics 108, 1251–1269, July 1, 2021 1253



likelihood estimate (MPLE) being applied to all valid IVs.6

Applying theorems 3.1 and 3.2 in Zhao et al.,6 coupled with the

above selection consistency, we obtain both the estimation consis-

tency and asymptotic normality of the cMLE bqðbKÞ. It is proven in

the supplemental material and methods that the variance of the

cMLE (based on the Fisher information matrix as shown in

computation section below) and that of the MPLE are asymptoti-

cally equal. As confirmed numerically in the supplemental mate-

rial and methods, our cMLE and the MPLE were essentially the

same in both the simulations and real data examples.
Model selection and model averaging approaches to

inference of q
After selecting bK, we can use the cMLE bqðbKÞ and its SE (see below

for how to obtain it) to infer q: based on the asymptotic normal

distribution bqðbKÞ � Nðq; SE2ðbqðbKÞÞ, we either construct a confi-

dence interval (CI) or conduct a significance test. We call this

method cML-BIC.

In spite of the selection consistency of our proposed BIC, to ac-

count for model selection uncertainties, especially with small sam-

ple sizes, we propose a model averaging (MA) approach. Following

Buckland et al.,21 we first obtain the estimate of q and its standard

error for each candidate K˛K, then take their weighted average as

the final estimate of q with the weights determined by the BIC

values of the corresponding candidate models.

Following Buckland et al.,21 for a set K of K’s, we define the

initial and standardized weights

w0
K ¼ expð � BICðKÞ =2Þ;wK ¼ w0

K

,X
K˛K

w0
K:

The final weighted estimate bqw and its standard error are

bqw ¼
X
K˛K

wK$bqðKÞ; SE�bqw� ¼
X
K˛K

wK$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE

�bqðKÞ�2

þ
�bqðKÞ � bqw�2

s
:

(Equation 5)

With bqw and SEðbqwÞ, based on the asymptotic normal distribu-

tion, we draw inference on q. We call this method cML-MA-BIC.

In practice, we use the set of candidate K’s, K ¼ f0;1;/;m � 2g.
K ¼ 0 means all IVs are valid; according to assumption 1, there

should be at least two valid IVs. Other choices of candidate sets

of K’s could also be applied, especially when we roughly know

the proportion of invalid IVs.

Instead of using BIC, we can also use the corresponding Akaike

information criterion (AIC) to select K or weight its corresponding

model, leading to cML-AIC and cML-MA-AIC for model selection-

and model-averaging-based approaches, respectively. As shown in

the supplemental material and methods, they did not perform as

well as their BIC versions.
Computation
We propose a coordinate descent-like algorithm to iteratively solve

Equation 3 to obtain cMLEs, bqðKÞ, bbXiðKÞ, and br iðKÞ for i ¼ 1;/m.

We start with the initial values qð0Þ and b
ð0Þ
Xi ’s, then update them

iteratively as below until convergence: at the kth iteration,

Step 1: Given qðkÞ; bðkÞXi , update ri. Order
ðbbYi�qðkÞbðkÞ

Xi
Þ
2

bs2

Yi

; i ¼ 1;/;m;

decreasingly, as
ðbbYð1Þ�qðkÞbðkÞ

Xð1ÞÞ
2

bs2

Yð1Þ
;

ðbbYð2Þ�qðkÞbðkÞ
Xð2ÞÞ

2

bs2

Yð2Þ
; /;

ðbbYðmÞ�qðkÞbðkÞ
XðmÞÞ

2

bs2

YðmÞ
.
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Then for i ¼ 1; /; K, let r
ðkþ1Þ
ðiÞ ¼ bbYðiÞ � qðkÞbðkÞXðiÞ; for i ¼

K þ 1;/;m, let r
ðkþ1Þ
ðiÞ ¼ 0.

Step 2: Given qðkÞ, rðkþ1Þ
i ’s, update bXi as

b
ðkþ1Þ
Xi ¼

bbXibs2

Xi

þ
qðkÞ
�bbYi�r

ðkþ1Þ
i

�
bs2

Yi

1bs2

Xi

þ ðqðkÞÞ2bs2

Yi

: (Equation 6)

Step 3: Given b
ðkþ1Þ
Xi ’s, r

ðkþ1Þ
i ’s, update q as

qðkþ1Þ ¼
Pm
i¼1

�bbYi�r
ðkþ1Þ
i

�
b
ðkþ1Þ
Xibs2

YiPm
i¼1

ðbðkþ1Þ
Xi Þ2bs2

Yi

: (Equation 7)

It is noted that at the convergence, by the expression of ri in step

1 and that for bq in step 3, if ris0 (i.e., for an invalid IV), SNP i and

its data do not contribute to estimating q.

By default, as in all our simulations, we set qð0Þ and b
ð0Þ
Xi ’s all at 0.

More generally, as in our main real data examples, we can also use

multiple random starts; in our real data examples, in addition to

the above default starting values, we tried 100 random starts,

each randomly generated as qð0Þ � Uniformðmin1%i%m
bbYi =bbXi;

max1%i%m
bbYi =bbXiÞ, and b

ð0Þ
Xi � NðbbXi; bs2

XiÞ for 1 % i % m. Then

we take the cMLE as the one from the initial values giving the

maximum likelihood among thosemultiple starts. As shown in Ta-

bles S5 and S6, for our primary real data examples, among all 48

risk factor-disease pairs, only for 7 pairs the 101 starts gave slightly

different results from using the default starting values; the differ-

ences in the numbers of detected invalid IVs were only 1 or 2, lead-

ing to almost the same results at the end. In our secondary real

data analysis, for each of 63 null pairs we tried 10 random starts.

Next we estimate the standard error of bq ¼ bqðKÞ for any given K.

Denote the set of the indices of K non-zero br i’s as bBK, the (m � K þ
1) by (m � K þ 1) Fisher information matrix is

I ¼

0BBBB@
v2ð�lÞ
vq2

v2ð�lÞ
vqvb0XB

v2ð�lÞ
vqvbXB

v2ð�lÞ
vbXBvb0XB

1CCCCA; (Equation 8)

where bXB is a vector of elements bXi with i˛bBc

K. Plugging
bq, bbXi’s

into I , we obtain the standard error of bq as SEðbqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI�1Þ11

q
. De-

tails are shown in the supplemental material and methods.
Data perturbation
When the sample sizes of GWAS summary data are relatively small

and there are many invalid IVs with weak pleiotropic effects, the

(asymptotic) selection consistency of cML-BIC as described in the-

orem 1 may not be achieved, leading to missing some invalid IVs

and ultimately biased inference, such as inflated type I errors. To

alleviate this problem, we propose using data perturbation

(DP).22 For t ¼ 1; /; T, we generate independent perturbed
1, 2021



samples bbðtÞ
Xi � NðbbXi; bs2

XiÞ and bbðtÞ
Yi � NðbbYi; bs2

YiÞ for i ¼ 1; /m.

Then similar to Equation 3, we obtain the cMLEs with perturbed

data by solving

min
q;bXi ;ri ;1%i%m

�L

�
q; fbXi; rig;

�bbðtÞ
Xi ;
bbðtÞ
Yi ; bs2

Xi; bs2
Yi

��
subject to

Xm
i¼1

Iðri s0Þ ¼ K:

(Equation 9)

Denote the cMLEs from Equation 9 as bqðtÞðKÞ, bbðtÞ
Xi ðKÞ, and br ðtÞi ðKÞ

for i ¼ 1;/;m, we get the maximized log-likelihood as

LðtÞðKÞ¼L

�bqðtÞ;�bbðtÞ
Xi ;br ðtÞi

�
;

�bbðtÞ
Xi ;
bbðtÞ
Yi ; bs2

Xi; bs2
Yi

��
: (Equation 10)

Averaging over T perturbed estimates, we have

bqDPðKÞ¼
PT
t¼1

bqðtÞðKÞ
T

;LDPðKÞ ¼
PT
t¼1

LðtÞðKÞ
T

; (Equation 11)

and estimate the standard error of bqDPðKÞ as the sample standard

deviation of bqðtÞðKÞ’s,

SE

�bqDPðKÞ
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

�bqðtÞðKÞ � bqDPðKÞ
�2

T � 1

vuuut
: (Equation 12)

Then, as for cML-BIC and cML-MA-BIC, with the DP estimates in

Equations 11 and 12, we obtain their DP versions called cML-BIC-

DP and cML-MA-BIC-DP, respectively.
Goodness-of-fit tests for the variance estimates
In general, as to be shown numerically, cML-MA-BIC-DP is more

conservative for inference and thus controls the type I errors better

than cML-MA-BIC, but may lose power while being computation-

ally more demanding. To help decide which one to use for a given

problem, we develop two goodness-of-fit tests, denoted GOF1 and

GOF2, to check whether the (asymptotic) model-based and DP-

based variance estimates converge to the same estimate; if so,

then we recommend using cML-MA-BIC; otherwise, cML-MA-

BIC-DP is preferred.

Suppose that cML-BIC selects a set of bK invalid IVs, with the es-

timate bqðbKÞ and its model-based variance calculated using Fisher

Information matrix (Equation 8) as dVarMðbqðbKÞÞ. If the BIC-based

model selection is correct with only small model selection uncer-

tainty, we’d expect that dVarMðbqðbKÞÞ would be close to the DP-

based variance estimate, dVarDðbqDPðbKÞÞ. Our proposed goodness-

of-fit tests aim to test whether the two variance estimates converge

to the same estimate (asymptotically).

First, based on each perturbed dataset, we obtain VðtÞ ¼dVarMðbqðtÞðbKÞÞ, from which we estimate the sample variance of

V ðtÞ’s as dVar½VarMðbqðbKÞÞ�. Second, as shown by Equation 12,dVarDðbqDPðbKÞÞ is the sample variance of T i.i.d. randombqðtÞðKÞ; t ¼ 1;/;T from some distribution f ð $Þ; theorem 2 in

chapter 6 of Mood et al.23 shows that its variance is

Var

	dVarD�bqDP

�bK��
¼ 1

T

�
m4 �

T � 3

T � 1
s4

�
; (Equation 13)

where m4 and s2 are the central fourth moment and variance of

f ð $Þ. We use the T samples to estimate them as
The Americ
bm4 ¼
PT
t¼1

�bqðtÞ�bK�� bqDP

�bK��4

T
; bs2 ¼

PT
t¼1

�bqðtÞ
�bK�� bqDP

�bK��2

T
:

Plugging them into Equation 13, we obtain

dVar1	dVarD�bqDP

�bK��
¼ 1

T

�bm4 �
T � 3

T � 1
bs4

�
; (Equation 14)

and the first GOF test statistic is

ZGOF1 ¼
dVarD�bqDP

�bK��� dVarM�bq�bK��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar1	dVarD�bqDP

�bK��
þ dVar	dVarM�bq�bK��

s :

(Equation 15)

Comparing ZGOF1 with the standard normal random variate Z, we

can calculate the p value as PðjZj > jZGOF1jÞ. This is the first good-

ness-of-fit test GOF1.

When T is small or only moderately large, the estimate bm4 could

have a large variance. Furthermore, if bqðtÞðKÞ’s are normally distrib-

uted, we have m4 ¼ 3s4, and the variance estimate in Equation 14

can be simplified to

dVar2	dVarD�bqDP
bK� ��


¼ 2

T � 1
bs4

: (Equation 16)

Replacing dVar1 in ZGOF1 with dVar2, we obtain a new GOF test sta-

tistic, ZGOF2, by which and a standard normal as the null distribu-

tion, we can calculate a p value.

Other methods
We compared cML-MA with other existing two-sample MR

methods, including MR-ContMix, MR-Mix, MR-CAUSE, MR-

Lasso, MR-PRESSO, MR-IVW (random-effect [RE] meta-analysis),

MR-Egger regression, MR-Weighted-Median, MR-Weighted-

Mode, and MR-RAPS (the Robust Adjusted Profile Score) methods.

We applied MR-RAPS with four different combinations of its pa-

rameters: for MR-RAPS1 andMR-RAPS2, we set the over-dispersion

parameter as TRUE, and used the L2 loss and the Tukey loss, respec-

tively; for MR-RAPS3 and MR-RAPS4, we set the over-dispersion as

FALSE and used the L2 and the Tukey loss, respectively; we present

RAPS2 to represent RAPS in the main text. We also applied the

Oracle MR-IVW to only valid IVs in the simulations, called MR-

IVW-Oracle.

Each method takes GWAS summary data of bbXi; bsXi; bbYi;bsYi; i ¼ 1;/;m as input and gives an estimate of q, say bq, along
with its standard error SEðbqÞ.
GWAS data
Primary real data examples

We applied various methods to some large-scale GWAS summary

data. FollowingMorrison et al.,13 we studied possible causal effects

of 12 risk factors on 4 complex diseases: coronary artery disease

(CAD [MIM: 608320]), stroke (MIM: 601367), type 2 diabetes

(T2D [MIM: 125853]), and asthma (MIM: 600807) (mostly as a

negative control). These 12 cardio-metabolic risk factors are tri-

glycerides (TG), high-density lipoprotein (HDL), low-density lipo-

protein (LDL), drinks per week (alcohol), ever regular smoker

(smoke), body fat percentage (BF), birth weight (BW), body mass

index (BMI), height (MIM: 606255), fasting glucose (FG), systolic

blood pressure (SBP), and diastolic blood pressure (DBP).
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For each risk factor/exposure-disease/outcome pair, we used the

set of LD-independent SNPs as IVs as described inMorrison et al.13

(in their Table S4) and applied all methods to the GWAS summary

statistics of these SNPs.

Secondary real data examples

If two traits are not genetically correlated, it is unlikely that they

are causally related. As suggested by a reviewer, from LD Hub,24

we collected 63 trait pairs without significant genetic correla-

tions (i.e., p value > 0.05) as negative controls to study the

type I error properties of the methods. These 63 pairs involve

13 traits in total: fasting proinsulin (FP), height, homeostasis

model assessment of beta-cell function (HOMA), LDL, rheuma-

toid arthritis (RA [MIM: 180300]), schizophrenia (SCZ [MIM:

181510]), T2D, age at smoking (ASmk), anorexia nervosa (AN

[MIM: 606788]), childhood IQ (CIQ), ever/never smoked

(ESmk), former current smoker (FSmk), and infant head circum-

ference (IHC). For each pair, we used R package TwoSampleMR

to select LD-independent SNPs as IVs and extract their summary

statistics following the standard procedures; sample R code is

available in the supplemental material and methods. The

GWAS summary data in LD Hub and TwoSampleMR are the

same for 12 traits except for height. For height, LD Hub contains

the GWAS data of the GIANT consortium from year 2010,25

while TwoSampleMR uses the GIANT data from year 2014.26 De-

tails of the GWAS data used are in the supplemental material

and methods.
Simulation set-ups
Main simulations

We compared different methods through extensive simulations.

The simulation set-ups were similar to those in Burgess et al.9

We set the number of the SNPs/IVs m ¼ 10, 20, or 100, and sam-

ple size n ¼ 50,000, 100,000, or 200,000. For each SNP i ¼ 1;/;

m, we generated gi’s from a uniform distribution on ð� 0:2; �
0:1ÞWð0:1; 0:2Þ; its MAF fi from a uniform distribution

Unif(0.1,0.3), then its genotypes SNPij from a bonimial Bin(2,

fi) for j ¼ 1; /; n. For each m, we tried different proportions

q ¼ 0%, 20%, 40%, 60% of invalid IVs: for each SNP i ¼ 1;/;

m$q, we generated its direct effect size ai from Uniform(0.2,0.3)

and set fi ¼ 0 (when the InSIDE assumption was satisfied) or

generated fi from Uniform(�0.1,0.1) (when InSIDE was

violated). We set bXU ¼ bYU ¼ 1, generated the random errors

εU , εX, and εY independently from N(0,1). Then we generated

U, X, and Y from the causal model (Equation 17):

U ¼
Xm
i¼1

fi$gi þ εU ; (Equation 17)

X¼
Xm
i¼1

gi$gi þ bXU$U þ εX;

Y ¼ q$Xþ
Xm
i¼1

ai$gi þ bYU$U þ εY :

We generated two independent samples, each of size n1 ¼ n2 ¼
n, and used the first sample to fit marginal linear regressions of X

on SNPs, and using the second sample to fit marginal linear regres-

sions of Y on SNPs, thus obtaining the GWAS summary statistics.

We tried different q ¼ � 0:1; � 0:05; � 0:03; � 0:01;0;0:01;0:03;

0:05;0:1. When q ¼ 0 it was the null case; i.e., X had no causal ef-

fect on Y.
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Secondary simulations

We did simulations to compare various methods with CAUSE.

We generated the simulated data in the framework of CAUSE

as described in the original CAUSE paper.13 We set the sample

size n1 ¼ n2 ¼ n ¼ 50,000 or 100,000. Denote the direct effects

of SNP i on the exposure as bXi and on the outcome Y as ai. For

the expected number of SNPs with non-zero associations with

the exposure and the outcome (i.e., bXis0 and ais0), denoted

by mX and ma, we set mX ¼ ma ¼ m ¼ 10 or 100. Denote the

true causal effect size from the exposure to the outcome as q.

We set q ¼ 0 for the null case and q ¼ 0:05 for the non null

case. In each simulation, we generated p ¼ 100,000 independent

SNPs with MAF fi independently drawn from Uniform(0.1,0.3).

In CAUSE, it is assumed that the hidden confounder U is stan-

dardized with bXU ¼ 1; we set the effect size from U to Y at

bYU ¼ 1. We set the proportion of invalid IVs with correlated

pleiotropic effects at q ¼ 0.3. We set the heritabilities of X

and Y at h2
X ¼ h2

Y ¼ 0:3. Then we generated the standardized ef-

fect sizes ~bXi and ~ai from a mixture of bivariate normal

distribution:

~bXi

~ai

� �
�
X4
k¼1

pk$N
0
0

� �
;

s2
Xk 0

0 s2
ak

 ! !
: (Equation 18)

Here p ¼ m=p, and p1 ¼ 0:2p;p2 ¼ p3 ¼ 0:8p;p4 ¼ 1� p1 � p2 �
p3; s

2
X1 ¼ s2X2 ¼ s2X; s

2
a1 ¼ s2a3 ¼ s2a; s

2
X3 ¼ s2X4 ¼ s2a2 ¼ s2a4 ¼ 0,

and s2X ¼ h2
X=mX, s

2
a ¼ ½h2

Y � ðq2 þqh2Þh2
X�=ma. The non-standard-

ized effect sizes were bXi ¼ ~bXi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fið1� fiÞ

p
, and ai ¼

~ai=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fið1� fiÞ

p
. We generated the indicator of an invalid IV, Zi,

from Bernoulli(q), and bYi ¼ qbXi þ ZjbYUbXi þ ai. With the stan-

dard error si ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nfi 1� fið Þp

, the GWAS summary statistics

were generated as bbXi � NðbXi; s2i Þ, bbYi � NðbYi; s2i Þ.
For each combination of m; q;nð Þ we did simulations 200 times

(while the simulations in Morrison et al.13 were repeated only

100 times due to longer running time of CAUSE). For CAUSE,

we used all p SNPs to estimate the parameters, and used its default

p value threshold 0.001 to select the SNPs associated with the

exposure. For other MR methods, we used the usual p value

threshold 5 3 10�8 to select the exposure-associated SNPs as

IVs. For comparison, we also applied the p value threshold 5 3

10�8 (instead of its default threshold 0.001) to select the SNPs

for CAUSE.

Simulations with weak invalid IVs

As suggested by a reviewer, we did more simulations with

many invalid IVs with weak effects (so-called ‘‘weak invalid

IVs’’), representing a scenario more challenging to identify

invalid IVs with only weak effects. We set the number of IVs

m ¼ 50, sample size n ¼ 20,000, and gi’s from N(0,hx / m) for

i ¼ 1;/;50. We had the first 60% IVs as invalid IVs with uncor-

related pleiotropic effects ai’s from N(0,hy / m) and correlated

pleiotropic effects fi’s from N(0,hu / m) for i ¼ 1; /; 30, and

set ai ¼ fi ¼ 0 for i ¼ 31; /50. Then we set bsXi ¼ bsYi ¼ 1=
ffiffiffi
n

p
and generated bbXi � Nðgi þfi; bs2

XiÞ, bbYi � Nðq $ðgi þfiÞþai þfi;bs2
YiÞ, where q was the true causal effect. We set hx ¼ 0.5, and

tried different hy ¼ 0.1,0.2,0.4,0.6, different hu ¼ 0,0.1, and

different q ¼ � 0:2; � 0:1; � 0:05; 0;0:05; 0:1; 0:2. Here hx, hy,

and hu could be viewed as the heritability of the exposure,

outcome, and confounder due to direct effects of the IVs.

Note that for hu ¼ 0 there was no correlated pleiotropy, while

for hu ¼ 0.1 there was. The smaller hy, the weaker the direct/

pleiotropic effects and thus more difficult to identify the

invalid IVs.
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Results

Simulations: Better type I error control and higher

power of the new method than other MR methods

We compared our proposed method with ten most popu-

lar and new MR methods as shown in Table 1 through

extensive simulations: MR-Mix, MR-ContMix, MR-

CAUSE, MR-Lasso, MR-PRESSO, MR-Weighted-Median,

MR-Weighted-Mode, MR-Egger, MR-RAPS, and MR-IVW

(with a random-effect model throughout this paper). For

evaluation, we also added MR-IVW-Oracle, an ideal but

impractical method with all valid IVs known and being

used, giving best possible performance. Since CAUSE re-

quires full GWAS summary data (with both trait-associated

and non-associated SNPs) with much longer running

time, we divided the simulations into two parts. For

main simulations, following Burgess et al.9 and Slob and

Burgess,10 we only generated summary statistics for expo-

sure-associated SNPs, and compared cML-MA with other

nine methods except CAUSE. For secondary simulations,

we simulated both exposure-associated and non-associ-

ated SNPs as required by CAUSE13 and compared cML-

MA to all other 10 methods.

Main simulations: Comparison with major MR methods

We did extensive simulations with the true causal model

shown in Figure 1, including n ¼ 50,000, 100,000, or

200,000 subjects in each GWAS dataset, using m ¼ 10,

20, or 100 SNPs as IVs, among which 0% to 60% were

invalid IVs with IV assumptions A2 or/and A3 being

violated. For each setup we did 1,000 simulations to

compare the proposed cML methods and other existing

MR methods, and for the 10 setups shown in Figure 2,

we also increased the number of simulations to 10,000 to

better estimate the type I errors. For the 9 setups with

60% invalid IVs and with both IV assumptions A2 and

A3 being violated, we also applied cML-BIC-DP and cML-

MA-BIC-DP. We used the nominal significance level of

0.05. Here we only show some representative results while

all others are available in the supplemental material and

methods.

Figure 2 shows the empirical type I errors (at the nominal

level 0.05). First, in the cases with all valid IVs, the

methods generally performed well, though MR-

Weighted-Mode, MR-Weighted-Median, and MR-Mix

might be too conservative. On the other hand, MR-Con-

tMix could have an inflated type I error rate, perhaps due

to its inappropriately pre-selected tuning parameter value.

Second, in the presence of 20% or 60% invalid IVs with IV

assumption A2 violated but assumption A3 (thus the In-

SIDE assumption) holding, MR-PRESSO, MR-Lasso, and

MR-IVW could have inflated type I error rates. It is noted

that, though the InSIDE assumption held, MR-Egger could

have a slightly inflated type I error rate for smallm¼ 10 but

not for large m ¼ 100. MR-Weighted-Mode gave the most

highly inflated type I error rate with the large proportion

(60%) of invalid IVs and with the small number of SNPs

(m ¼ 10). Third, in the cases with both IV assumptions
The Americ
A2 and A3 violated, MR-IVW, MR-Egger, and MR-PRESSO

all had inflated type I error rates, while MR-Weighted-

Mode and MR-Weighted-Median had largely inflated type

I error rates with 60% invalid IVs, and so did MR-Lasso

with 60% invalid IVs and with only m ¼ 10 SNPs. In sum-

mary, as expected, MR-IVW was problematic in the pres-

ence of invalid IVs, MR-Egger did not perform well if IV

assumption A3 was violated, andMR-PRESSO often had in-

flated type I errors; on the other hand, in agreement with

Slob and Burgess,10 MR-Lasso, MR-Weighted-Median, and

MR-Weighted-Mode did not perform well with a small

number of SNPs and with a high proportion of invalid

IVs. We conclude that only MR-cML-BIC and MR-Mix

could control the type I error rates across all the scenarios,

thoughMR-Mix was often too conservative (with too small

type I errors), especially for a large number of SNPs/IVs.

The results for type I errors based on 10,000, instead of

1,000, simulations, as shown in Figure S6, were essentially

the same.

Figure 3 shows the empirical type I error (for q ¼ 0) and

power (for qs0) curves. It is confirmed that our proposed

method cML-MA-BIC always yielded a power curve close

to that of MR-IVW-Oracle, the ideal test based on using

only valid IVs. In particular, cML-MA-BIC wasmore power-

ful than MR-Mix and other methods (when their type I er-

rors were close to the nominal level).

Figures 4 and 5 show the distributions of the causal esti-

mates by each method for the true causal effect sizes q ¼ 0

and 0.1, respectively. Again it is confirmed that the distri-

bution of the q estimates from our proposed cML-MA-

BIC was almost the same as that from the ideal MR-IVW-

Oracle. In particular, cML-MA-BIC, MR-ContMix, and

MR-Lasso (and MR-IVW-Oracle) always yielded (almost)

unbiased estimates with smaller variances, while other

methods sometimes gave biased estimates (and/or with

much larger variances). In particular, as shown in Figure 5,

MR-Mix was slightly biased (toward 0) for m ¼ 100.

For the 9 setups with 60% invalid IVs and with both IV

assumptions A2 and A3 being violated, we applied cML-

BIC-DP and cML-MA-BIC-DP, with various numbers of per-

turbations T ¼ 100, 200, and 500. The complete results are

shown in supplemental material and methods section

S5.4. cML-BIC-DP and cML-MA-BIC-DP yielded similar re-

sults to those of cML-BIC and cML-MA-BIC, respectively,

in terms of both point estimation and statistical inference,

and both the GOF tests performed similarly in rejecting the

null hypothesis (of unequal variance estimates from the

model- and DP-based approaches) with low frequencies.

In summary, overall, among all the methods, cML-MA-

BIC, MR-Mix, and MR-ContMix performed best across all

the scenarios; among the latter three, cML-MA-BIC was

the clear winner for its higher power while better control-

ling the type I error rate.

Secondary simulations: Comparison with CAUSE

We did simulations in the framework of MR-CAUSE as

described in Morrison et al.13 Figure 6 shows the empirical

type I error (for q ¼ 0) and power (for q ¼ 0:05) for the
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0.050 0.056 0.045 0.056 0.052 0.039 0.039 0.039 0.025 0.007 0.128

0.050 0.023 0.125 0.058 0.043 0.043 0.043 0.042 0.029 0.008 0.048

0.051 0.023 0.060 0.046 0.107 0.025 0.040 0.083 0.032 0.021 0.623

0.053 0.011 0.045 0.060 0.094 0.057 0.051 0.068 0.019 0.009 0.620

0.041 0.035 0.060 0.146 0.092 0.084 0.032 0.097 0.049 0.282 0.110

0.059 0.033 0.058 0.067 0.166 0.077 0.053 0.049 0.052 0.058 0.071

0.036 0.024 0.042 0.035 0.126 0.082 0.032 0.303 0.027 0.013 0.612
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0.044 0.041 0.070 0.168 0.110 0.099 0.036 0.205 0.174 0.694 0.109

0.050 0.020 0.057 0.059 0.182 0.107 0.047 0.459 0.123 0.664 0.084

m = 100, Ideal m = 100, 20% Invalid, InSIDE Hold m = 100, 60% Invalid, InSIDE Hold m = 100, 20% Invalid, InSIDE Violated m = 100, 60% Invalid, InSIDE Violated

m = 10, Ideal m = 10, 20% Invalid, InSIDE Hold m = 10, 60% Invalid, InSIDE Hold m = 10, 20% Invalid, InSIDE Violated m = 10, 60% Invalid, InSIDE Violated
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Figure 2. Main simulations: Empirical type I error rates at the nominal level of 0.05 with sample size n ¼ 50,000 and with m ¼ 10 or
100 SNPs, among which 0 to 60% were invalid IVs with the InSIDE assumption either holding or violated
methods withm¼ 10 or 100 exposure-associated SNPs and

sample size n ¼ 50,000 or 100,000. It is clear that our pro-

posed method cML-MA-BIC could control type I error well

with high power. In contrast, CAUSE could have largely in-

flated type I error rates and much lower power than cML-

MA-BIC. Here the results for CAUSE were based on using

its default p value threshold of 0.001 to select exposure-

associated SNPs; as shown in the supplemental material

and methods, using the threshold 5 3 10�8 (as for other

methods shown here) did not give better results for

CAUSE. The poor performance of CAUSE here is in agree-

ment with that shown in the original CAUSE paper (Mor-

rison et al.,13 Figure SN1): when it was high powered to

detect SNP-exposure and SNP-outcome associations,

CAUSE tended to give dramatically inflated false positive

rates. In addition, compared to cML-MA-BIC, both MR-

Mix andMR-ContMix had higher inflated type I error rates

for smallm ¼ 10; on the other hand, MR-Mix was too con-

servative with too small type I error rates and lower power

for m ¼ 100 with the small sample size n ¼ 50,000.

Simulations with weak invalid IVs

Wedid1,000 simulations for each setupwith a small sample

size andmany invalid IVshavingweakdirect/pleiotropic ef-

fects. Figure 7A shows some representative results for the

empirical type I error (for q ¼0) andpower (for qs0) curves

for hy ¼ 0.2 and hu ¼ 0 (i.e., no correlated pleiotropy); the
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complete results are given in the supplemental material

and methods. It is clear that under this challenging situa-

tion, in addition to the ideal MR-IVW-Oracle, only three

methods could control the type I error satisfactorily (while

all others could not): cML-MA-BIC-DP, MR-IVW, and MR-

Egger, but cML-MA-BIC-DP was much more powerful

than the other two. It is noted that here the (weak) direct ef-

fects were balanced (i.e., with mean 0) and from a normal

distribution, explaining the reasons for the relatively good

performance by MR-IVW and MR-Egger. Nevertheless, as

shown in Tables S107–S110, as the pleiotropic effect sizes

(i.e., hy) increased, the power of cML-MA-BIC-DP improved

(by better identifying invalid IVs), but, perhaps surpris-

ingly, both MR-IVW and MR-Egger became less powerful

(because of the increasing error variances in their models

by treating the pleiotropic effects as random).

In the presence of correlated pleiotropy with hu ¼ 0.1, as

shown in Tables S111–S114, only our proposed cML-BIC-

MA-DP could satisfactorily control type I error and was

well powered, while all other methods, including MR-

IVW,MR-Egger, andMR-RAPS, yielded inflated type I errors

and possibly low power.

Figure 7B shows the relative frequencies of the goodness-

of-fit tests’ rejecting the null hypothesis that the model-

based variance was equal to the DP-based variance by

cML. The proposed goodness-of-fit tests could detect with
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Figure 3. Main simulations: Empirical type I error (for q ¼ 0) and power (for qs0) curves with sample size n ¼ 50,000
high power the problem with cML-MA-BIC; the two GOF

tests performed similarly, though GOF2 was slightly more

powerful (presumably due to its taking advantage of the

causal estimates beingnearlynormallydistributed). In addi-

tion, as hy decreased, it became harder to identify invalid

IVs, leading to more inflated type I error rates by most

methods, including cML-MA-BIC; accordingly the two

GOF tests rejected the null hypothesis more frequently,

demonstrating their effectiveness.

Computational time

We did simulations to compare the running times of

different methods as detailed in supplemental material and

methods section S8. In summary, cML-MA-BIC runs reason-

ably fast: its computing time was comparable to that of MR-

ContMix andMR-RAPS,while being faster thanMR-Mix and

MR-Weighted-Mode but slower than MR-IVW, MR-Egger,

andMR-Weighted-Median.As expected, usingmore random

starting points or data perturbation would take much more

time. Nevertheless, on a MacBook Pro laptop, with 10 to

100 SNPs/IVs, it took from a few seconds to less than 10mi-

nutes with cML-MA-BIC-DPwith five random starts andT¼
200 data perturbations; in contrast, cML-MA-BIC with five

random starts ran from 0.3 to 4 seconds.

Identifying causal risk factors of complex diseases

Wecompare our proposed cMLwithothermethods to iden-

tify possible causal effects of 12 risk factors on three cardio-
The Americ
metabolic diseases—coronary artery disease (CAD),27

stroke,28 and type 2 diabetes (T2D)29—plus asthma largely

used as a negative control.30 These 12 risk factors (and their

corresponding GWASs) are LDL cholesterol, HDL choles-

terol, triglycerides (TG),31 drinks per week (alcohol), ever

regular smoker (smoke),32 body fat percentage (BF),33 birth

weight (BW),34 body mass index (BMI),35 height,26 fasting

glucose (FG),36 systolic blood pressure (SBP), and diastolic

blood pressure (DBP).37 As used and shown in Morrison

et al.,13 the sample sizes of these GWASs ranged from

46,186 for FG and 69,033 for T2D, to 100,716 for BF,

142,486 for asthma, 188,577 for TG, HDL, and LDL,

253,288 for height, 322,154 for BMI, then 446,696 for

stroke, 547,261 for CAD, 757,601 for DBP and SBP, finally

to near and above a million for alcohol and smoke, respec-

tively. For each risk factor/exposure-disease/outcome pair,

we used the set of LD-independent SNPs as IVs as described

in Morrison et al.13 (in their Table S4) and applied all

methods except CAUSE to the GWAS summary statistics

of these SNPs; for CAUSE, we extracted the results from

the original paper.13

In Morrison et al.,13 the 48 exposure-outcome pairs were

classified into 5 categories: considered causal (9 pairs),

likely causal as supported by the literature (10 pairs), corre-

lated but unknown to be causal or with conflicting evi-

dence (17 pairs), unrelated (10 pairs), and considered

non-causal (2 pairs); here we combined the first two
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Figure 4. Main simulations: Empirical distributions of the estimates of the causal effect q by the methods with n ¼ 50,000 and q ¼ 0
The numbers below each panel are the meanðbqÞ, SDðbqÞ, mean squared error (MSE) of bq from top to bottom.
categories into one to represent (likely) causal pairs. In

Figure 8 we compare cML-MA-BIC with three representa-

tive methods: CAUSE, a new one specifically proposed to

deal with correlated pleiotropy, and two MR methods,

one robust and competitive (MR-Mix) and the other

perhapsmost popular (MR-IVW), for all of these 48 risk fac-

tor-disease pairs. Figure 9 compares the numbers of the de-

tected pairs by these and other methods, and other

detailed results (of the causal parameter estimates, SEs,

and p values) for all methods are available in the supple-

mental material and methods. Here we discuss the results

based on the Bonferroni adjusted significance level of

0:05=48z0:001. For the 19 known or likely causal risk

factor-disease pairs, cML-MA-BIC, CAUSE, MR-Mix, and

MR-IVW identified 15, 7, 12, and 12 significant pairs,

respectively; among the 17 correlated pairs, the four

methods detected 6, 0, 4, and 1 pairs, respectively; among

the 10 unrelated pairs, none of the methods identified any,

while for the two pairs of non-causal pairs, all four

methods indicated one and the same one (i.e., HDL-

CAD, which is still under debate as whether it is truly

causal). In addition, although none of the methods de-

tected causal smoke-asthma, smoke-T2D, and BMI-stroke,

ourmethod was the only one among the fourmethods giv-

ing marginally significant p values. It is clear that our pro-

posed cML-MA-BIC identified the largest numbers of the

known or likely causal pairs, showcasing its highest power.
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On the other hand, it also detected more pairs from the

category of ‘‘correlated’’ pairs. It is possible that these pairs,

such as BW-CAD, BW-T2D, and DBP/SBP-T2D, may be

false positives, but at the same time, they may be truly

causal as to be confirmed (or refuted) by further studies.

As shown in Figure 10, only based on the data, there seems

to be evidence to support these causal relationships as de-

tected by our cML-MA-BIC andmany other tests (shown in

the supplemental material and methods). It is noted that

CAUSE also gave marginally significant p values < 0.05

for three of these six pairs.

Among the tens to about 1,000 SNPs used as IVs for the

48 risk factor-disease pairs, 0 to 96 SNPs, mostly <10,

ranging from 0% to 30%, mostly <3%, were identified as

invalid IVs by our method (Table S5). However, as for

BW-CAD and BW-T2D in Figure 10, although only five

(out of 65 and 54) SNPs were identified as invalid IVs based

on the BIC-selected best models, the models containing up

to K ¼ 20 SNPs as invalid IVs were estimated to be better

(with lower BIC values) than the model treating all SNPs

as valid IVs (i.e., K ¼ 0). In general there were fewer invalid

IVs for asthma, stroke, and T2D, but more for CAD. It can

be seen that the influence of invalid IVs is somewhat com-

plex; the difference between the two causal estimates with

and without invalid IVs may or may not simply depend on

the presence or the number of invalid IVs, but more on the

configuration of invalid IVs relative to that of valid ones.
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Figure 5. Main simulations: Empirical distributions of the estimates of the causal effect q by themethods with n¼ 50,000 and q ¼ 0:1
The numbers below each panel are the meanðbqÞ, SDðbqÞ, mean squared error (MSE) of bq from top to bottom.
For example, with the same number of invalid IVs detected

for the BW-CAD and BW-T2D pairs, the causal estimates

with and without the detected invalid IVs were almost

the same for the former pair, but more different for the

latter (Figure 10).

We then applied cML-MA-BIC-DP with T ¼ 200 pertur-

bations and 10 additional random starts in each perturba-

tion. Compared to those of cML-MA-BIC, the results re-

mained the same for 46 pairs in terms of statistical

significance, but changed from being significant to

marginally significant for only two pairs: one known or

likely causal pair, BF-CAD; and one correlated pair, BW-

T2D.

In summary, it is encouraging that most methods de-

tected similar numbers of significant pairs, though MR-Eg-

ger and CAUSE detected much fewer as shown in Figure 9.

In addition, there were some notable differences in specific

pairs detected across the methods. For example, while our

methods detected the causal pairs BF-T2D and FG-T2D,

MR-IVW missed both and MR-RAPS missed BF-T2D. We

conclude that our proposed methods performed

competitively.

Secondary real data analysis

We compared the type I errors of the cML methods and

other existing MR methods with 63 pairs of traits that

were not genetically correlated (with their p values greater
The Americ
than 0.05). For 10 of 63 pairs with HOMA as the exposure,

TwoSampleMR gave only 2 LD-independent SNPs as IVs,

which was too small to apply MR-ContMix, MR-Lasso,

MR-Egger, MR-Weighted-Median, MR-Weighted-Mode,

and MR-PRESSO; although cML methods are applicable

to only two IVs, they would require K ¼ 0, i.e., no invalid

IVs. Hence we applied all methods to the other 53 pairs

(without HOMA as the exposure). Figure 11 shows the Q-

Q plots of cML-MA-BIC, cML-MA-BIC-DP, MR-Mix, MR-

ContMix, MR-IVW, and MR-RAPS for these 53 pairs;

Figure S5 shows the results for all methods. While the

methods based on selection of invalid IVs, i.e., cML-MA-

BIC, MR-Mix, and MR-ContMix, all seemed to have in-

flated type I errors, the proposed cML-MA-BIC-DP with

T ¼ 200 perturbations and 10 additional random starts in

each perturbation, along with MR-IVW and MR-RAPS, ap-

peared to performwell in satisfactorily controlling the type

I errors. The complete results are in the supplemental ma-

terial and methods.
Discussion

We have proposed several methods based on constrained

maximum likelihood (cML) to consistently identify invalid

IVs with either or both of correlated and uncorrelated

pleiotropic effects, thus leading to consistent estimation
an Journal of Human Genetics 108, 1251–1269, July 1, 2021 1261



Figure 6. Secondary simulations: Empirical type I error rates (for q ¼ 0) and power (for qs0) with sample size n¼ 50,000 or 100,000,
and with m ¼ 10 or 100 exposure-associated SNPs
and inference of the causal effect between an exposure and

an outcome. For finite samples, the (asymptotic) selection

consistency may not be achieved. To account for model se-

lection uncertainty, we first propose a model-averaging

approach, cML-MA-BIC, which performs better, especially

in better controlling the type I error rate, than the selec-

tion-based version, cML-BIC. In addition, in more chal-

lenging situations with many invalid IVs with only weak

pleiotropic effects, both model selection and model aver-

aging may not perform well by failing to fully account

for model selection uncertainty; accordingly, we propose

a version based on data perturbation, cML-MA-BIC-DP,

which could control the type I error rate satisfactorily

across all simulated and real data examples. However,

cML-MA-BIC-DP is computationally more demanding

and may be conservative with some loss of power as

compared to cML-MA-BIC. To help a user determine which

one is preferred, we propose two GOF tests for the null hy-

pothesis that the two approaches give the equivalent vari-

ance estimates (and thus inferential results); if the null

hypothesis is not rejected, one can simply apply cML-

MA-BIC; otherwise, cML-MA-BIC-DP is preferred. All the

proposed methods are applicable to GWAS summary data.

Three new competitors to our methods include

CAUSE,13 MR-Mix,12 and MR-ContMix.9 As shown in our

simulations and in agreement with the original study,13
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CAUSE may have dramatically inflated type I error rates,

presumably due to its complex modeling and estimation

of the parameters related to hidden/unobserved confound-

ing. Furthermore, CAUSE imposes an assumption of

gifi ¼ 0 (i.e., that an IV can only have a direct effect on

either the exposure or the hidden confounder, but not

on both simultaneously), though it is yet unknown and

debatable whether this assumption is reasonable for real

data. It seems advantageous that our proposed methods

simply estimate only a small number of necessary parame-

ters (without such an assumption). Both MR-Mix and MR-

ContMix are based onmultivariate normalmixturemodels

on various effect sizes across the genome, which not only

impose stronger modeling assumptions, but also are

computationally more demanding. In our experiments,

overall, MR-Mix performed only second to our proposed

methods with mostly controlled type I error rates and

high power, though it might still have either largely in-

flated or too conservative type I errors while giving biased

estimates (e.g., Figures 6 and 5). On the other hand, it is

challenging to pre-select a fixed tuning parameter in MR-

ContMix, which may negatively influence its performance

in some situations as shown in our simulations. At the

same time, it is confirmed that two most popular methods,

MR-IVW and MR-Egger, do not perform well with dramat-

ically inflated type I error rates and low power in the
1, 2021
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Figure 7. Simulation results with many invalid IVs having weak pleiotropic effects
(A) Empirical type I error (for q ¼ 0) and power (for qs0) curves with hy ¼ 0.2 and hu ¼ 0.
(B) Relative frequencies of the goodness-of-fit tests rejecting the null hypothesis.
presence of correlated pleiotropy. Most importantly, we

conclude that our proposed cML-MA-BIC (or cML-MA-

BIC-DP) was the overall winner based on our extensive nu-

merical studies.

MR-PRESSO and MR-Lasso are two existing methods

looking most similar to our proposed methods. For our

cML estimates, if an SNP has an estimated total direct effectbr is0, then it is an invalid IV and does not contribute to

estimating the causal effect q (as shown in the material

and methods section); otherwise it is a valid IV and con-

tributes to estimating q. Hence, our methods work by se-

lecting and (implicitly) removing invalid IVs, in which

sense they are related to MR-PRESSO and MR-Lasso (and

an improved variant of MR-PRESSO38). However, there

are some important differences. First, we propose a BIC

for consistent model selection (and weighting) while MR-

PRESSO uses resampling-based significance testing and

MR-Lasso is based on a heuristic heterogeneity criterion.

We have a rigorous theory to support our proposed

method. Second, both MR-PRESSO and MR-Lasso draw
The Americ
inference on the causal effect q based on a single selected

model; due to selection bias, they often have inflated

type I error rates and in general biased estimates of q. In

contrast, by accounting for model selection uncertainties

through model averaging, our method cML-MA-BIC per-

forms much better as shown in simulations. Third, since

MR-PRESSO selects invalid IVs one by one while ours and

MR-Lasso select multiple ones simultaneously, MR-PRESSO

may miss some invalid IVs (e.g., as well known in statistics

that two invalid IVs/outliers may not appear so if checked

one by one). In addition, MR-PRESSO fails to properly ac-

count for the variability of the delete-1 (IV) estimates of

the causal effect while assuming that the delete-1 estimates

are all accurate, which may be false, leading to both false

positives and false negatives in selecting invalid IVs. On

the other hand, MR-Lasso depends on a specified candi-

date set of the tuning parameter values for the Lasso pen-

alty, which may be difficult to specify a priori. There is

also lack of theoretical justification for its heterogeneity-

based model selection criterion. Furthermore, in general,
an Journal of Human Genetics 108, 1251–1269, July 1, 2021 1263
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Figure 8. Results of cML-MA-BIC, MR-CAUSE, MR-Mix, and MR-IVW to detect causal relationships among 48 risk factor-disease pairs
as most penalized methods, MR-Lasso yields biased esti-

mates due to the shrinkage effects of the Lasso penalty.

Finally, MR-LASSO, as MR-IVW and MR-Egger, imposes
1264 The American Journal of Human Genetics 108, 1251–1269, July
the NOME (no measurement errors) assumption by

ignoring the variability in estimating each IV-exposure as-

sociation. Presumably due to these reasons, our proposed
1, 2021
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Figure 9. The numbers of the significant risk factor-disease pairs detected by various methods at the significance cutoff of p value <
0.001
MR-RAPS refers to RAPS2 (with the Tukey loss and overdispersion).
methods performed much better than the other two

methods in our numerical examples.

Our proposed cML-MA-BIC not only performs extremely

well in our numerical examples, but also is quite simple

and intuitive with strong theoretical support. In fact, it

may be surprising that such a method has not appeared

in the MR literature. We note that our methods are based

on classic statistical theory (for ‘‘large n, small m,’’ i.e., as-

ymptotics for a large sample size and a fixed/small number

of parameters), which is suitable for typical GWASs (with n

in tens to hundreds of thousands, whilem is no more than

a few hundreds). It might be of interest to extend our

methods to a high-dimensional ‘‘large n, large m’’ scenario

with even a much larger number of IVs: instead of using

the full likelihood, we can use the profile likelihood6 as

shown in the supplemental material and methods; we

will also need to adopt or develop some new model selec-

tion criteria for high-dimensional data.39–41 There are

other limitations of our proposed methods. First, we pro-

pose a fast algorithm to select valid (or equivalently,

invalid) IVs to obtain cML estimates. Since it is a combina-

torial and non-convex variable selection problem, the pro-

posed algorithm cannot guarantee finding a global solu-

tion. Nevertheless, in our simulations it yielded good

results with only one starting value (by setting all parame-

ters at 0). A simple strategy is to use multiple random start-

ing values as used in the real data examples, for which little

difference was found. In the future other more sophisti-

cated algorithms42,43 may be adapted and applied. Second,

we assume that the two GWAS (summary) data for the

exposure and outcome are independent. As in CAUSE,

we may estimate and model possible correlations between

the two GWAS datasets due to overlapping subjects, and

then modify the log-likelihood accordingly. More gener-

ally, it is critical to adjust for possible sample structure,

including population stratification and subject related-

ness, present in some GWAS data.44,45 Our methods,

cML-MA-BIC and especially cML-MA-BIC-DP, appeared to

work in some preliminary simulaions (not shown) with

population stratification as the hidden confounding factor
The Americ
U. Third, as in typical MR applications, we used the same

GWAS sample to select significant SNPs as IVs (to meet

IV assumption A1) before using the same data for infer-

ence. It is known that this double-use of the data could

lead to biased inference due to selection bias. Alternatively,

we may use an independent GWAS sample to select SNPs

to avoid selection bias as in the three-sample MR

design,46 or account for selection explicitly.44,47 Fourth,

we considered only independent SNPs as IVs; extending

to using correlated SNPs as IVs may be useful in other ap-

plications, e.g., transcriptome-wide association studies,48–

54 which equally face the analysis challenges with pleio-

tropic SNPs and thus invalid IVs.55 These are interesting

topics for future investigation.
Data and code availability

This study used the GWAS summary datasets that are all publicly

available as indicated in their corresponding references. The pro-

posed methods are implemented in R package MRcML, which is

publicly available to download on GitHub at https://github.

com/xue-hr/MRcML. All other MR methods used for comparison

are in publicly available R packages with links given in the web re-

sources section.
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Figure 10. BIC and scatter plots for four pairs
For four risk factor-disease pairs, the left panels show the numbers of invalid IVs versus BIC values, while the right panels show bbXi versusbbYi (with their errors bars indicating bsXi and bsYi). In the right panels, those for invalid IVs detected by BIC are blue, the red solid lines give
the causal estimates (after removing the detected invalid IVs), and the black dashed lines are for the estimates based on all IVs.
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Figure 11. Q-Q plots for 53 (likely) null trait-pairs in the secondary real data examples
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Web resources

CAUSE, https://github.com/jean997/cause

LD Hub, http://ldsc.broadinstitute.org/lookup

MR-ContMix, https://cran.r-project.org/web/packages/Mendelian

Randomization

MR-IVW, MR-Egger, MR-Weighted-Median, MR-Weighted-Mode,

MR-RAPS, https://github.com/MRCIEU/TwoSampleMR

MR-Lasso, https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.

22295

MR-Mix, https://github.com/gqi/MRMix

MR-PRESSO, https://github.com/rondolab/MR-PRESSO

OMIM, https://www.omim.org/

Software/R package for MR-cML, https://github.com/xue-hr/

MRcML
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