Skip to main content
. 2021 Jul 30;21:227. doi: 10.1186/s12911-021-01588-6

Table 1.

Empirical research for detecting COVID-19 using deep learninga

Model proposed Study Dataset size Training samples sufficiency Model performance
MODE (Multi-objective differential evolution) based CNN Singh et al. [47] 1000 + CT images  +  +  +  Accuracy—90.6%
UNET +  +  Chen et al. [44] 46,000 + CT images  +  +  + 

Accuracy—95.24%

Sensitivity—100%

Specificity—93.55%

Stacked Two CNN three dimensional for classification and VNET for Segmentation Xu et al. [43] 19,000 + CT Images with COVID-19, 1175 healthy samples  +  +  +  Accuracy—86.70%
COVNet + ResNet 50 for classification and U-Net for segmentation Li et al. [35] 4000 + CT Samples  +  +  + 

Sensitivity—90.0%

Specificity—96.0%

Transfer Learning + ResNet 50 for classification and UNet +  + (3D) for segmentation Jin et al. [10] 1100 + total samples with 730 positive samples  +  + 

AUC—0.991

Sensitivity—97.4%

Specificity—92.2%

Inception with Transfer Learning technique Wang et al. [32] 450 + CT scans of confirmed COVID-19  + 

Accuracy—82.9%

Sensitivity—84.0%

Specificity—80.5%

Neural Networks with ResNET 50, attention technique and Feature Pyramid Network Song et al. [42] 750 + Images  + 

Accuracy—86.0%

F-Score—87.0%

Sensitivity—93.0%

Deep Conv Net(2D) on ResNet-50 for classification and UNet for segmentation Gozes et al. [41] 50 + patients’ samples  + 

AUC—0.996

Sensitivity—98.2%

Specificity—92.2%

VBNet neural network to

Segment COVID-19 infection regions in CT scans

Shan et al. [13] 200 + CT scan samples  +  Dice Coef.—91.6%
2D CNN Jin et al. [10] 970 CT Scan samples  + 

Accuracy—94.0%

AUC—0.979

SVM + Wavelet transformation Barstugan et al. [39] 150 CT Scan Samples  +  Accuracy—99.68%
Deep CNN(3D) for classification and U-Net for segmentation Zheng et al. [46] 500 + Samples  +  AUC-ROC—0.959
DCNN Heinrich et al. [31] 500 + Samples  +  Dice Coef.—71.0%
CNN-LSTM Islam et al. [60] 4000 + X-ray Samples  +  +  + 

AUC—0.992

Sensitivity—99.3%

Specificity—98.9%

VGG-19-RNN Zabirul Islam et al. [59] 6000 + x-ray samples(sample with CoViD, pneumonia and normal cases)  +  +  + 

Accuracy—99.9%

AUC—99.9%

Recall -99.8%

Ensemble DCCNs Singh [1] 6000 + (sample with CoViD, tuberculosis, pneumonia)  +  +  +  Accuracy—99.2%

aRefer to Abbreviations for detailed nomenclature