Skip to main content
. 2021 Jul 30;21(Suppl 2):126. doi: 10.1186/s12911-021-01489-8

Table 2.

Model performances for predicting post-filter ionized calcium levels

Labels Models Precision (%) Recall (%) F1-score (%) Accuracy (%)
“0”: < 0.25 mmol/L AdaBoost 70.43 69.61 69.99 77.94
XGBoost 83.73 79.41 81.20 86.76
SVM 91.13 67.65 71.22 83.82
Shallow neural network 90.76 90.77 90.77 90.76
“1”: 0.25–0.35 mmol/L AdaBoost 67.39 59.21 60.04 76.32
XGBoost 82.65 78.54 86.41 85.17
SVM 92.93 77.41 79.72 86.25
Shallow neural network 88.45 88.4 88.40 88.45
“2”: 0.35–0.5 mmol/L AdaBoost 70.22 59.11 59.85 77.17
XGBoost 83.77 80.92 82.17 83.77
SVM 81.07 80.89 81.87 81.89
Shallow neural network 83.74 80.92 82.17 88.77
“3”: > 0.5 mmol/L AdaBoost 73.15 68.40 70.03 79.69
XGBoost 83.91 81.94 82.85 87.50
SVM 91.38 68.75 72.56 84.38
Shallow neural network 88.98 88.96 88.96 88.96

The bold means the best performed model for each evaluation indicator