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Abstract

role in ovarian cancer remains unclear.

JAK/STATS signaling pathway.

treatment of ovarian cancer.

Background: Nuclear receptor subfamily 1 group D member 1 (NR1D1), a nuclear receptor associated with a variety of
physiological processes, has a low level in ovarian cancer tissues compared with adjacent normal tissues. However, its

Methods: The level of NR1D1 in ovarian cancer cells was determined by quantitative real-time PCR. Its role in ovarian
cancer was explored through gain-of-function and lose-of-function. Cell growth was evaluated by CCK8 assay,
immunofluorescence and flow cytometry. Western blot was conducted to assess the activation of JAK/STAT3 signaling
pathway. A xenograft model of ovarian cancer was established to explore the role of NR1D1 in vivo.

Results: Up-regulation of NR1D1 repressed the ovarian cancer cell proliferation and induced cell cycle arrest and
apoptosis, while silencing NR1D1 promoted their proliferation and G1/S transition. In addition, the JAK/STAT3 signaling
pathway, an intracellular signal transduction closely associated with cancer progression, was inhibited by NR1D1.
Consistently, xenografts with NR1D1 over-expression grew more slowly in vivo than the controls. Furthermore, NR1D1
up-regulated the expression of suppressor of cytokine signaling 3 (SOCS3), an inhibitor of the JAK/STAT3 signaling
pathway. Whereas, SOCS3 silencing abolished the function of NR1D1 over-expression on ovarian cancer growth and

Conclusions: NR1D1 up-regulated the expression of SOCS3, resulting in suppression of the JAK/STAT3 signaling
pathway, thus retarding the growth of ovarian cancer cells. This study highlights a profound role of NR1D1 in the
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Background

Ovarian cancer is one of the most common gynecologic
malignant cancers worldwide. There was an estimate of
22,240 new cases of ovarian cancer and 14,070 deaths in
2018 in the United States [1]. Cytoreductive surgery ac-
companied with adjuvant chemotherapy is the first-line
treatment for ovarian cancer [2]. It leaves an enormous
threat to the health care system due to its high
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incidence. Due to the lack of reliable early symptoms,
the early diagnosis of ovarian cancer is difficult. Its 5-
year-survival at distant-stage is nearly 30% [3]. Thus, it
is necessary to have a better understanding of the mo-
lecular alterations in ovarian cancer to identify a novel
target for early diagnosis and treatment.

Nuclear receptor subfamily 1 group D member 1
(NR1D1), also known as REV-ERBaq, is a nuclear recep-
tor involved in the regulation of several physiological
processes [4, 5]. NR1D1 is also reported to be involved
in cancers. Pharmacological activation of NR1D1 is
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lethal to many cancers [6, 7]. It can enhance DNA dam-
age and suppress DNA repair [8, 9]. Additionally,
NR1D1 is associated with chemosensitivity of breast can-
cer [8]. Its high expression has a favorable influence on
the survival of patients with breast cancer [10]. Accord-
ing to data from gene expression profiling interactive
analysis (GEPIA) website based on the Cancer Genome
Atlas (TCGA) data, NR1D1 is lowly expressed in ovarian
cancer tissues. However, its role in ovarian cancer re-
mains unclear.

Janus kinase (JAK)/ signal transducer and activator of
transcription (STAT) 3 signaling pathway, a famous
intracellular signal transduction system, is implicated in
various bioprocesses, including proliferation, cycle pro-
gress and survival [11]. In response to binding with cyto-
kines or growth factors, these receptors coupled with
JAKs undergo a conformational change, leading to the
activation of JAKs [12]. Then the JAKs are cross-
phosphorylated and phosphorylate the cytoplasmic do-
mains of these receptors. Phosphorylated cytoplasmic
domains serve as the STAT docking sites, resulting in
STAT recruitment and phosphorylation. The phosphor-
ylation of STATSs leads to their conformational change
and translocation to the nucleus where they perform
their function as transcriptional factors regulating the
expression of target genes [13]. Abnormal activation of
the JAK/STATS3 signaling pathway, which contributes to
the pathogenesis and progression of cancers [14-16],
was also noted in ovarian cancer [17, 18]. Suppressing
the JAK/STAT3 signal markedly reduces the tumor pro-
gression and metastasis of ovarian cancer [19]. Suppres-
sor of cytokine signaling (SOCS) 3, an inhibitor of the
JAK/STAT3 signaling pathway, is correlated to the
pathogenesis and progression of multiple cancers and
regarded as a crucial tumor suppressor [20-22]. SOCS3
obstructs STAT phosphorylation via repressing the acti-
vation of JAKs [23, 24]. Interestingly, the level of SOCS3
was positively correlated to NR1D1 in ovarian cancer ac-
cording to data from GEPIA. However, whether SOCS3/
JAK/STATS3 is implicated in the role of NR1D1 in ovar-
ian cancer remains not yet clear.

Herein, we explored the function of NR1D1 on the
growth of ovarian cancer cells and the activation of
SOCS3/JAK/STAT3 signaling pathway. Our results high-
light a profound role for NR1D1 in ovarian cancer.

Methods

Gene expression analysis

Online website GEPIA (http://gepia.cancer-pku.cn/) was
used to analyze the NR1D1 expression in ovarian cancer
tissues (7 =426) and normal ovarian tissues (# = 88) as
well as its correlation to SOCS3 based on TCGA data.
The Pearson method was employed in the determination
of correlation coefficient. Kaplan-Meier plotter databases
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(https://kmplot.com/) was employed to generate the
overall survival curves (1 = 1145).

Cell culture

Human ovarian cancer cell lines COC1 (Cat No. CL-0064;
Procell, Shanghai, China), A2780 (Cat No. iCell-h004;
iCell Bioscience, Shanghai, China) and human normal
ovarian epithelial cells (NOEC; Cat No. iCell-h112; iCell
Bioscience) were grown in RPMI-1640 (Gibco, Life Tech-
nologies, Saint-Aubin, France) with 10% fetal bovine
serum (FBS; Hyclone, Logan, UT, USA). SK-OV-3 cells
(Cat No. CL-0215; Procell) were grown in McCoy’s 5A
(Procell) with 10% FBS. RPMI-1640 with 20% FBS was
used in the culture of OVCAR-3 cells (Cat No. CL-0178;
Procell) and DMEM (Gibco) with 10% FBS was employed
in the culture of 293 T cells (Cat No. ZQ0033; Zhong-
qiaoxinzhou Biotechnology, Shanghai, China). All these
cells were cultured in a humid atmosphere with 5% CO,
at 37°C. All cells were mycoplasma—free and authenti-
cated by short tandem repeat.

Transfection

Cells seeded in 6-well plates (4x 10° cells/well) were
transfected with NR1D1 over-expression plasmid (Gene-
Script, Nanjing, China), NR1D1 shRNAs or SOCS3 siR-
NAs using Lipofectamine 3000 Reagent (Invitrogen,
ThermoFisher, Waltham, Massachusetts, USA) accord-
ing to the protocol. G418 (300-400 pg/ml) was added
into cells for the selection of stably transfected cells. The
sequences (5'->3") for NR1D1 shRNAs or SOCS3 siR-
NAs were as follows:

NR1D1 shRNA-1: GCCCTGAATCCCTCTATAGTTT
CAAGAGAACTATAGAGGGATTCAGGGTTTTT;
NR1D1 shRNA-2: GGCAACATCACCAAGCTGAATT
CAAGAGATTCAGCTTGGTGATGTTGCTTTTT;
NR1D1 shRNA-3: GGTCATAACGAGGCCCTAAATT
CAAGAGAUTTAGGGCCTCGTTATGACTTTTT;
SOCS3-siRNA-1: sense: CCCAGAAGAGCCUA
UUACATT; anti-sense: UGUAAUAGGCUCUU
CUGGGTT;

SOCS3-siRNA-2: sense: UGGUCACCCACAGC
AAGUUTT,; anti-sense: AACUUGCUGUGGGUGACC
ATT

SOCS3-siRNA-3: sense: UGGCCACUCUUCAG
CAUCUTT; anti-sense: AGAUGCUGAAGAGUGGCC
ATT;

Si-NC; sense: UUCUCCGAACGUGUCACGUTT; anti-
sense: ACGUGACACGUUCGGAGAATT.

Quantitative real-time PCR (qRT-PCR)

A high-purity RNA extraction kit (BioTeke, Beijing,
China) was used to extract the total RNA. The first
strand of cDNA was synthesized using M-MLV reverse
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transcriptase (TaKaRa Bio, Shiga, Japan). qRT-PCR was
performed to determine the mRNA levels of NR1D1 and
SOCS3. The primers (5'- > 3") used were listed below:

NR1D1 forward: CCCTGGGAGTCTACAAGTGG;
NR1D1 reverse: GCGATTGATGCGGACGAT;
SOCS3 forward: TCGCCACCTACTGAACCCT;
SOCS3 reverse: GGTCCAGGAACTCCCGAAT
B-Actin forward: GGCACCCAGCACAATGAA;
B-Actin reverse: TAGAAGCATTTGCGGTGG.
B-Actin served as the internal reference. 22" method
was employed to calculate the relative level of target
mRNA .

Western blot

RIPA lysis buffer (with 1% phenylmethanesulfonyl fluor-
ide) (Beyotime, Shanghai, China) was used to lyse the
cells. After determination of protein concentration with
a BCA protein concentration determination kit (Beyo-
time), the protein samples were subjected to sodium do-
decyl sulfate-polyacrylamide gel electrophoresis followed
by transferation onto polyvinylidene fluoride membranes
(ThermoFisher). Following blocking with 5% bovine
serum albumin, the membranes were incubated with
antibodies against NR1D1 (1:1000; Abclonal, Wuhan,
China), cyclinD (1:1000; ABclonal), cyclinE (1:1000; Pro-
teintech, Wuhan, China), SOCS3 (1:1000; ABclonal),
JAK-1 (1:1000; Affinity, Changzhou, China), p-JAK1
(Tyr 1034/Tyr 1035; 1:1000; Affinity), JAK2 (1:500; Af-
finity), p-JAK2 (Tyr 1007/Tyr 1008, 1:1000; Affinity),
STAT3 (1:500; Affinity), p-STAT3 (Tyr 705, 1:500; Af-
finity), B-actin (1:2000; Proteintech) at 4°C overnight.
Thereafter, the membranes were incubated with horse-
radish peroxidase-labeled secondary antibodies (1:10000;
Proteintech) at 37°C for 40 min. Blots were visualized
with an enhanced chemiluminescence substrate kit (7
Sea biotech, Shanghai, China).

Cell viability assay

The cell viability was determined by cell counting kit-8
(CCK-8) (Sigma, St. Louis, MO, USA). Cells seeded in
96-well plates (4 x 10° cells/ well) in quintuplicate were
cultured in a cell incubator. At Oh, 6h, 24 h, 48 h and
72h, CCK-8 (10 ul) was added into cells and incubated
for 1h. A microplate reader (BIOTEK, Winooski, VT,
USA) was used to determine the absorbance at 450 nm.

Immunofluorescence

Paraffin-embedded tumors were cut into 5 pum-sections.
Then the sections were deparaffinated, rehydrated and
antigen-retrieved. Cells were seeded onto coverslips.
Forty-eight hours later, the cells were fixed in 4% parafor-
maldehyde, followed by permeabilizing in 0.1% TritonX-
100. Incubation with goat serum (Solarbio, Beijing, China)
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was performed to block non-specific sites. Then the sec-
tions were incubated with antibodies against PCNA (1:
200; Proteintech) or Ki-67(1:100; ABclonal) at 4 °C over-
night, followed by incubating with Cy3-conjudged second-
ary antibody (1:200; Beyotime). Nucleus was stained with
DAPI. Images were captured under a fluorescence micro-
scope (OLYMPUS, Tokyo, Japan).

Flow cytometry
For cell cycle determination, the cells were fixed in 70%
ice-cold ethanol. After washing in PBS, the cells were
stained with propidium iodide and RNaseA in the cell
cycle determination kit (Beyotime) at 37 °C for 30 min.
Then the cells were analyzed with a flow cytometry
(NovoCyte, ACEA Biosciences, San Diego, CA, USA).
For the determination of cell apoptosis, the cells were
stained with a cell apoptosis determination kit (KeyGen,
Nanjing, China) at room temperature for 15 min. Then
the cells analyzed with a flow cytometry.

Activities of caspase-3 and caspase-9

Cells were harvested and lysed. The levels of activated of
caspase-3 and caspase-9 in cells were determined with a
caspase-3 activity determination kit (Beyotime) or
caspase-9 activity determination kit (Solarbio) according
to the instructions.

Animal experiment protocols

BALB/c nude mice (4-week-old; Huafukang Bioscience,
Beijing, China) were fed in a standard condition (12 h-
light/dark cycles, 21-23°C, 45-55% humidity). 1 x 10°
OVCAR-3 cells with stably transfection of NR1D1 over-
expression plasmid were subcutaneously injected into the
left flank (n =6). Twenty-one days later, the mice were
sacrificed and then tumors were harvested for subsequent
hematoxylin-eosin (HE) staining, terminal deoxynucleoti-
dyl transferase-mediated dUTP nick end labeling
(TUNEL) assay and western blot. All the animal experi-
mental protocols were in accordance with the Guide for
Care and Use of Laboratory Animals and approved by the
Ethics Committee of the First Hospital of Jilin University
(20200698).

HE staining

Paraffin-embedded tumors were cut into 5 pm-sections.
After deparaffinization and rehydration, the sections
were subjected to routine HE staining.

TUNEL assay

TUNEL assay was performed using an in situ cell death
detection kit (Roche, Penzberg, Germany). After deparaf-
finization and rehydration, the sections were perme-
abilized in 0.1% TritonX-100, blocked with 3% hydrogen
peroxide and then stained with TUNEL reaction solution
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in the dark for 1h. Thereafter, the sections were incu-
bated with Converter-POD solution at 37 °C for 30 min
and visualized with a DAB substrate kit (Solarbio) and
counterstained with hematoxylin. Images were captured
under a microscope (OLUMPUS).

Statistical analysis

Data were presented as mean + standard deviation (SD).
Student’s t test or one-way analysis of variance followed
by Tukey’s multiple comparison as the post-hoc were
used in data analysis. P < 0.05 was considered as signifi-
cant difference.

Results

NR1D1 inhibited the proliferation of ovarian cancer cells
To explored the function of NR1D1 in ovarian cancer,
we employed GEPIA website to analyze the NR1D1 ex-
pression in ovarian cancer tissues (n =426) and normal
tissues (n = 88). Based on data from TCGA, the GEPIA
website showed that NR1D1 expression in ovarian can-
cer is lower than the normal tissues (Fig. 1A). Addition-
ally, the Kaplan-Meier plotter databases showed that the
low NR1D1 expression was associated with poor survival
at advanced stages (1 = 1145) (Fig. 1B). Herein, we inves-
tigated the function of NR1D1 in ovarian cancer. First,
the NR1D1 level in ovarian cancer cell lines COC1, SK-
OV3, OVCAR3, A2780 and a normal ovarian epithelial
cell NOEC was determined by qRT-PCR and western
blot. Ovarian cancer cell lines showed a lower NR1D1
level than NOEC (Fig. 1C-D). Thereafter, a NR1D1
over-expression plasmid was transfected into OVCAR3
cells, which showed the lowest NR1D1 level, to explore
the role of NR1DI1. In cells transfected with NR1D1
over-expression plasmid, the level of NR1D1 was in-
creased (Fig. 1E). In addition, the proliferation of NR1D1
over-expressed cells was slower than cells transfected
with vector (Fig. 1F). The level of PCNA, a biomarker to
evaluate the cell proliferation, was also declined in
NR1D1 over-expressed cells (Fig. 1G). In addition,
shRNAs for NR1D1 were transfected into SK-OV-3 cells,
which showed the highest NR1D1 level in ovarian cancer
cell lines. NR1D1 shRNAs decreased the level of NR1D1
in ovarian cancer cells (Fig. 1H). Meanwhile, the prolif-
eration of NR1D1 silenced cells was accelerated (Fig. 1I),
with an increased PCNA level (Fig. 1J). These results
suggested that NR1D1 inhibited the proliferation of
ovarian cancer cells.

NR1D1 induced cell cycle arrest and apoptosis in ovarian
cancer cells

Cell cycle and apoptosis are important factors impacting
the cell growth. The role of NR1D1 in the cell cycle was
further explored by flow cytometry. In NR1D1 over-
expressed cells, the percentage of cells in G1 phase was
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increased (Fig. 2A). The levels of cyclinD and cyclinE,
which were important factors controlling G1/S transi-
tion, were also declined in NR1D1 over-expressed cells
(Fig. 2B). In addition, in NR1D1 silenced cells, the per-
centage of cells in G1 phase was decreased (Fig. 2C), and
the levels of cyclinD and cyclinE were increased (Fig.
2D). These results indicated that NR1D1 retarded cell
cycle of ovarian cancer cells.

Furthermore, the function of NR1D1 in cell apoptosis was
also explored. In NR1D1 over-expressed cells, the percentage
of apoptotic cells was increased (Fig. 2E). The activities of
caspase-3 and caspase-9, which were important biomarkers
for apoptosis, were also increased in NR1D1 over-expressed
cells (Fig. 2F). These results suggested that NR1D1 induced
apoptosis of ovarian cancer cells.

NR1D1 inhibited the activation of JAK/STAT3 signaling
pathway

The JAK/STATS3 signaling pathway plays a critical role
in cancers. We found that in NR1D1 over-expressed
cells, the levels of phosphorylated JAK1, JAK2 and
STAT3 were decreased, while there were no significant
changes in the levels of total JAK1, JAK2 and STAT3
(Fig. 3A). Consistently, in NR1D1 silenced cells, the
levels of phosphorylated JAK1, JAK2 and STAT3 were
increased, with no significant changes in the levels of
total JAK1, JAK2 and STAT3 (Fig. 3B). These results re-
vealed that NR1D1 inhibited the activation of JAK/
STATS3 signaling pathway.

NR1D1 suppressed the growth of ovarian cancer cells

in vivo

The role of NR1D1 in the growth of ovarian cancer cells was
also explored in vivo. Tumors with NR1D1 over-expression
were smaller than the controls (vector), with lighter tumor
weights (Fig. 4A). Tumors with NR1D1 over-expression
showed increased TUNEL staining with distinct regions of
apoptosis/necrosis unlike tumors in the control group (Fig.
4B), which was consistent with the decreased tumor vol-
umes. Besides, as determined by immunofluorescence, there
was a decreased Ki-67 staining in NR1D1 over-expressed tu-
mors compared with the controls (Fig. 4C). Furthermore, in
tumors with NR1D1 over-expression, the levels of phosphor-
ylated JAK1, JAK2 and STAT3 were decreased, whereas, the
level of total JAK1, JAK2 and STAT3 showed no significant
difference (Fig. 4D). These results suggested that NR1D1 sup-
pressed the in vivo growth of ovarian cancer cells and activa-
tion of the JAK/STATS3 signaling pathway.

NR1D1 inhibited the proliferation and induces apoptosis
through up-regulating SOCS3

The level of SOCS3 in ovarian cancer cell lines was
lower than that in NOEC, at both mRNA level and pro-
tein level (Fig. 5A-B). According to data from TCGA,
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Fig. 1 NR1D1 inhibited the proliferation of ovarian cancer cells. A Data from TCGA showed that NR1D1 has a low expression level in ovarian cancer
tissues (ovarian cancer n =426 and normal ovarian tissues n = 88). B Low NR1D1 level was correlated to the poor survival of ovarian cancer patients at
advanced stage (n = 1145). C-D The level of NR1D1 in ovarian cancer cell lines COC1, SK-OV-3, OVCAR-3, A2780 and normal ovarian epithelial cell line
(NOEQ) was determined by quantitative real-time PCR and western blot. E Transfection efficiency of NR1D1 over-expression plasmid was determined
by western blot. F After transfection with NR1D1 over-expression plasmid, the proliferation of ovarian cancer cells was determined with CCK-8. G The
level of PCNA in ovarian cancer cells was determined by immunofluorescence after transfection with NR1D1 over-expression plasmid. Scale bar =

50 um. H The transfection efficiencies of NR1D1 shRNAs in ovarian cancer cells were determined by western blot. I The proliferation of NR1D1 silenced
cells was determined with CCK-8. (J) Immunofluorescence was performed to determine the level of PCNA in NR1D1 silenced cells. Scale bar = 50 ym.
The results are presented as mean + SD

|
A ovears vector  C  skovs Sh-NC E  ovcars Vector
60.78% 60.56%%
44.2% 44.92% o o
—='21.98% 21.22% 119,24% 19.83%

33.79%

r—|33_§1% 19.98% 19.6;]%

NR1D1-OE NR1D1-shRNA-1 NR1D1-shRNA-2 2
55.61% 5&424 53% pO-99% 14% <
HS:39% 3.91% g =
20.0% : 2sa
Annexin V-PE
P=0.013 P=0.0183
o S0 B OVCAR-3 Y B0 P='0 013'2 W SK-OV-3 30- P<0.0001
=39 O Vector = — O Sh-NC “—w L—
- @ B NR1D1-OE O T 6o B NR1D1-shRNA-1 08, ]
° 8 ° g B NR1D1-shRNA2 B o
55 Qc =
g gaw RS
€ 'S 20+ g '5 2 S0
o ® S S ol o S
o0 °32 ag
o= o= N
G1 S G2 G1 ) G2 ® & &
B ch’v. & \\'
cyclinD/B-actin_1.64 1.64 0.47  cyclinD/B-actin 0.20 0.21 0.96 0.95 F &
cyclinD| s ah cyclinD - “
. Y . Bl OVCAR3[ Vector H NR1D1-OE
cyclinE/B-actin_0.35 0.33 0.12 cyclinE/B-actin 0.31 0.32 0.53 0.54 Caspase 9
cyclinE [H— CyclinE| w e s Ca; 355003 P=0.0002
B-actin| w——— B-actin’“ s
) % N 8
S N Y& 8
Y @ N O & 3
NN ¥ ¢ & & 2
N 2) S X ©
(o) §' \'fo 2 o
S
QL‘ N
S &

Fig. 2 NR1D1 induced cell cycle arrest and apoptosis in ovarian cancer cells. A Cell cycle of NR1D1 over-expressed cells was determined by flow
cytometry. B The levels of cyclinD and cyclinE were determined by western blot. C Flow cytometry was performed to determine the cell cycle of
NR1D1 silenced cells. D Western blot was performed to determine the levels of cyclinD and cyclinE. E Apoptosis of NR1D1 over-expressed cells
was determined by flow cytometry. F After transfection with NR1D1 over-expression plasmid, the levels of activated caspase-3 and caspase-9
were determined. The results are presented as mean + SD
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Fig. 3 NR1D1 inhibited the activation of JAK/STAT3 signaling pathway. A After transfection with NR1D1 over-expression plasmid in OVCAR-3 and
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blot was performed to determine the levels of phosphorylated JAK1, phosphorylated JAK2 and phosphorylated STAT3 in NR1D1 silenced cells
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NR1D1 was positively correlated with SOCS3, an inhibi-
tor of the JAK/STATS3 signaling pathway (Fig. 5C). In
NR1D1 over-expressed cells, the level of SOCS3 was in-
creased, while in NR1D1 silenced cells, the SOCS3 level
was decreased (Fig. 5D-F). On the other hand, in tumors
with NR1D1 over-expressed, the level of SOCS3 was also
increased (Fig. 5G). These results demonstrated that
NR1D1 positively regulated the expression of SOCS3.

Thereafter, SOCS3 siRNAs were introduced to explore
whether NR1D1 performed its function through regulat-
ing SOCSS3. First, the efficiencies of SOCS3 siRNAs were
confirmed by western blot (Fig. 5H). Thereafter, SOCS3
siRNA was co-transfected into cells with NR1D1 over-
expression, and then the cell viability, apoptosis and
phosphorylation of STAT3 were detected. In cells co-
transfected with NR1D1 over-expression plasmid and
SOCS3 siRNA, the cell viability was higher (Fig. 5I) and
the percentage of apoptotic cells was lower (Fig. 5]) than
cells co-transfected with NR1D1 over-expression plas-
mid and si-NC. In addition, the level of phosphorylated
STAT3 was increased in cells co-transfected with
NR1D1 over-expression plasmid and SOCS3 siRNA (Fig.
5K). It was indicated that silencing SOCS3 abolished the
function of NR1D1 over-expression on the proliferation
and apoptosis of ovarian cancer cells as well as the acti-
vation of STAT3 signal (Fig. 6).

Discussion
Data from TCGA showed that NR1D1 has a low expres-
sion level in ovarian cancer tissues, whereas, its role in

ovarian cancer is not yet clear. In the present study, we ex-
plored the function of NR1D1 in ovarian cancer. Our
study showed that NR1D1 suppressed the proliferation
and induced apoptosis of ovarian cancer cells. Further
study showed that NR1D1 inhibited the activation of JAK/
STATS3 signaling pathway through positively regulating
SOCS3. These data highlight a profound role of NR1D1 in
the treatment of ovarian cancer. NR1D1 is also implicated
in the regulation of circadian rhythm. Circadian rhythm
disruption is reported to increase the cancer risk [25, 26].
Accordingly, the World Health Organization classified the
shift-work, which was associated with disrupted circadian
rhythm, as a possible carcinogen [27]. Moreover, circadian
rhythm gene Bmall, which was down-regulated in tongue
squamous cell carcinoma (TSCC), suppressed the growth
and metastasis of TSCC [28]. Circadian rhythm gene
PER2, which had a low expression in ovarian cancer cells,
repressed the growth of ovarian cancer cell SKOV-3 and
enhanced their sensitivity to cisplatin [29]. Hence, abnor-
mal expression of circadian rhythm genes has a close rela-
tionship with cancer risk and chemotherapy sensitivity
[29-33].

Dysregulation of gene expression in cancers may con-
tribute to the tumourgenesis. NR1D1 has a low level in
ovarian cancer cell lines. Also, according to data from
TCGA, NR1D1 has a low level in ovarian cancer tissues.
Its low level is also associated with the poor survival of
ovarian cancer patients at advanced stage. Hence, we
wonder what the function of NR1D1 is in ovarian cancer
cells. Over-expression of NRID1 retarded the
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proliferation of ovarian cancer cells, while NR1D1 silen-
cing accelerated their growth, suggesting that NR1D1
suppresses the growth of ovarian cancer cells. In
addition, PCNA, which is closely related to cell prolifera-
tion and served as a biomarker of cell growth, was also
reduced by NR1DI1. These results provided additional
evidence for our hypothesis that NR1D1 suppresses the
growth of ovarian cancer. Besides, its in vivo growth was
also repressed by over-expression of NR1D1, indicating
that NR1D1 may act as a tumor suppressor. Consist-
ently, down-regulation of NR1D1 promotes the prolifer-
ation of colon cancer cells [34], while activation of
NR1D1 is lethal to cancer cells [6]. NR1D1 is also asso-
ciated chemosensitivity [8]. Hence, we hypothesize that
activation of NR1D1 may be beneficial to the treatment
of ovarian cancer.

Cell cycle is a key factor that orchestrates the cell
growth. Our study showed that NR1D1 arrested cell
cycle at G1 phase and decreased the levels cell cycle-
associated proteins, such as cyclins, indicating that cell
cycle arrest induced by NR1D1 may contribute to its
role in ovarian cancer growth. Consistently, activation of
NR1D1 was also reported to reduce the level of cyclinA
in breast cancer cells [7]. On the other hand, apoptosis
was induced by NR1D1 over-expression, which may
contribute to the tumor-suppressor role of NR1D1 in
ovarian cancer. Apoptosis of cancer cells contributes to
the therapeutic effects of anti-tumor drugs. NR1D1 is re-
ported to be recruited to the damaged DNAs and in-
hibits their repair [8]. It also enhances the accumulation
of ROS-induced DNA damage in breast cancer cells
through the interaction with PARPI1, thus increasing
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their sensitivity to oxidative stress [9]. As chemothera-
peutic drugs for ovarian cancer treatment also promote
the generation of ROS [35], we speculate that NR1D1

may also influence the chemoresistance of ovarian can-
cer cells. This speculation may be further confirmed in
our future study.
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Activation of the JAK/STAT3 signaling pathway con-
tributes to the uncontrolled proliferation of cancer cells,
including ovarian cancer [36]. Inhibition of the JAK/
STAT3 signal suppresses the growth of ovarian cancer
cells [37] and reduces their dissemination to the periton-
eal cavity [19]. In our study, the JAK/STATS3 signaling
pathway was inhibited by NR1D1 over-expression and
enhanced by NR1D1 silencing, indicating that the JAK/
STATS3 signal may be implicated in the role of NR1D1
in ovarian cancer cells. We wonder how NR1D1 influ-
ences the JAK/STAT3 signal in ovarian cancer cells.
SOCS3 is an inhibitor of the JAK/STAT3 signaling path-
way. The expression of SOCS3 is induced by excessive
STATs activation, which in turn suppresses the bond of
JAKs to receptors, thus suppressing their kinase activ-
ities as well as the phosphorylation of STAT3 [38]. On
the other hand, SOCS3 promotes the ubiquitination and
degradation of JAKs, thus reducing their stability [39].
As SOCS3 has a low expression level in ovarian cancer
tissues [40] and positively correlated with the level of
NR1D1, we speculate that NR1D1 may influence the
JAK/STATS3 signaling pathway as well as ovarian cancer
cell growth through modulating SOCS3. We found that
NR1D1 positively regulated the expression of SOCS3.
Additionally, silencing SOCS3 abolished the effect of
NR1D1 over-expression on the proliferation and apop-
tosis of ovarian cancer cells, confirming that NR1D1
performs its role in ovarian cancer cells through modu-
lating the expression of SOCS3. However, it is unclear

how NR1D1 regulates the level of SOCS3. According to
literature review, NR1D1 positively regulated the expres-
sion of transcription factor EB (TFEB) [41], while TFEB
up-regulated the expression of SOCS3 [42]. Thus we
speculated that NR1D1 may up-regulate the level of
SOCS3 via TFEB. Other cytokines may also participate
in the regulation of SOCS3 by NR1D1, and more re-
searches are needed.

Conclusions

Our study revealed that NR1D1 inhibited the activation
of JAK/STATS3 signaling pathway through up-regulating
SOCS3, thus suppressing proliferation and inducing
apoptosis of ovarian cancer cells. These results indicate
that NR1D1 may act as a tumor-suppressor in ovarian
cancer cells, and provide basis for novel strategy of ovar-
ian cancer treatment.
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