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Abstract

Deep learning algorithms are emerging as powerful alternatives to compressed sensing methods, 

offering improved image quality and computational efficiency. Unfortunately, fully sampled 

training images may not be available or are difficult to acquire in several applications, including 

high-resolution and dynamic imaging. Previous studies in image reconstruction have utilized 

Stein’s Unbiased Risk Estimator (SURE) as a mean square error (MSE) estimate for the image 

denoising step in an unrolled network. Unfortunately, the end-to-end training of a network using 

SURE remains challenging since the projected SURE loss is a poor approximation to the MSE, 

especially in the heavily undersampled setting. We propose an ENsemble SURE (ENSURE) 

approach to train a deep network only from undersampled measurements. In particular, we show 

that training a network using an ensemble of images, each acquired with a different sampling 

pattern, can closely approximate the MSE. Our preliminary experimental results show that the 

proposed ENSURE approach gives comparable reconstruction quality to supervised learning and a 

recent unsupervised learning method.
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1. INTRODUCTION

MRI is a non-invasive imaging modality that gives excellent soft-tissue contrast. Several 

acceleration methods have been introduced to overcome the slow nature of MRI acquisition, 

thus improving patient comfort and reducing costs. Compressed sensing (CS) [1] can 

reconstruct MR images from fewer k-space samples using a computational algorithm. 

Recently, deep learning based techniques were introduced to minimize the computational 

complexity of the reconstruction algorithms by several orders of magnitude. Most of the 

current methods learn the parameters of the network from a large dataset of fully-sampled 

and noise-free images. Unfortunately, fully sampled and noise-free training data is not 

available or difficult to be acquired in several MR applications, such as high-resolution MRI.

The main focus of this work is on unsupervised deep learning, where fully-sampled noise-

free images are not needed for training. The proposed unsupervised framework is broadly 

applicable to both model-based methods, which explicitly ensures the data-consistency 

during reconstruction [2–8], as well as direct-inversion methods [9, 10]. As compared to 

supervised, unsupervised training for image reconstruction is more challenging and less 
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studied. The deep image prior (DIP) [11] uses a CNN that is trained only using the measured 

data from the specific subject, where the structure of the CNN serves as an implicit 

regularizer. However, DIP requires early stopping by manually observing the images, while 

resulting in a sub-optimal reconstruction quality compared to supervised learning methods. 

A recent work, in [12], proposes a CycleGAN based method for dynamic contrast 

enhancement in MR angiography. Self-supervised learning via data undersampling (SSDU) 

[13] suggests partitioning the measured k-space into two disjoint sets. The first set is used in 

the data consistency step, and another set is used for measuring the MSE loss.

The Stein’s unbiased risk estimate (SURE) [14] of mean-square-error (MSE) has been 

widely used to find regularization parameters in denoising problems [15] and recently to 

train deep denoisers [16]. The generalized SURE (GSURE) approach extended SURE to 

inverse problems, where an estimate of the projection of the MSE to the range of the 

measurement operator was considered [17]; this approach is also used to determine 

regularization parameters of inverse problems. A challenge in directly using GSURE to train 

deep image reconstruction algorithm in an end-to-end fashion is the poor approximation of 

the MSE by the projected MSE, especially in compressed sensing applications [16]. Hence, 

the LDAMP-SURE [16] algorithm relies on training different denoisers at each iteration in a 

message-passing iterative algorithm using the SURE loss [16, 18].

In this work, we propose an ensemble SURE (ENSURE) loss for the end-to-end training of 

image reconstruction algorithms. We first show that a weighted loss metric obtained from an 

ensemble of images, each acquired with a different sampling pattern, is an unbiased estimate 

for the MSE. We illustrate the proposed approach in the special cases of single-channel and 

multichannel MRI. The preliminary experiments demonstrate that proposed ENSURE 

approach can give comparable results to supervised training in both direct-inversion and 

model-based settings, while improving upon [13].

2. BACKGROUND

2.1. Inverse problems

We consider the case where an image ρ is only known through its measurements ys from the 

acquisition operator As parameterized by the random vector s. The vector s can be viewed as 

the k-space sampling mask. The forward model representing the measurement process is 

given by

ys = Asρ + n . (1)

We assume the noise n to be Gaussian distributed with zero mean and covariance matrix C 

such that n ~ N(0, C). The probability density of ys is given by p ys ∣ s = N Asρ, C .

Deep learning methods have been introduced to reconstruct fully sampled image ρ from 

noisy and undersampled measurements ys. The recovery using a deep neural network fΦ with 

trainable parameters Φ can be represented as
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ρ = fΦ ys . (2)

Here fΦ can be a direct-inversion or a model-based deep neural network. Most of the current 

deep learning solutions rely on supervised training, where fully sampled images are used as 

ground truth. However, it is challenging to acquire fully sampled data in many cases.

2.2. Unsupervised learning for denoising

The unsupervised learning of denoising algorithms (i.e, when A = ℐ) have been extensively 

studied, resulting in popular schemes such as Noise2Noise [19] and Noise2Void [20]. 

Recently, several researchers have adapted the Stein’s unbiased risk estimate (SURE) [14] 

for the unsupervised training of deep image denoisers [16, 18]. When C = σ2ℐ, SURE 

methods use an unbiased estimate of the mean-square error (MSE) as

E[ ρ − ρ 2] = E[ ρ − ys
2] + 2σ2E[∇ys ⋅ fΦ ys ] − Nσ2 . (3)

This scheme has been demonstrated in [16,18] for the training of deep learned denoisers.

2.3. Unsupervised learning for inverse problems

SURE methods has been extended to inverse problems in [17] with rank deficient As
operators, where the original MSE is approximated by the projected MSE as

MSEs = Eρ Ps(ρ − ρ) 2, (4)

where Ps = As
H AsAs

H −1As is the projection operator to the range space of As
H. This 

extension was considered for the training of deep learned inverse problems in [16]. However, 

in applications involving heavily undersampled measurements, MSEs is a poor 

approximation of MSE; current methods report poor results from end-to-end learning using 

SURE [16]. The LDAMP-SURE algorithm in [16] instead relies on layer-by-layer training 

of deep learning denoisers, assuming the noise at each iteration to be Gaussian distributed. 

This approach suffers from some deficiencies. First, this approach relies on approximate 

message passing algorithm and is not directly applicable to general model-based or direct 

inversion algorithms. Second, LDAMP-SURE was implemented for small images with 

Gaussian measurement matrices. Finally, we note that the end-to-end supervised training 

offers improved performance than layer-by-layer training strategies; we expect to obtain 

improved performance by end-to-end unsupervised training, provided improved loss 

functions were available. The proposed ENSURE approach is applicable to any direct-

inversion and model-based unrolled networks. In this work, we evaluate our proposed 

approach on more general measurement matrices with complex-valued parallel MR images.

3. PROPOSED ENSEMBLE SURE (ENSURE)

To overcome the poor approximation of the MSE by MSEs, we consider the sampling of 

each image by a different operator. In the MRI context, we assume the k-space sampling 

mask s to be a random vector drawn from the distribution S. Note that this acquisition 
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scheme is realistic and can be implemented in many applications. For instance, it may be 

difficult to acquire a specific image in a fully sampled fashion due to time constraints. 

However, one could use a different undersampling mask for each image ρ ∈ ℐ, the image 

manifold.

Instead of the projected MSE in (4), we first consider the expectation of the projected MSE, 

computed over different sampling patterns and images. If us = 1
σ2As

Hys is the sufficient 

statistic for the model in (1), we have

Q = Es S Eus Ps fΦ us − ρ 2 . (5)

Using properties of expectation operator and projection matrices, (5) simplifies to weighted 

MSE term

Q = Eus W fΦ(u) − ρ 2
(6)

The derivation is detailed in [21]. If the sampling distribution S is chosen appropriately, one 

can guarantee that W = E Ps  is a full-rank matrix with high probability. In the single 

channel MRI setting, W corresponds to weighting the k-space data by the density of the 

samples. Depending on the probability distribution of the operators S, some subspace 

components may be weighted more than others. To compensate for this weighting, we now 

consider the weighted version of the projected MSE using the matrix W−1. We hence 

consider a weighted version of (6), denoted by

ℒ = Eus Es Ws fΦ us − ρ 2
2

(7)

Specifically, we choose the operator Ws =W−1Ps depending on the sampling pattern. The 

expression in (7) allows estimating the true MSE from only the undersampled 

measurements. It is impossible to compute (7) since it depends on the ground truth images 

ρ ∈ ℐ. We hence approximate it by its unbiased ENSURE estimate.

Lemma 1 Let As; s ∈ S denote a family of sampling operators measuring images ρ ∈ I, and 

let fϕ be a weakly differentiable reconstruction network. Then the loss ℒ in (7) is equal to

ℒ = Eus Es Ws fΦ us − ρLS, s 2
2

data term

+

2Eus ∇us ⋅ fΦ us
divergence

+ K
constant

,
(8)

where

ρLS, s = − As
HC−1As

†As
HC−1ys (9)
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is the least-square solution of (1). ∇usrepresents the divergence of the network fΦ with 

respect to its input us.

Proof is shown in [21]. We now consider two special cases of single-channel and multi-

channel MRI.

3.1. Single-channel MRI

In the single-channel setting As(ρ) = Sℱ(ρ), where ℱ is the Fourier transform and S is the 

sampling matrix. Here, ρLS, s = ℱHSHys. We assume the probability of a specific k-space 

sample to be acquired as a Bernoulli distribution with a probability ωi, which may be 

varying spatially; a variable density distribution with higher density in the center of k-space 

is a common choice in compressed sensing application. The expectation of the projection 

operators Ps in this case yields W = ℱHdiag(w)ℱ. In this case, the data term in (8) simplifies 

to

EsEus W−1 Asfϕ us − ys 2
2

(10)

We evaluate the divergence term using Monte-Carlo SURE approach [22].

3.2. Multichannel MRI

In the context of parallel MRI, the sampling operator is given by A(ρ) = SℱCρ, where C 

denotes the coil sensitivity weighting, ℱ denotes the Fourier transform and S denotes the 

multichannel sampling matrix. Here, we rely on ρLS, s computed using the conjugate 

gradient based SENSE algorithm, which solves

ρLS, s = argmin
ρ

‖Asρ − ys‖2 + λ‖ρ‖2
(11)

with λ → 0. The projection Psρ of ρ onto the range space of As
H is obtained by solving (11). 

In this work, we choose W = ℱHdiag(w)ℱ for simplicity, which will undo the low-pass 

weighting of the MSE introduced by the averaging in (4). The outline of the data term and 

the divergence term are shown in Fig. 1.

We note that for each sampling pattern, the data term involves the difference between the 

reconstructed image and the corresponding CG-SENSE solution. However, we only compare 

the projection of the errors onto the range space of the measurement operator, evaluated 

using CG-SENSE of the measurements of the errors. An additional weighting is used to 

compensate for the non-uniform density of the sampling patterns in k-space. The divergence 

term may be viewed as a network regularization, which serves to minimize noise 

amplification. We compute the divergence term using Monte-Carlo approximation [22]. 

Note that the use of the data term alone will result in overfitting, similar to observations in 

deep image prior methods as the number of epochs increase. As shown by the theory, the 

averaging of the sum of the error measures and divergence terms over a variety of sampling 

patterns closely approximate the MSE, without requiring ground truth images [21].
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4. EXPERIMENTS AND RESULTS

We consider a parallel MRI brain data obtained using a 3-D T2 CUBE sequence with 

Cartesian readouts using a 12-channel head coil at the University of Iowa on a 3T GE 

MR750w scanner. The matrix dimensions were 256 × 232 × 208 with a 1 mm isotropic 

resolution. Fully sampled multichannel brain images of nine volunteers were collected, out 

of which data from five subjects were used for training, while the data from two subjects 

were used for testing and the remaining two for validation.

We compare the proposed ENSURE approach with a supervised learning approach named 

MoDL [3] and a recent unsupervised learning approach named SSDU [13]. We also compare 

the performance in direct-inversion and model-based frameworks. The direct inversion 

approach had a standard 18-layer ResNet architecture with 3×3 filters and 64 feature maps at 

each layer. Both SSDU and MoDL had the same architecture with 5-repetitions of ResNet 

and data consistency with shared weights. For SSDU, we used 60% of measured k-space for 

data consistency step and 40% for MSE estimation, as suggested in the [13]. The real and 

imaginary components of complex data were used as channels in all the experiments.

Table 1 shows results of proposed ENSURE approach on the test dataset at six-fold 

acceleration and noise of standard deviation σ = 0.01. It also shows comparison of SSDU 

[13] with the proposed ENSURE approach. The proposed approach results in higher peak 

signal to noise ratio (PSNR) and structural similarity index (SSIM) as compared to SSDU.

Figure 2 compares the visual quality obtained from the proposed unsupervised learning 

using the ENSURE approach with a supervised learning and an existing unsupervised 

learning (SSDU) approach at six-fold acceleration and noise std=0.03. It is clear from the 

zoomed region that the proposed ENSURE approach provides cleaner reconstruction than 

the existing SSDU approach.

5. CONCLUSIONS

We proposed an unsupervised learning approach for linear inverse problems with non-trivial 

measurement operator. We showed that projected MSE is equivalent to weighted MSE when 

expected over an ensemble of sampling operators. We further derive an unbiased estimate, 

ENSURE, for the inverse weighted MSE. Here, we omitted the proof of Lemma 1 due to 

space constraints. The current experiments are limited to a relatively small dataset as a proof 

of concept.

Acknowledgments

This work is supported by 1R01EB019961-01A1. This work was conducted on an MRI instrument funded by 
1S10OD025025-01

6. REFERENCES

[1]. Candes Emmanuel and Romberg Justin, “Sparsity and incoherence in compressive sampling,” 
Inverse problems, vol. 23, no. 3, pp. 969, 2007.

[2]. Hammernik Kerstin, Klatzer Teresa, Kobler Erich, Recht Michael P., Sodickson Daniel K., Pock 
Thomas, and Knoll Florian, “Learning a Variational Network for Reconstruction of Accelerated 

Aggarwal et al. Page 6

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MRI Data,” Magnetic resonance in Medicine, vol. 79, no. 6, pp. 3055–3071, 2017. [PubMed: 
29115689] 

[3]. Aggarwal Hemant K, Mani Merry P, and Jacob Mathews, “MoDL: Model based deep learning 
architecture for inverse problems,” IEEE Trans. Med. Imag, vol. 38, no. 2, pp. 394–405, 2019.

[4]. Pramanik Aniket, Aggarwal Hemant, and Jacob Mathews, “Deep generalization of structured low-
rank algorithms (Deep-SLR),” IEEE Transactions on Medical Imaging, 2020.

[5]. Adler Jonas and Öktem Ozan, “Learned primal-dual reconstruction,” IEEE Trans. Med. Imag, vol. 
37, no. 6, pp. 1322–1332, 2018.

[6]. yang yan, Sun Jian, Li Huibin, and Xu Zongben, “Deep ADMM-Net for compressive sensing 
MRI,” in Advances in Neural Information Processing Systems 29, 2016, pp. 10–18.

[7]. Yang Guang, Yu Simiao, Dong Hao, Slabaugh Greg, Dragotti Pier Luigi, Ye Xujiong, Liu Fangde, 
Arridge Simon, Keegan Jennifer, Guo Yike, et al., “DAGAN: Deep de-aliasing generative 
adversarial networks for fast compressed sensing MRI reconstruction,” IEEE Trans. Med. Imag, 
vol. 37, no. 6, pp. 1310–1321, 2017.

[8]. Schlemper Jo, Caballero Jose, Hajnal Joseph V, Price Anthony N, and Rueckert Daniel, “A deep 
cascade of convolutional neural networks for dynamic MR image reconstruction,” IEEE Trans. 
Med. Imag, vol. 37, no. 2, pp. 491–503, 2018.

[9]. Han Yoseob, Sunwoo Leonard, and Ye Jong Chul, “k-space deep learning for accelerated MRI,” 
IEEE Trans. Med. Imag, 2019.

[10]. Ronneberger Olaf, Fischer Philipp, and Brox Thomas, “U-net: Convolutional networks for 
biomedical image segmentation,” in International Conference on Medical Image Computing and 
Computer-Assisted Intervention (MICCAI). Springer, 2015, pp. 234–241.

[11]. Ulyanov Dmitry, Vedaldi Andrea, and Lempit-sky Victor, “Deep image prior,” in Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9446–9454.

[12]. Cha Eunju, Chung Hyungjin, Kim Eung Yeop, and Ye Jong Chul, “Unpaired training of deep 
learning tmra for flexible spatio-temporal resolution,” IEEE Transactions on Medical Imaging, 
2020.

[13]. Yaman Burhaneddin, Hosseini Seyed Amir Hossein, Moeller Steen, Ellermann Jutta, Kâmil 
Uğurbil, and Akçakaya Mehmet, “Self-supervised learning of physics-guided reconstruction 
neural networks without fully sampled reference data,” Magnetic resonance in medicine, 2020.

[14]. Stein Charles M, “Estimation of the mean of a multivariate normal distribution,” The annals of 
Statistics, pp. 1135–1151, 1981.

[15]. Blu Thierry and Luisier Florian, “The sure-let approach to image denoising,” IEEE Transactions 
on Image Processing, vol. 16, no. 11, pp. 2778–2786, 2007. [PubMed: 17990754] 

[16]. Metzler Christopher A, Mousavi Ali, Heckel Reinhard, and Baraniuk Richard G, “Unsupervised 
learning with stein’s unbiased risk estimator,” arXiv preprint arXiv:1805.10531, 2018.

[17]. Eldar Yonina C, “Generalized sure for exponential families: Applications to regularization,” 
IEEE Transactions on Signal Processing, vol. 57, no. 2, pp. 471–481, 2008.

[18]. Zhussip Magauiya, Soltanayev Shakarim, and Chun Se Young, “Training deep learning based 
image denoisers from undersampled measurements without ground truth and without image 
prior,” in IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 10255–
10264.

[19]. Lehtinen Jaakko, Munkberg Jacob, Hasselgren Jon, Laine Samuli, Karras Tero, Aittala Miika, 
and Aila Timo, “Noise2noise: Learning image restoration without clean data,” in International 
Conference on Machine Learning, 2018, pp. 2965–2974.

[20]. Krull Alexander, Buchholz Tim-Oliver, and Jug Florian, “Noise2void-learning denoising from 
single noisy images,” in IEEE Conference on Computer Vision and Pattern Recognition, 2019, 
pp. 2129–2137.

[21]. Aggarwal Hemant Kumar, Pramanik Aniket, and Jacob Mathews, “ENSURE: Ensemble Stein’s 
Unbiased Risk Estimator for Unsupervised Learning,” in arXiv, 2021, https://arxiv.org/abs/
2010.10631.

[22]. Ramani Sathish, Blu Thierry, and Unser Michael, “Monte-carlo sure: A black-box optimization 
of regularization parameters for general denoising algorithms,” IEEE Transactions on image 
processing, vol. 17, no. 9, pp. 1540–1554, 2008. [PubMed: 18701393] 

Aggarwal et al. Page 7

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/2010.10631
https://arxiv.org/abs/2010.10631


Fig. 1. 
Visual representation of the computation of the data and divergence terms in the proposed 

ENSURE estimate in (8). Here, ⨁ and ⊗ represent the addition and inner-product, 

respectively.
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Fig. 2. 
Reconstruction results at 6x acceleration and noise std=0.03 in the model-based framework. 

The proposed ENSURE estimate of the MSE can reach the performance of supervised 

training (in (b)) where MSE is used as loss function.
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Table 1.

Comparison of PSNR and SSIM values in the direct-inversiona and model-based framework at six-fold 

acceleration in the presence of Gaussian noise of std=0.01.

Framework Direct-Inversion Model-Based

Algorithm PSNR SSIM PSNR SSIM

SSDU [13] 31.85 0.79 37.89 0.94

ENSURE 32.67 0.88 38.44 0.96

Supervised 34.85 0.95 39.31 0.98
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