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Abstract

Despite broad scientific interest in harnessing the power of Earth’s microbiomes, knowledge gaps 

hinder their efficient use for addressing urgent societal and environmental challenges. We argue 

that structuring research and technology developments around a design-build-test-learn (DBTL) 

cycle will advance microbiome engineering and spur new discoveries on the basic scientific 

principles governing microbiome function. In this Review, we present key elements of an iterative 

DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top-

down and bottom-up design processes, synthetic and self-assembled construction methods, and 

emerging tools to analyze microbiome function. These approaches can be used to harness 

microbiomes for broad applications related to medicine, agriculture, energy, and the environment. 
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We also discuss key challenges and opportunities of each approach and synthesize them into best 

practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL 

framework will rapidly advance microbiome-based biotechnologies aimed at improving human 

and animal health, agriculture, and enabling the bioeconomy.

ToC blurb

Microbiome engineering has many potential applications, ranging from agriculture to medicine. In 

this Review, Lawson, McMahon and colleagues guide us through the design-build-test-learn cycle 

that has been successful in many disciplines and explain how it applies to microbiome 

engineering.
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Introduction

Microbial communities have seemingly limitless capabilities, driving Earth’s 

biogeochemical cycles and occupying every environmental niche1,2. Engineers and scientists 

have tapped into this power for a long time; for example, by manipulating soil microbiomes 

to increase crop productivity3, by stimulating naturally-occurring or introduced microbiomes 

to remediate contaminated groundwater4, or by building reactor microbiomes to recover 

valuable resources from wastewater5. Although these accomplishments highlight the 

valuable functions of microbiomes, the vast majority of the microbial world’s transformative 

capabilities have yet to be unlocked and harnessed. Recent insights driven by DNA 

sequencing have shed light on the high genetic diversity of not-yet-cultured microorganisms 

and their crucial roles in diverse ecosystems6,7, providing a window on potentially novel 

biotechnology applications.

In recognition of this unlocked potential, funding agencies and the international science 

community have called for a global effort to advance microbiome research8,9. These 

initiatives have recognized the need for microbiome science to move beyond descriptive 

studies, and embrace a systems approach that generates the mechanistic, predictive, and 

actionable understanding that enables rational microbiome engineering8. However, 

achieving this transition is hindered by the lack of tractable experimental systems that permit 

the detailed functional investigation of microbiomes, the large pool of microbiome gene and 

metabolite functions that remain unknown10, the many uncharacterized interactions (for 

example, syntrophy) between microorganisms11, inadequate tools to accurately measure and 

simulate microbiome functions across time and space, and the limited availability of 

approaches to precisely manipulate microbiome structure and function.

Integrating basic scientific discovery with engineering can overcome these challenges and 

develop innovative solutions that support sustainable natural resources management and 
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human and animal health. In particular, engineering approaches can be used to create 

experimental systems that permit the testing of conceptual knowledge and extraction of new 

knowledge that advances microbiome research. To accelerate both scientific discovery and 

translation into innovative solutions, we propose that microbiome engineering adopt an 

iterative design-build-test-learn (DBTL) cycle to structure research and the technology 

development process. This cycle involves developing an initial microbiome design or 

preliminary model system to achieve a defined engineering goal, building the microbiome, 

testing its function against a set of specified metrics to determine whether the design-build 

solution(s) produced the design objective (i.e. establish causation), learning what worked, 

what did not (and why), and incorporating new knowledge into the decision making process 

of subsequent DBTL cycles (Figure 1). This approach has been used successfully in 

manufacturing12, metabolic engineering13, and entrepreneurship (‘build, measure, learn’)14, 

and could rapidly advance our ability to develop much needed tools and design concepts for 

harnessing microbiomes, delivering innovative solutions and advancing scientific 

knowledge.

In this Review, we present key elements of an iterative DBTL approach that can be 

implemented to advance the rational engineering of microbiomes for functions that benefit 

society. We review diverse approaches to harness microbiomes in medical, agricultural, 

energy, and environmental applications, and identify current challenges and opportunities 

associated with implementing each DBTL phase. Finally, we discuss how the DBTL cycle 

can be applied to build model systems to establish basic principles of microbial ecosystems 

and provide an outlook on the frontiers of microbiome engineering.

Designing microbiomes

Because of the high complexity and limited understanding of molecular-scale microbiome 

processes, microbiome design has conventionally followed a top-down approach. This 

approach tries to predict how ecosystem-level controls can create a microbiome with desired 

functions. However, recent advances in multi-omics have provided opportunities to design 

microbiomes from the bottom-up by predicting how the control of metabolic networks and 

their interactions can create a microbiome with desired functions. Combined, these 

approaches offer complementary strategies to design microbiomes for specific engineering 

goals, ranging from sustainable wastewater treatment to curing microbiome-associated 

human diseases.

Top-down design.

Rather than deciding which organisms and detailed metabolic pathways to use a priori, the 

top-down approach uses carefully selected environmental variables (such as certain substrate 

loading rates, mean-cell retention times, and redox conditions) that force an existing 

microbiome (naturally occurring or inoculated) through ecological selection to perform the 

desired biological processes (or ‘metaphenotypes’15) (Figure 2). Here, ‘top’ refers to the 

ecosystem in which the desired biological process occurs and top-down design denotes the 

methods used to predict how manipulation of the ecosystem’s physical. chemical. and 

biological processes (that is. ecosystem processes) obtains the desired function. Predicting 
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how to manipulate an ecosystem is informed by principles of ecological engineering16 (also 

known as microbial resource management17 or microbial community engineering18). This 

requires engineers to conceptualize the system as an ecosystem model that captures system 

inputs and outputs. physicochemical conditions (pH, temperature, redox potential, etc.), 

known abiotic and biotic processes, and environmental variables, and how their 

manipulation may promote or inhibit the biological process(es) being optimized19,20. 

Subsequently. mathematical modeling is used to perform mass balance analysis around 

chemicals and relevant microorganisms in the system and simulate chemical and 

biochemical transformation rates. These process-based models capture microbiome 

functions by representing key physiological or functional guilds of microorganisms (such as 

methanogens, fermenters, nitrifiers, or phototrophs) with specific stoichiometric (growth and 

product yields) and kinetic parameters (maximum specific growth rate, substrate uptake rate, 

and substrate affinity)21,22,23. The models can also integrate equations describing the three-

dimensional physical transport processes (diffusion, advection, and dispersion) acting on 

chemicals and microorganisms, which are especially important in spatially structured 

systems such as biofilms24,25.

Bottom-up design.

Although the conventional top-down design approach for microbiome engineering offers a 

framework for macro-scale processes and has been widely successful for wastewater 

treatment21 and bioremediation4. it often neglects the complex in situ metabolic networks 

driving microbial and linked chemical transformations26 and ignores processes that depend 

on intricate interactions between community members; for example. syntrophic interactions 

through direct interspecies electron27. As a consequence. molecular-scale microbiome 

processes are often ignored during design. limiting system optimization through molecular-

scale mechanistic insight. Recent advances in multi-omics and automation technology (for 

example, in metagenomics and microfluidics) have enabled researchers to develop bottom-

up approaches and focus on engineering the microbiome’s metabolic network and microbial 

interactions. Here, ‘bottom’ refers to the metabolic networks of individual organisms in the 

microbiome (expressed from their genomes) and ‘bottom-up design’ denotes the methods 

used to predict how metabolic flux through these interacting networks obtains the desired 

function. The general design process is to obtain the genomes of individual members of the 

microbiome28 (especially keystone species29, when known30), reconstruct their metabolic 

networks,31,32 and use modeling33 and/or network analysis tools34 to guide design (Figure 

2). Existing constraint-based methods such as flux balance analysis (FBA) provide a suitable 

framework for exploring which combinations of chemical transformations are possible using 

quantitative models, in which individual populations’ reactions and metabolites can be 

compartmentalized and metabolic fluxes within and between populations can be simulated 

using optimality principles35. These models can also simulate steady-state flux distributions 

over time and space36,37 and can be integrated into process-based and/or individual-based 

models38 to predict metaphenotypes, self-organizing spatial patterns, and other emergent 

behaviours. Such bottom-up tools provide the engineer with a computational framework to 

systematically evaluate the metabolic networks driving biological processes and ecological 

interactions, and a platform for rationally designing microbiomes with specific properties, 

such as distributed pathways39,40, modular species interactions41, community resistance and 
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resilience42 and spatiotemporal organization43 that optimize ecosystem function and 

stability. However, the majority of these bottom-up design examples are based on simple 

communities with model organisms (such as Escherichia coli and Saccharomyces cerevisiae) 
that have engineered dependencies. Therefore, extending these designs to systems with non-

model organisms of tens to hundreds of different species will require deeper insights into 

their metabolism and the principles governing their interactions and higher-order behavior.

There are major challenges to implementing this bottom-up approach, including inaccurate 

and/or incomplete metabolic network reconstructions, unknown functions of many genes, 

proteins, and metabolites, poorly understood evolutionary pressures driving individual and 

community-level phenotypes, and limited understanding of gene, metabolic, and ecosystem 

regulatory schemes (for example, quorum sensing signal-response systems44). These 

limitations lead to high model uncertainty because key constraints on pathway stoichiometry 

and enzyme kinetics are either inappropriate or missing, and objective functions fail to 

capture the true evolutionary drivers of cell behavior45, ultimately leading to poor 

predictions of in situ phenotypes. As a starting point for bottom-up design, core metabolic 

models that capture central carbon and energy metabolism can be reconstructed from 

genome annotations and known physiological information. The predictive power of these 

models may be limited initially, as they ignore regulatory information, pathway kinetics, 

secondary metabolism, and evolution. However, when this knowledge is acquired and 

becomes incorporated into metabolic models through multiple cycles of testing and learning, 

accurate predictions of system function (for example, metabolic fluxes and metabolite 

exchange) may emerge. As a complementary approach, data-driven modeling techniques 

such as ensemble modeling and machine learning may offer more rapid methods to predict 

microbiome metabolic processes or obtain constraints and parameters required for 

microbiome modeling, without the need for detailed mechanistic understanding of metabolic 

regulation46,47. Such modeling frameworks have been used to predict pathway fluxes from 

proteomic and metabolomic data48, improve metabolite cross-feeding predictions through 

ensemble modeling-based FBA49, and to obtain key catalytic turnover numbers needed for 

metabolic models50. Although these approaches are flexible and generalizable enough to be 

applied to microbial communities, they require substantial amounts of experimental data on 

the metabolism of individual strains and interacting communities. This information could be 

leveraged from prior test phases (for example, from high-throughput phenotypic screens and 

multi-omics) to enable data-driven design.

Integrated design.

Moving forward, we envision that a judiciously balanced blend of top-down and bottom-up 

approaches will be needed for successful microbiome design, especially when working with 

complex microbiomes, such as human microbiota or activated sludge (Figure 2). A blended 

approach could involve selecting both undefined mixtures and defined consortia to achieve 

desired microbiome functions, merging process-based models with bottom-up metabolic 

models reconstructed from meta-omic information to simulate ecosystem processes, mass 

balances, and metabolite fluxes, and using genome-derived information to develop 

community selection strategies. Capturing higher-order properties in design, such as 

functional stability and dynamics, will likely also require top-down and bottom-up 
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approaches to converge. In particular, new mathematical modeling approaches that quantify 

mechanisms of functional degeneracy, niche complementarity, and network buffering51 

using a metabolic framework may enable microbiome diversity to be optimized to sustain 

desired functions in situ. The need for a more comprehensive representation of microbiome 

metabolism will depend on the specific engineering objective and the degree of ecosystem 

tractability. For example, a more detailed representation of anaerobic microbiome 

metabolism is likely required for converting biomass into a specific commodity chemical 

instead of methane because finer control over metabolism would be needed. In either case, 

the design phase encompasses defining the engineering problem, developing conceptual and 

quantitative models, identifying key biological processes to be manipulated, and evaluating 

multiple candidate design alternatives.

Practical design steps.

There are five key steps when designing microbiomes, in particular complex microbiomes: 

defining the engineering problem, developing a conceptual ecosystem model, creating an 

quantitative model, identifying the microbiome process(es) to be engineered, and developing 

and evaluating candidate design strategies.

To drive the DBTL cycle, a clear definition of the problem with measurable design 

objectives must be established. These objectives could specify desired outcomes such as 

product titers, rates and yields, pollutant removal efficiency, crop productivity, or degree of 

functional stability and robustness. Design objectives should be complemented by techno-

economic assessments and/or life cycle analysis to ensure that solutions are economically 

feasible and have positive environmental and societal impacts52,53.

Conceptual ecosystem models can be used to contextualize the problem. Such models 

capture system boundaries, inputs and outputs, major pathways of carbon and nutrient flows, 

key organisms and interspecies interactions responsible for those transformations, and 

factors influencing their activity (for example, pH, temperature, redox potential, and 

residence times)19. They provide a concept map that describes current understanding of 

interactions between the microbiome and physical, chemical, and biological components of 

the ecosystem, helping to identify important gaps in system understanding and needs for 

data collection. At this stage, all relevant information should be collected from the literature, 

existing data (for example, from the Human Microbiome Project54), and online databases 

(for example, MiDAS (microbial database for activated sludge)55) for ecosystem 

characterization. This includes reference genomes and physiological information for 

keystone organisms, previous multi-omic datasets, ecosystem physicochemical properties 

(such as pH, temperature and chemical concentrations) and processes (such as 

photochemical reactions and hydrogeological processes), site characteristics (such as 

nutrient loadings and dynamics, soil profiles and gut anatomy), and all other information 

needed to characterize the ecosystem. Missing information, such as unknown biochemical 

pathways and organisms that mediate them, can be targeted during the build-test-learn 

phases. This conceptual ecosystem model can be used by the scientific community for 

proposing and testing theories and serves as a roadmap for developing quantitative 

simulation tools.
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Construction of quantitative modeling tools that enable the calculation and simulation of 

metabolic fluxes, microorganism abundances, mass balances, and ecosystem 

physicochemical parameters is critical for the systematic design of microbiomes. Several 

approaches could be used to create such models, including mechanistic metabolic 

modeling33, process-based modeling21, data-driven modeling (for example, machine 

learning)48, individual-based modeling38 or their combination. Regardless of the approach, 

the simulation of complex microbiomes will likely require simplification based on 

experimentally valid assumptions. Simplification could include reducing the model to a set 

of core or keystone organisms that represent important functional guilds and control major 

carbon and energy flows, or reducing the metabolic network size of organisms to central 

carbon and energy metabolism. Moving forward, it will be important to ensure that models 

undergo rigorous experimental validation and iteration during build-test-learn cycles to 

increase their utility and widespread use in microbiome engineering and to identify when 

modeling efforts fail, revealing gaps in conceptual understanding that can further facilitate 

model redesign and improvement.

Quantitative microbiome modeling (such as dynamic FBA) helps to identify the core and 

peripheral biochemical pathways that need to be directly manipulated, added, or removed to 

achieve the desired engineering objective. Objectives could include increasing butyrate 

production and non-digestible carbohydrate degradation by fermenting bacteria in the human 

gut, preventing toxin biosynthesis by cyanobacteria in freshwater ecosystems, or stimulating 

the degradation of toxic chloroorganics by bioaugmentation with organohalide-respiring 

bacteria.

Microbiome modeling can predict how environmental (such as substrate loading, pH, and 

solids retention time) or genetic manipulation (such as gene knockouts, pathway additions, 

and forced dependencies) could optimize microbiome functions towards the engineering 

objective. If necessary, synthetic microorganisms could be designed to improve microbiome 

function. Such synthetic microorganisms will need to be evaluated for their ability to 

cooperate and compete with existing microbiome members under relevant environmental 

conditions.

Building microbiomes

The build phase consists of physically assembling the designed microbiome by either top-

down manipulation of a natural community (that is, a self-assembled microbiome) or 

bottom-up assembly using axenic or enrichment cultures of naturally-occurring or 

engineered microorganisms (that is, a synthetic microbiome). The build phase aims to bring 

the design specifications and predictions into reality.

Building by self-assembly.

Self-assembled microbiomes may include those built as open mixed cultures using reactor 

engineering (for example, wastewater treatment bioreactor) or biostimulation (for example, 

additions to soils, sediments or groundwater aquifers), in which construction creates an 

environment that promotes the growth and desirable activity of resident microorganisms. 

Examples include manipulating reactor hydrodynamics to immobilize slow-growing 
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microorganisms into compact granules that enable their retention and proliferation56,57, use 

of non-human-digestible carbohydrates to stimulate fermentative production of short-chain 

fatty acids in the gut58, or adding electron donors to drive the metabolism of organohalide-

respiring bacteria during bioremediation of toxic chlorinated contaminants4. This approach 

is powerful when differences in physiological and physicochemical properties between 

functional guilds can be exploited for assembly through environmental manipulation (for 

example, differences in growth rates59, main electron donors and acceptors4,60, substrate 

affinities, cell and/or biofilm densities61, and redox gradients). However, it can be limited 

when more fine-scale control over microbial metabolism and interactions is necessary (for 

example, controlling complex competitive interactions62, producing valuable bioproducts at 

high yields and purity63, or controlling organisms with versatile lifestyles64).

In addition, new strategies for evolutionary engineering have emerged as promising tools to 

build self-assembled microbiomes. Controlled exposure of an initial microbiome to multiple 

selection cycles and/or regimes results in the microbiome gaining or optimizing specific 

functions through adaptation or evolution. For example, successively transferring the 

microbiomes that maximize plant traits has generated microbiomes that improve plant 

biomass65 and flowering time66. Response to community-level selection will often be driven 

by enrichment or adaptation of single species67,68; however, selection for production of 

community biomass has also been shown to enhance desired species interactions in defined 

two and three species co-cultures37,69. Re-examining selection experiments to understand 

when and how mutations and/or adaptations altered microbiome phenotypes could elucidate 

the mechanisms underlying microbiome fitness optimization and inform design, as has been 

shown for E. coli in laboratory evolution experiments70,71. As similar evolutionary 

approaches (for example, adaptive laboratory evolution) have also been successfully applied 

to optimize strains for metabolic engineering72, extension of experimental and 

computational protocols already developed for individual microorganisms to microbiomes 

could streamline the design phase and reduce the time required to complete evolution 

experiments.

Building synthetic microbiomes.

Direct construction of microbiomes using axenic or enrichment cultures is also promising 

because of reduced complexity and the use of microorganisms that are genetically tractable 

and/or well-characterized. This bottom-up approach makes the growing suite of synthetic 

biology tools accessible for microbiome construction and optimization. An early approach 

for building microbiomes directly from cultured microorganisms is bioaugmentation. Here, 

defined laboratory consortia are added back to the environment to enhance the degradation 

rates of specific contaminants. A successful example has been the addition of consortia 

containing organohalide-respiring bacteria of the class Dehalococcoidia to contaminated 

groundwater aquifers and sediments to speed up the degradation of toxic chlorinated 

solvents. Crucial for the success of this approach was detailed knowledge of the physiology, 

nutritional requirements, and potential ecological interactions of the keystone dechlorinators 

with other microorganisms and the geochemical environment4. However, contrary to the 

success for chlorinated contaminants, bioaugmentation approaches have largely failed for oil 

spills. Unlike organohalide-respiring Dehalococcoidia members that fill a unique ecological 
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niche and cannot grow without the chlorinated contaminants, organisms capable of 

degrading oil hydrocarbons (especially aerobic bacteria) are ubiquitous, metabolically 

versatile, and do not depend on a specific substrate or redox couple for growth64. This 

metabolic versatility limits their utility for bioaugmentation given their unpredictable in situ 
activity. Other reasons why bioaugmentation can fail are that unrecognized mutualistic 

interactions and microorganisms performing critical functions are missing (for example, 

production of polysaccharide surfactants to increase hydrocarbon bioavailability73), or that 

consortia selected under laboratory conditions are no longer competitive enough under harsh 

and/or variable field conditions74,75,76. These examples highlight the need to better 

understand the interaction networks of synthetic consortia, especially the roles of supporting 

interactions (secondary functions), and the competitive landscape in situ, which are often 

difficult to predict in complex ecosystems.

Despite the appeal of building microbiomes bottom-up and the growing collection of 

cultured microorganisms from specific habitats77,78, the majority of microorganisms relevant 

for human health, agriculture, and environmental applications remain uncultured, poorly 

characterized, genetically intractable, and difficult to maintain, making the construction of 

synthetic microbiomes challenging. To capture this uncharacterized metabolic diversity, 

innovative isolation and controlled microbiome assembly techniques are needed, such as 

singlecell sorting79 coupled to high-throughput culturing (culturomics)80,81 and 

phenotyping82,83 across multiple conditions in parallel. Microfluidics84,85, that is, creation 

and manipulation of microliter droplets, can facilitate this approach. Microfluidic chips can 

enable automated assembly and analysis of microbial communities from axenic or 

enrichment cultures through droplet combination86, elimination of specific species87, 

sequencing, and multi-omics phenotyping of individual cells88,89. Combined with new gene 

editing techniques, such as CRISPR-based genomic tools90 that improve the efficiency of 

homologous recombination-based gene editing91,92, microfluidics could also automate 

synthetic biology techniques for the engineering of cells and microbiomes with novel 

capabilities93.

Another challenge with synthetic microbiomes is maintaining their functional stability in the 

laboratory or in open systems (for example, human gut, soil, and wastewater treatment 

plants), which are susceptible to invasion by naturally-occurring microorganisms and 

dynamic heterogeneous environments. As mentioned above, the major reason for the success 

of bioaugmentation with organohalide-respiring Dehalococcoidia members is their highly 

specialized lifestyle that enables them to occupy an open ecological niche using chlorinated 

electron acceptors. However, the functional stability of organisms with versatile lifestyles in 

open systems is much less predictable. Few studies have examined the functional stability of 

synthetic consortia in open systems and the knowledge required to rationally engineer stable 

ecological interactions is limited. However, engineered bacteria have been successfully 

deployed as diagnostic sensors in the mammalian gut for up to 200 days maintaining robust 

function94,95. This feat, together with the bioaugmentation example of Dehalococcoidia4, 

demonstrates that synthetic consortia can form stable microbiomes with previously 

established community members, provided key players can compete with resident 

microorganisms.
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Observations from self-assembled microbiomes suggest that building communities with 

spatiotemporal organization will be important for achieving stable and multi-functional 

synthetic microbiomes. Highly diverse microbial communities, such as human microbiota or 

those used for wastewater treatment, self-assemble as biofilms, flocs, or granules comprised 

of multiple single-species microcolonies attached together via species-specific extracellular 

polymeric substances (including polysaccharides, proteins, and DNA) and other poorly 

defined macromolecules (such as humics)96,97. These self-organizing microbial assemblages 

create diverse microenvironments and ecological niches that support the combination of 

seemingly incompatible functions (for example, both aerobic and anaerobic processes98,99) 

and functionally diverse population structures that can compensate for disturbances, such as 

changes in nutrients, physicochemical condition, or predation100,101. Although building such 

fine-scale and sophisticated architectures into synthetic microbiomes is nascent, 

microfluidic-based systems have been used to assemble simple communities with improved 

functional stability by controlling spatial structure and chemical communication102. 

Additionally, 3D bioprinting platforms could enable the construction of spatially organized 

systems, in which populations can be physically separated while remaining chemically 

interactive103,104. How to scale these spatially defined structures from experimental 

laboratory systems to real-world applications remains to be resolved, although knowledge 

gained from test and learn phases with model systems (such as synthetic polysaccharide 

particles 105,106) should provide more insights. Until then, existing approaches based on top-

down assembly and/or engineered biofilm carrier media107 could be used to build self-

organized synthetic microbiomes with better stability and functionality.

Designing synthetic genetic circuits in engineered hosts that can robustly perform sense-

compute-respond programs in complex environments also remains a major challenge108. 

Therefore, it will be important to examine the molecular mechanisms that determine 

microbiome stability and adaptation to environmental perturbation in natural and engineered 

ecosystems, in order to extract design principles that can be used for rationally engineering 

robust functions. Given the potential utility of genetically engineered microorganisms and 

microbiomes in diverse open environments, safeguards such as biocontainment systems 

(such as two-layered gene circuits and essential synthetic auxotrophies109) will also require 

further development and will be needed as integral components of constructed synthetic 

microbiomes that use genetically modified organisms in the future.

Integrating approaches.

The ultimate goal for rational microbiome design is to develop tools that enable engineers to 

directly add, remove, or modify specific functions and phenotypes in situ over a range of 

desirable operational conditions. One emerging technique with promise to achieve such 

flexibility is in situ metagenomic engineering110,111, which involves delivery of engineered 

mobile genetic elements to resident microorganisms. For example, donor strains engineered 

with integrative and conjugative elements have transferred DNA carrying a reporter and 

antibiotic resistance genes or multi-gene pathways (for example, nitrogen fixation (nif) gene 

cluster112) to bacteria in highly heterogeneous and diverse environments, such as soil112 and 

the mammalian gut111. Further development of such tools in combination with existing 

CRISPR-Cas gene editing techniques would enable the precise manipulation of the 
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microbiome’s metabolic network in situ, effectively combining self-assembled and synthetic 

microbiomes (Figure 3; Box 1)

Testing microbiome function

The test phase involves measuring microbiome-associated phenotypes and properties to 

determine the efficacy of the design-build solution. The measurements should determine 

whether the design outcomes were achieved (for example, measuring the titer-rate-yield of a 

bioproduct, pollutant removal efficiency, or crop productivity) and whether the design-build 

solution was responsible for the observed outcome (establishing cause and effect). This 

typically requires readouts of ecosystem physicochemical properties (such as pH, 

temperature, and chemical concentrations), as well as the stoichiometry and kinetics of key 

ecosystem processes and microbiome functions (such as biomass growth, chemical 

transformations, nutrient assimilation, and metabolic fluxes). For example, acetate 

degradation rates and pathways to methane in an anaerobic digester microbiome could be 

tested using 13C-labelled acetate and online biogas analysis that measures the flux through 

acetoclastic methanogenesis versus syntrophic acetate oxidation coupled to 

hydrogenotrophic methanogenesis113. While the level of microbiome granularity measured 

during testing will depend on the specific design objectives and ecosystem complexity, the 

ability to quantify molecular microbial processes (for example, metabolic pathway rates and 

routes, enzyme activities, and individual organism growth rates) goes beyond bulk activity 

measurements and enables testing the specific mechanisms responsible for the observed 

microbiome functions. The challenge will be to develop tools that are high-throughput, 

quantitative, affordable, and easy to use, such that routine analyses of the microbiome over 

time, space, and under dynamic conditions can be accomplished.

Towards this goal, we envision a test phase comprised of high-throughput phenotypic 

screening of microbiome design-build solutions, followed by deeper investigation of 

promising solutions using multi-omic and metabolic flux analyses to obtain greater insights 

on underlying mechanisms (Figure 4). High-throughput phenotypic testing of constructed 

microbiomes could be achieved using droplet microfluidics, as has recently been 

demonstrated for screening ~100,000 synthetic communities114. Fully automated 

microbioreactor platforms that combine liquid handling and advanced sensing with 

microtiter plate or scaled-down bioreactor cultivation could also be used82,83. Combined 

with emerging methods to measure metabolic network activity and metabolic processes in 

heterogeneous environments (Box 2), rich information will be obtained to facilitate learning.

Microbiome metabolic network activity.

To test predictions of microbiome function at a systems-level, measurement of the 

microbiome’s in situ metabolic network structure and activity is critical. Multi-omic 

approaches (metagenomics, metatranscriptomics, metaproteomics, metabolomics) combined 

with bioinformatic tools have enabled the genome-centric analysis of individual species (or 

even strains115) within microbiomes and global measurement of sequences, proteins, and 

metabolites116,117,118. These tools measure the microbiome’s components on a spectrum 

from functional potential (for example, gene abundance) to expressed products (for example, 
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protein and metabolite abundance), and through their combined activity produce microbiome 

metaphenotypes that drive system function. Currently, multi-omic approaches used to infer 

microbiome function have focused on correlating gene abundances or gene expression data 

across time and space with ecosystem geochemical data or process rates. This has included 

measurements of key functional genes and transcripts using qPCR assays (for example, 

ammonia monoxygenase119), microarrays (for example, GeoChip120), or untargeted high-

throughput approaches (metatranscriptome and/or metaproteome). Although useful for 

overall system characterization and discovery, these approaches focus on measuring the 

components or “parts list” of the system, which are often limited predictors of emergent 

phenotypes due to metabolic network complexity, interactions, and regulation121,122. 

Therefore, new approaches and tools are needed to measure the in situ stoichiometry and 

fluxes of microbiome metabolic networks to permit the direct testing of design predictions 

and offer mechanistic insights into metabolic regulation.

MFA is the most authoritative method for measuring in vivo fluxes. This method calculates 

fluxes from metabolite stable isotope measurements obtained during isotopic labelling 

experiments using metabolic network modeling123. Although MFA has been used to 

measure fluxes in co-cultures124, flux analysis in communities is challenging because 

metabolite pools cannot be easily assigned to individual cells and the number of possible 

reactions in a microbiome greatly exceed those of an individual organism. Nonetheless, 

isotopic tracers combined with exometabolomics and/or off-gas analysis have been used to 

determine process fluxes driving important microbiome functions, such as syntrophic acetate 

oxidation and methanogenesis during anaerobic digestion116. To circumvent the challenges 

with metabolite measurements, a method analyzing labelling patterns from short peptides 

instead of amino acids for MFA was proposed125. Peptides can be assigned to individual 

species in a microbiome using high-throughput metaproteomic approaches, which opens the 

door to determining fluxes in microbial communities (that is, to ‘metafluxomics’). Given 

that fluxes represent the final outcome of cellular regulation across all levels126, further 

development and demonstration of metafluxomics will be essential for advancing 

microbiome engineering efforts and our understanding of metabolic regulation in 

microbiomes. This will also require new software packages for associated computational 

analyses, similar to existing 13C-MFA software127. Such data may also allow metabolic 

modelers to infer, rather than assume, community and individual-level objective functions 

and to identify new constraints, enabling the accurate prediction and measurement of 

reaction rates driving microbiome function.

Measuring function in spatially heterogeneous environments.

Most natural microbiomes, such as those associated with plants (for example, rhizosphere), 

humans (for example, oral microbiome), and industrial processes (for example, acid mine 

drainage), display highly-organized spatial organization across micro-scale physicochemical 

gradients that directly influences microbiome function. For example, the spatial proximity of 

microorganisms can control whether they interact through diffusible substrates or direct 

transfer128, whereas variations in colony size can dramatically influence apparent substrate 

affinity constants and substrate competition between biofilm microorganisms129. Therefore, 

one of the biggest challenges will be to create tools that measure and report on microbiome 
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spatial structure and function across all relevant scales (from μm to km). Current methods to 

measure structure-function relationships have focused on the μm to mm scale using 

approaches such as fluorescence in situ hybridization (FISH) combined with stable isotope 

labeling (SIP)130, chemical fingerprinting131, mass spectrometry imaging132, and/or 

fluorescence-based biorthogonal non-canonical amino acid tagging (BONCAT)133 (Box 2). 

Although these techniques have successfully identified the substrate use and activity patterns 

of spatially distributed microorganisms in microbiomes, they are limited by throughput and 

can only examine and/or differentiate a limited number of organisms. The integrated 

application of labelling techniques (for example, SIP and BONCAT) with metaproteomics 

and cell sorting (for example, fluorescence-activated cell sorting (FACS)133) could be used 

to measure the metabolic activity of microorganisms in high throughput with spatial 

resolution. Combined with microsensor devices that profile microenvironmental chemical 

properties, for example, through microelectrodes134 or engineered biosensors95, microbiome 

structure, function, and ecosystem physicochemical parameters could be monitored in real-

time.

Learning microbiome design principles

Progressing through the design-build-test phases of microbiome engineering presents a 

unique opportunity to learn from previous failures and successes, and to incorporate new 

knowledge into subsequent cycles. Indeed, the learn phase of the DBTL cycle is critical for 

success and for improving microbiome engineering efficacy. To date there are no general 

strategies, techniques, or approaches that guarantee success in translating information 

obtained from the test phase into new knowledge that informs the next design phase. 

Therefore, we stress the importance of devoting enough emphasis and resources to the learn 

phase early on, so as to avoid, for example, the difficulties encountered in metabolic 

engineering due to a relative lack of investment in the learn step13. Further development of 

computational methods to formalize the learn phase will be needed, including machine 

learning algorithms48,135,136, metabolic flux analysis and constraint- based 

analysis36,124,125,137, ecosystem modeling approaches138, and regulatory network 

analysis139. Together, these analyses could isolate the principal drivers of microbiome 

interactions and function from large datasets to inform microbiome design. For example, 

generalized Lotka-Volterra equations could infer interacting species from temporal 

population dynamics data that become the starting point for bottom-up design140 or 

constraint-based analysis could be applied to identify key metabolite exchange reactions 

from 13C-metabolomic data that improve flux simulation accuracy and design of anaerobic 

consortia137.

More broadly, we envision the learn phase to focus on translating data into generalizable 

principles for microbiome engineering, through the continuous refinement of conceptual 

knowledge and proposed theory (for example, from traditional 

macroecology141,142,143,144,51) with each DBTL cycle. We propose that model laboratory 

ecosystems should be utilized to drive microbiome engineering inquiry and learning. Model 

laboratory ecosystems are experimental platforms that can replicate the physicochemical 

conditions of a complex environment (natural or engineered) in a simplified and controlled 

manner and contain model microbial communities (for example, the model rhizosphere 
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microbiome THOR145) that can be used as testing grounds for learning how to design, 

construct, and optimize engineered microbiomes. These ecosystems have reduced 

complexity, are accessible for experimentation, and can be established in a reproducible 

manner, which is often not possible when working in natural environments.

Recently, model laboratory ecosystems have been developed for studying plant-soil 

microbiome interactions146. These fabricated ecosystem (EcoFAB) use 3D printing, sensing, 

and analytical and imagining technologies to create an experimental device that replicates 

the native soil ecosystem, in which microorganism and host phenotypes can be monitored in 

response to changing variables, enabling the systematic dissection of microbial interactions 

and metabolite exchanges influencing plant health146,147. EcoFABs offer a middle ground 

between model organisms and complex natural microbiomes, and can be established 

collaboratively between expert investigators to create standardized and reproducible devices 

and protocols for dissemination to the broader research community. Such model systems 

offer the ability to experimentally develop engineered microbiomes with desired functions in 

a tractable manner, and permit results to be compared with results from natural settings. This 

cross-examination between model and natural ecosystems will be a valuable and necessary 

approach for learning engineering principles and practices that are relevant to real-world 

systems (not laboratory artifacts), and for acquiring knowledge on scaling-up lab-based 

engineering strategies to full-scale applications (Figure 5). For example, microfluidic-based 

in vitro models of the human gut microbiome that contain co-cultures of human cells with 

different bacterial consortia are already producing physiological (including epithelial cell 

monolayer formation, cell growth and viability, cytokine levels, and metabolomic profiles) 

and environmental (including oxygen gradients and laminar flow) variables that are 

comparable to in vivo variables148.

The combination of model ecosystems with the DBTL cycle may be particularly fruitful for 

understanding the mechanisms governing microbial interactions and functional stability. 

Substantial knowledge is available on specific microorganisms that co-aggregate and 

exchange metabolites, such as bacteria involved in nitrogen cycling2, consortia of methane-

oxidizing archaea and sulphate-reducing bacteria149,150,128, and syntrophic bacteria 

partnered with hydrogenotrophic methanogens151,152. However, we are only beginning to 

understand the complex mechanisms (such as quorum sensing and secondary metabolites) 

involved in regulating the behavior, interactions, and kin discrimination of microorganisms 

in communities153. Although studies have established links between microbiome functional 

redundancy, diversity, and stability154, a framework to predict or engineer functionally stable 

microbiomes has not been attained. Through the use of model laboratory ecosystems 

together with existing knowledge of microbial ecology and engineering design, it may be 

possible to decipher the chemical language of microbiomes and discover mechanisms of 

other important processes (including evolution, selection, dispersal limitation, and neutral 

processes155) that enable robust and stable microbiome function. Translating this theory into 

engineering design practice will require a quantitative framework that links these 

mechanisms to metabolic interaction networks, and new approaches that enable ecological 

properties to emerge from metabolic models (Box 3).
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Outlook

True advancement in microbiome engineering will need multiple rounds of DBTL to capture 

the necessary ecological principles to manipulate microbiomes in a precise manner with 

predictable outcomes (Figure 1). For example, incorporating direct interspecies electron 

transfer discovered during previous DBTL cycles into metabolic models and bioreactor 

construction (for example, by adding conductive materials) could optimize the efficiency of 

biogas production from waste27; or designing engineered E. coli to control levels of 

previously discovered autoinducers could tailor gut microbiota under conditions of dysbiosis 

towards a healthier state156. However, developing new knowledge and tools with fast 

turnaround will require next-generation infrastructure for data collection, data sharing, and 

knowledge integration. To accelerate progress, developing the predictive capabilities needed 

for the learn phase is a priority. Model laboratory ecosystems combined with advances in 

automation, such as liquid-handling robots, microfluidics, and data analysis pipelines157,158, 

will offer a starting point for the testing of multiple designs in a rigorous and reproducible 

manner. Capturing new knowledge from this process and integrating information into 

subsequent DBTL cycles will accelerate microbiome engineering developments, creating 

innovative biotechnologies and practices for the management of microbiomes across 

medicine, agriculture, manufacturing, and environmental stewardship. Examples that show 

particular promise for advancing microbiome engineering across these fields include 

illuminating the roles that phages and metabolite cross-feeding have in controlling ruminal 

carbon turnover159, harnessing untapped anaerobic fungal-bacterial consortia to improve 

biomass conversion to valuable bioproducts160,161, creating microfluidic cell sorting 

techniques to automatically sort stable isotope-labelled cells from high diversity samples for 

subsequent multi-omic analysis or cultivation162, and developing in situ metagenomic 

engineering tools to introduce new functions into microbiomes in their native 

environment111.

To move the DBTL approach forward, interdisciplinary research teams with expertise in 

experimentation (for example, in culturing, molecular genetics, or biochemistry) 

computation (for example, metabolic modeling, machine learning, or bioinformatics), 

automation (for example, robotics, or microfluidics), and practice (for example, professional 

engineers, or medical doctors) are essential. The road ahead for microbiome engineering 

seems long, given our nascent understanding of microbial ecology; however, structuring 

research and technology developments around the DBTL cycle offers a promising approach 

for advancing microbiome engineering and providing innovative solutions for addressing 

pressing societal and environmental problems.
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Glossary

Microbiome science
discovery and testing of fundamental principles governing microbiome function and 

assembly

Microbiome engineering
leveraging fundamental scientific principles and quantitative design to create microbiomes 

that perform desired functions

Metaphenotypes
sets of emergent functions of a microbiome resulting from the interactions between 

individual microbial genomes (metagenome) and their interaction with the environment

Ecological engineering
the process of designing and operating bioreactors and other engineered systems to foster the 

development of specific microbial communities that can perform desired functional 

processes

Exometabolomics
an analytical technique to quantify extracellular small molecule metabolites from 

environmental and/or biological samples typically through gas/liquid chromatography-mass 

spectrometry or nuclear magnetic resonance

Functional guilds
groups organisms that use similar resources (for example, electron donors, electron 

acceptors, or carbon source) and occupy a similar ecological niche

Fundamental niche
the entire set of environmental conditions in which an organism can survive and reproduce 

(that is, an organism’s niche in the absence of interspecific competition)

Generalized Lotka-Volterra equation
A set of ordinary differential equations used to represent population dynamics based on 

experimentally inferred species interaction parameters

Off-gas analysis
the monitoring of gas flow rate and chemical composition (e.g. carbon dioxide, hydrogen, 

methane) produced from a biological system
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Realized niche
the set of environmental conditions used by a species after considering interspecific 

competition (competition, predation, and others).

Keystone species
An organism that has a disproportionately large effect on maintaining the microbiome’s 

function and microbial interactions (both between micoorganisms and with the 

environment).

Flux balance analysis
a constraint-based mathematical modeling technique for simulating metabolic fluxes through 

a metabolic network reconstructed from genomic information

Ensemble modeling
Use of multiple models to address uncertainty by simulating a set of possibilities and 

selecting those consistent with measured data.

Machine learning
A technique used to build predictive models through patterns and inferences obtained from 

sample data, rather than explicit or mechanistic relationships

Self-assembled microbiome
a microbiome built through environmental manipulation that selects for desired functions

Synthetic microbiome
a microbiome built using pre-defined axenic or enrichment cultures to achieve a desired 

function

Syntrophy
an obligately mutualistic process that is mediated by metabolite cross-feeding between two 

or more organisms that cannot be catalyzed by one organism alone

Techno-economic assessment
A tool used to evaluate the technical and economic viability of an integrated process through 

a combination of process design, modeling, and economic evaluation

Life cycle analysis
a tool used to evaluate the environmental impacts associated with all stages of a product or 

processes life, such as energy and water consumption, and air pollutant and greenhouse gas 

emissions

Integrative and conjugative elements (ICEs)
ICEs are mobile genetic elements able to integrate into DNA sites via site-specific 

recombination that carry genes encoding the machinery necessary for conjugation

Structure-function relationships
the influence of the microbiomes three-dimensional spatial organization on its function
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Box 1 - A DBTL cycle to create synthetic microbiomes with desired 
functions

Here, we present a generalized DBTL cycle for creating synthetic microbiomes with 

desired functions, integrating both top-down and bottom-up approaches. We briefly 

describe two iterations of the cycle and identify opportunities for incorporating high-

throughput approaches and automation to increase speed and reproducibility.

[b1] Top-down approach

[b2] Design: identify biological process(es)

An example of a process to harness or replicate is anaerobic conversion of complex 

lignocellulosic biomass into valuable commodity chemicals. The initial design step 

includes selection of different innocula that may contain microorganisms with desired 

functions (for example, acid phase anaerobic digester, herbivore rumen, or others). 

Conceptual ecosystem models that include environmental parameters (pH, temperature, 

nutrients, etc.) and expected functional guilds (hydrolytic bacteria, fermenting bacteria, 

methanogens, etc.) are used to select enrichment variables.

[b2] Build: enrich microbiomes from multiple sources

Source innocula are cultivated under different environmental conditions to select for 

desired function using real (for example, lignocellulosic hydrolysate or rumen fluid) and 

synthetic media. Modulation of environmental conditions and medium composition are 

done to improve desired function. For complex environments (such as soil) model 

laboratory ecosystems could be ideal platforms for microbiome enrichment146.

[b2] Test: evaluate performance

Performance of enriched microbiomes are tested on real and synthetic media using high-

throughput phenotypic screens. High-throughput screens could be developed using 

microfluidic or automated microbioreactor experiments. Deeper multi-omic 

measurements (such as metagenomics, metatranscriptomics, and metaproteomics) are 

collected from high performing microbiomes.

[b2] Learn: identify key functional roles of microbiome members

Besides key functions, bottlenecks for the desired function are identified using metabolic 

reconstruction and multi-omic analysis. This understanding helps to refine conceptual 

models of microbiome function and create quantitative models.

Bottom-up approach

[b2] Design: screen for new potential microbial partners

In silico metabolic modeling is used to screen for interacting microorganisms from high 

performing microbiome enrichments. Metagenome-assembled genomes (MAGs) can be 

used to reconstruct metabolic models of key microbiome members. Automated 

computational workflows (together with manual curation) will accelerate model building. 

FBA is used to predict each microorganism’s requirements for optimal growth and 

activity, and unify individual metabolic models into a microbiome model to identify new 
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potential partners that improve the design objective (for example, higher titers, rates, or 

yields of valuable product).

[b2] Build: recombine key microorganisms into new synthetic consortia

Following their isolation or enrichment, key microorganisms are assembled into new 

synthetic consortia based on in silico predictions at various ratios (for example, 1:1, 

1:10). Microfluidic devices and/or liquid handling robotics could be used for high-

throughput isolation and recombination.

[b2] Test: test function and stability of consortia

High-throughput phenotypic screening coupled to multi-omic measurements can be used 

for testing. This step should also include validation of predicted metabolisms of 

individual isolates or enrichments.

[b2] Learn: identify microbial interactions that control function

Analyzing the metabolism of microorganisms growing in consortia versus in isolation 

using metabolic flux analysis (MFA) can identify important mechanisms and interactions. 

This understanding can be used to propose how microbiome function and stability could 

be optimized by environmental manipulation and/or in situ genome-engineering.
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Box 2 - A toolbox for measuring microbiome function

[b2] Multi-omics integration.

The ability to assemble genomes from metagenomic data28 has enabled the genome-

resolved analysis of individual transcriptomes63 and proteomes118 from diverse 

communities and greatly increased the interpretive power of multi-omic datasets. A key 

challenge moving forward will be the integration of metabolomic information163, both 

intracellular and extracellular, which cannot be readily assigned to individual members of 

the microbiome such as DNA, RNA, and proteins can be. The large amount of unknown 

or poorly characterized genes, enzymes and metabolites currently limits the interpretive 

power of multi-omic information. It does, however, create novel targets for further 

biochemical studies. Advances in bioinformatic tools, such as data-driven approaches (for 

example, statistical or machine learning methods) and knowledge-based approaches (for 

example, interaction networks or genome-scale metabolic modeling)164,165, will be key 

to the success of systematic measurements of microbiome function through coherent 

multi-omics data integration.

[b2] Isotopic tracers.

Isotopic tracers have a long history in functional analysis in both pure cultures and 

communities, and have been combined with DNA166, RNA167, and protein116 

measurements to link individual populations to specific in situ functions. Moving 

forward, more efforts to incorporate isotopic tracers with multi-omics (especially 

metaproteomics and metabolomics) are needed for illuminating the complex metabolic 

networks within microbiomes. The combination of these techniques should also pave the 

way for measurement of intracellular and extracellular reaction rates 

(‘metafluxomics’)124,125, which has been one of the most powerful tools for elucidating 

in vivo phenotypes, pathway constraints, and metabolic regulation in pure cultures used 

for engineering purposes.

[b2] Mass spectrometry imaging.

Mass spectrometry imaging (MSI) techniques visualize the distribution of elements and 

their isotopes as well as biomolecules within complex samples. MSI is well suited for the 

analysis of spatially structured microbiomes and for the investigation of cellular 

interactions. When combined with FISH, MSI also enables the linking of microbiome 

structure with function168,169. The chemical coverage, spatial resolution, and sample 

preparation that can be obtained with different MSI techniques depends on the selected 

ionization method132. Although nanoscale secondary ion mass spectrometry (nanoSIMS) 

has superior lateral resolution compared to matrix-assisted laser desorption-ionization 

(MALDI) or desorption electrospray ionization (DESI; 50 nm, 3-50 mm and 100 mm, 

respectively), its relative chemical versatility is very low (elements and isotopes versus 

peptides, lipids, metabolites, and other molecules). Therefore, nanoSIMS has generally 

been applied to study substrate use of single cells, whereas MALDI has been used to 

visualize chemical interactions between populations132. Although MALDI-MSI and 

DESI-MSI are more accessible than nanoSIMS170 and could be well positioned to 

visualize the broad range of chemical interactions within microbiomes, they have very 
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low throughput and their lateral resolution and sensitivity currently prohibit single-cell 

metabolic profiling132. A technique that combines the best of these two methods is 

nanostructure-initiator mass spectrometry (NIMS). NIMS is a matrix-free desorption-

ionization technique that depends on initiator molecules trapped in 30 nm large pores to 

achieve the ionization of small molecules adsorbed to the pore surface. NIMS offers a 

lateral resolution of ~150 nm and is particularly well suited for the analyses of peptides 

and metabolites171. So far, NIMS has only seen limited application in 

microbiology172,173. We expect advances that improve these issues will make MSI a 

useful and more widely applied tool for functional analysis of microbiomes in the near 

future174.

[b2] Bioorthogonal chemistry.

Metabolic labeling techniques, such as bioorthogonal non-canonical amino acid tagging 

(BONCAT), offer additional approaches to measure microbiome anabolic activity in situ. 
BONCAT is based on the in vivo translational incorporation of a non-canonical amino 

acid (for example, L-azidohomoalanine, a L-methionine surrogate), followed by 

fluorescent labelling of tagged cellular proteins by azide-alkyne click chemistry175. The 

technique can be used together with rRNA-targeted FISH to directly link taxonomy with 

in situ activity175. BONCAT has also been combined with FACS to separate active cells 

from complex samples and further characterize them by DNA sequencing133. In addition, 

tagged proteins can be selectively enriched through bead-capture and subjected to 

proteomic analysis176. The combined application of these methods could enable the high-

throughput tracking of newly synthesized proteins from uncultivated microorganisms 

under different physicochemical conditions. Although BONCAT can be limited due to 

differences in cellular amino acid uptake and metabolic perturbation, the technique offers 

a flexible tool for the comparatively simple, inexpensive, and high-throughput analysis of 

in situ activity on a single-cell level.

[b2] Microfluidics.

Devices that enable the high-throughput analyses of microorganisms at single-cell 

resolution will be important for the rapid cultivation and functional analysis of 

microbiomes. Microfabricated devices such microfluidic ‘lab-on-chip’ technology could 

offer multiple applications, including isolation of individual cells and populations from 

complex microbiomes177, creation of in vitro cell-based models that facilitate assembly 

of synthetic microbiomes and experimentation under heterogenous microenvironmental 

conditions178, and online diagnostics for rapid monitoring and detection of desired 

phenotypes. These applications are still in early stages of development and several 

challenges remain, including reliable detection of microorganisms in droplets, precise 

control of gas concentrations, cross contamination, and technology accessibility177,179.

[b2] Automation.

To increase the reproducibility, throughput, efficiency, and standardization of microbiome 

engineering, advances in automation will be necessary. This includes incorporating liquid 

handling robotics, microfluidic devices, automated cultivation systems, online 

physicochemical measurement sensors, and software into data generation and analysis 
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workflows. Emerging examples include the use of liquid handling robotics coupled to 

automated microfermentation platforms for high-throughput cultivation82, or 

microfluidics to automate the analysis of thousands of droplet experiments that probe 

microbial community interactions180,114. Such automated platforms could also integrate 

several functional tools (for example, single-cell analyses and multi-omics), resulting in 

rich reproducible data sets that could be leveraged for machine learning and other big 

data analytics.
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Box 3 - Emerging principles for microbiome engineering: a case for niche 
modeling

Ecological niche modeling could be used to systematically design higher-order properties 

such as functional stability and robustness into engineered microbiomes. However, to 

develop such a framework, mechanistic understanding on how diversity is maintained 

within microbiomes and how it imparts properties such as functional stability is needed. 

Here we propose that this understanding could come from applying the DBTL cycle to 

answer key questions:

[b1] Does functional degeneracy lead to productivity and functional stability?

Diversity has been correlated with productivity and functional stability in communities of 

macroorganisms143,181, yet the role that diversity has in improving microbiome function 

and functional stability remains open. For microbiome engineering, we propose that 

diversity be viewed, discussed, and defined through the lens of functional redundancy (as 

described previously154), or more specifically, functional degeneracy. This is the degree 

to which a set of organisms perform an identical role in ecosystem functionality (for 

example, methane oxidation, nitrogen fixation, or polymer hydrolysis), but exhibit 

degeneracy with respect to other physiological traits (for example, pH optima or biofilm 

formation), which enables them to achieve realized niche space and coexistence51. The 

DBTL cycle offers an excellent opportunity to understand the molecular basis of 

functional degeneracy and to examine how emergent community-level properties, such as 

resilience to perturbation or susceptibility to invasion by another species, are predictable 

from quantifying the fundamental and realized niche space in microbiomes. We propose 

that ecological niche modeling could be a particularly useful framework to achieve this 

goal.

[b1] How is diversity maintained in microbial ecosystems?

To create a framework for ecological niche modeling, it will be important to understand 

how diversity is maintained. Competitive exclusion suggests that two species with 

identical resource requirements cannot coexist in the same ecological niche144. 

Therefore, we need to understand the mechanisms that create niche space and enable 

diversity to develop and be maintained. For example, what role do the processes of 

spatiotemporal variability, dormancy, predation, nutrient loading, secondary metabolite 

production and resistance, cell motility, and biofilm formation have in niche 

differentiation? And how can these processes be manipulated to achieve and maintain a 

desired level of functional degeneracy in a microbiome? Answers to these questions will 

offer microbiome engineering mechanisms to design and control ecological niche space 

for desired microbiome properties.

[b1] How does ecological niche modeling underlie microbiome engineering?

To enable the systematic engineering of desirable higher-order microbiome properties, 

we propose that microbiome engineering develops a framework for ecological niche 

modeling. The goal of this framework would be to quantify community and individual 

fundamental niche and realized niche space by integrating multi-omic data, physiological 
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information, nutrient availability, and environmental parameters, and use them to develop 

strategies for controlling cooperation and competition in microbiomes. To achieve this 

goal, new mathematical representations of the fundamental and realized niche of an 

organism or guild will need to be defined, together with fitness functions that describe 

responses to environmental variables. When incorporated into microbiome modeling, this 

framework will enable the ecological forecasting of higher-order properties, as well as 

quantification of cooperative and competitive microbiome landscapes. Moreover, such 

frameworks will help guide important unresolved microbiome design questions, such as 

the trade-off between functional redundancy and minimal diversity.
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Figure 1. 
The design-build-test-learn cycle for microbiome engineering. The figure presents key 

aspects and approaches of each phase of the design-build-test-learn (DBTL) cycle. The cycle 

starts with a defined engineering objective that determines the design and produces an 

engineered microbiome that performs the desired function(s).
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Figure 2. 
Top-down and bottom-up approaches to design microbiomes. The left panel illustrates a 

bottom-up design workflow starting from pure isolates. Physiological characterization of 

individual organisms is performed, and metabolic modeling is used to design consortia for 

desired function (produce light blue compound from dark blue compound). Genetic 

engineering and synthetic biology strategies are used to optimize system function 

(identifying gene editing targets that re-route metabolic flux away from toxin (purple) and 

towards desired product; designing of toxin reporter strain). The right panel illustrates a top-

down design starting with an inoculum containing uncultivated microorganisms from the 

environment. Community characterization of mixed microbiome is performed, and 

bioprocess modeling (mass balance analysis including kinetics and microbial growth) is 

used to develop selection strategies to achieve desired function (produce light blue 

compound from dark blue compound). Reactor engineering design is used to optimize 

system function. The middle panel shows an integrated top-down bottom-up design. 

Combinations of uncultivated consortia and defined cultures are selected to achieve desired 

functions. Community characterization is performed and microbiome modeling that 

integrates process-based simulation with metabolic modeling is used to develop selection 

strategies and analyze microbiome metabolic fluxes. The shapes of the microorganisms 

represent different isolates or communities selected during design.
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Figure 3. 
Building self-assembled and synthetic microbiomes. (a) This example shows a protocol for 

assembling synthetic microbiomes from multiple microbiome sources. Complex 

microbiomes can be taken apart into key functional members using automated microfluidic 

cell sorting techniques. Isolated or enriched members can then be recombined into synthetic 

consortia using liquid handling robotics for downstream screening and/or cultivation. (b) 

Microbiome assembly can also be achieved through environmental selection via bioreactor 

manipulation or biostimulation (top) or using bioaugmentation with defined cultures 

(bottom). (c) Another option is microbiome assembly through directed adaptation and/or 

evolution of the microbiome to acquire or optimize a desired function. (d) In situ 
microbiome engineering can be used to add new functions to microbiomes residing in the 

environment.
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Figure 4. 
Testing microbiome function. (a) Isotopic tracers combined with metaproteome can also be 

used to measure microbiome metabolic flux by analyzing isotopic labelling patterns of short 

peptides rather than amino acids (metabolome). (b) Biorthogonal non-canonical amino acid 

tagging (BONCAT) is a method for rapid profiling of the anabolic processes (growth) in situ 
using either fluorescent detection or metaproteomics. (c) Metagenomics, 

metatranscriptomics, metaproteomics, and metabolomics can be integrated to reconstruct 

and analysis metabolic network expression in microbiomes. (d) An automated 

microbioreactor platform enables high-throughput analysis of microbiome processes across 

diverse conditions (for example, with changing environmental or physiological variables). 

The platform can integrate tools for detailed functional analysis of individual microbiome 

members to complex communities. HPG: the amino acid homopropargylglycine.
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Figure 5. 
Learning fundamental principles for microbiome engineering. (a) Model laboratory 

ecosystems can be used for controlled experiments with simplified microbiomes and 

environmental properties, representing an in-between of pure lab conditions (such as test 

tubes or flasks) and complex natural environments (such as soil or the ocean). Continuous 

cross-examination between laboratory-scale models and natural complex ecosystems will be 

needed for developing engineering principles and practices that are robust in real systems, 

while also tractable in the lab. This will require close collaboration between multiple 

stakeholders, including researchers and end-users (such as hospitals or treatment plants) that 

have expertise and experience with issues specific to each scale. Key principles that need to 

be learned to enable systematic microbiome engineering are microbial interaction 
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mechanisms, mechanisms governing functional stability and degeneracy, and frameworks for 

quantitatively mapping and simulating ecological niches in complex ecosystems.
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