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The COVID-19 pandemic has caused millions of deaths
and massive societal distress worldwide. Therapeutic solu-
tions are urgently needed, but de novo drug development
remains a lengthy process. One promising alternative is
computational drug repurposing, which enables the pri-
oritization of existing compounds through fast in silico
analyses. Recent efforts based on molecular docking,
machine learning, and network analysis have produced
actionable predictions. Some predicted drugs, targeting
viral proteins and pathological host pathways are under-
going clinical trials. Here, we review this work, highlight
drugs with high predicted efficacy and classify their
mechanisms of action. We discuss the strengths and
limitations of the published methodologies and outline
possible future directions. Finally, we curate a list of
COVID-19 data portals and other repositories that could be
used to accelerate future research.
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Introduction
The emergence of the novel coronavirus, known as SARS-CoV-2,
became a defining event for 2019. The virus was first discovered
in Wuhan, China. Transmitted via respiratory secretions, it
quickly spread to neighboring countries and the rest of the
world, causing COVID-19 (Coronavirus Disease 2019). To date,
the COVID-19 pandemic has resulted in over four million
deaths. The relatively high mortality, alongside the massive soci-
etal distress caused by the virus, stimulated intensive research on
its biology, associated disease, and the development of vaccines
and therapeutics.

SARS-CoV-2 is an enveloped, non-segmented, positive-sense
RNA virus. It is part of the Coronaviridae family of viruses, which
are known to cause respiratory infections in human hosts. SARS-
CoV-2 is a beta coronavirus most closely related to SARS-CoV-1,
with which it shares 79% genetic similarity, and more distally
related to MERS-CoV, with which it shares approximately 50%
of its genomic sequence.1,2 Several proteins encoded by the
SARS-CoV-2 viral genome have been implicated in its pathogen-
esis. The spike protein, responsible for viral entry, binds to the
angiotensin converting enzyme 2 (ACE2) receptor, which is
broadly expressed in human tissues.3,4 Other viral proteins have
key roles in the viral transcriptase–replicase complex (RdRp,
Mpro/3CL, PLPro, helicase).5–7

The defining features of COVID-19 are a high rate of asymp-
tomatic spread and high incidence of life-threatening complica-
tions.1,8–11 Owing to these complications and the lack of
immunity in the population, the scientific and medical commu-
nities launched a large-scale research response that led to the
development of multiple vaccines.12 Despite the proven efficacy
of these vaccines, there is an urgent need for COVID-19 thera-
peutics due to vaccine distribution delays, failed immunity, vac-
cine hesitancy, and the possible emergence of resistant
strains.13,14

De novo development of therapeutics is a lengthy process, and
is not a practical way to address the current pandemic.15 Drug
repurposing is an emerging strategy in which existing therapeu-
tics, that have already tested safe in humans, are repositioned to
treat other diseases.16,17 For example, clinical trials showed that
remdesivir, an antiviral known for its effectiveness against the
Ebola virus, was superior to placebo in shortening the time to
recovery in COVID-19 patients.17,18 Nevertheless, a systematic
experimental screening of the potentially very large pool of drugs
to be considered for repurposing is not feasible, due to both
lengthy time-scales and prohibitive cost. To overcome this limi-
tation, one promising alternative is computational drug
repurposing.

Computational drug repurposing, broadly speaking, uses algo-
rithms and massive database information to prioritize drugs for
repositioning.19–25 One major advantage of computational
approaches is the potential for fast large-scale screenings.
Another major advantage is the potential to identify previously
unknown benefits of existing drugs in disease contexts that are
radically different from the original intended target conditions.
By contrast, experimental drug repurposing is typically restricted
to closely related disease contexts.
Multiple reviews in the area of computational repurposing of
drugs have focused on drugs and mechanisms of action with
potential for use against COVID-19, regardless of the specific
computational methods used for prediction.26–29 Other works
have reviewed progress and perspectives relating to artificial
intelligence-based methods.30,31 Additional, more comprehen-
sive, reviews have extended the methodological classes further
to include network-, structure-, and signature-based drug repur-
posing methods.32–34

Our review, like that of Galindez et al.,33 is positioned to
include both a careful curation of the many published methods
and the identification of the most promising drug predictions.
While Galindez et al.33 focused on generalized workflows in each
method class, we provide a more in-depth review of selected
works, aiming to illustrate the details of drug repurposing strate-
gies that have resulted in experimentally validated drug predic-
tions. In addition, a novel aspect of our review is the
introduction of early progress in the category of text mining
for COVID-19 drug repurposing.

The objectives of this review are: (1) the identification of pub-
lished works that produce drug predictions that have been vali-
dated either in vitro or in vivo; (2) classification of the
corresponding computational techniques, with a detailed pre-
sentation of selected works; (3) summarization of drug candi-
dates and the mechanisms of pathogenesis that would be
modulated; and (4) curation of the main data sources and
COVID-19-specific portals. Finally, this review aims to guide
future work in the field.
Classification of computational approaches for the
repurposing of drugs against COVID-19
For a global view of efforts on computational drug repurposing,
we conducted a manual curation of the literature and analyzed
the COVID-19 Drug and Gene Set Library.35 This resource
includes both computationally predicted and experimentally val-
idated drug candidates along with the associated publications.
The COVID-19 Drug and Gene Set Library is one of the most
comprehensive crowdsourcing initiatives to integrate drug and
gene sets related to COVID-19 research.

We defined selection criteria for inclusion in this review to
identify the most methodologically sound manuscripts that have
undergone rigorous peer review, sufficient methodological diver-
sity and the most promising drug candidate predictions (Fig. 1A).
First, we applied two selection criteria to the COVID-19 Drug and
Gene Set Library: the presence of a computational prediction for
at least one experimentally validated compound; and publica-
tion of the associated paper in a peer-reviewed journal (excluding
preprints, technical reports or other resources). Second, we man-
ually curated relevant published works that are not yet in the
COVID-19 Drug and Gene Set Library to increase coverage of
the different methodological areas and to incorporate other
major publications. In all, we include 44 peer-reviewed manu-
scripts (Fig. 1A). Consistent with previous reviews in the field
of computational drug repurposing,19–25 we group the selected
works into the following categories: molecular docking, molecu-
lar docking with follow-up molecular dynamics simulations,
www.drugdiscoverytoday.com 2801
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FIGURE 1
Selection and classification of works on computational drug repurposing for COVID-19. A. To identify the most effective computational drug repurposing
works, we used the COVID-19 Drug and Gene Set Library,35 complemented by manual curation of the literature. The selection criteria aimed to identify
methods that resulted in at least one predicted compound that was validated with further experiments. B. We classified the selected works into six groups:
docking, docking/MD (molecular dynamics), network, structure-guided machine-learning (ML), hybrid and text mining. The publication trends for these
groups in 2020 are shown. C. The final numbers of publications in each category included in our review.
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structure-guided machine learning, network-based methods,
hybrid methods, and text mining.

Our review of the literature required the manual curation of
manuscripts and drug predictions that, given the urgency of
the pandemic, are being published at an exceptionally rapid rate.
Thus, we restricted our curation to a time frame between the
onset of the pandemic and January 2021. Analysis of publication
trends during this time showed a very early production of works
on molecular docking, with and without molecular dynamics
simulations, followed by the publication of works on network-
based approaches, structure-guided machine learning, and
hybrid methods (Fig. 1B). Currently, the majority of the pub-
lished works are in the docking category (39%), docking with
follow-up molecular dynamics simulations (27%), network-
based approaches (20%), structure-guided machine learning
(7%), and hybrid methods (5%) (Fig. 1C). To date, the text-
mining category has received relatively little attention, with only
one published manuscript.36 Text-mining approaches may be
underrepresented in the context of COVID-19 because they look
for previously unrecognized connections between drug targets
and diseases, but the genes involved in COVID-19 pathogenesis
are still largely unknown.
Molecular docking
In the context of drug repurposing for the development of ther-
apeutics against viral infections, docking techniques assess the
2802 www.drugdiscoverytoday.com
fitness of an interaction between small molecules and viral pro-
teins with a known 3D structure.22 The fitness (or binding affin-
ity) is commonly computed as a potential energy, which is a
function of force fields acting on the interacting molecular parti-
cles. Lower potential energy values (higher binding affinity) cor-
respond to more stable conformations for complexes involving
the small molecule and the viral protein, and are more likely to
be associated with neutralization of the viral protein function
by the ligand. Thus, small molecules that have high binding
affinity for viral proteins are prioritized as potentially repurpos-
able drugs. The well-established methods and software packages
for docking approaches include GLIDE,37 AutoDock Vina,38

and SwissDock.39 The packages differ from one another in terms
of the employed algorithms, scoring methods, docking type
(flexible or rigid), and docking elements (for example, protein–
protein, protein–ligand, protein–peptide). Parks and Smith40 pro-
vided a recent perspective on the potential advantages of molec-
ular docking for quick repurposing of drugs for use against SARS-
CoV-2.

The earliest studies faced the challenge of the lack of a solved
structure for SARS-CoV-2 viral proteins. One way to circumvent
this problem is to rely on the conservation of sequence and
assume 3D structure conservation between SARS-CoV-2 and
other coronaviruses, particularly SARS-CoV-1. For example, some
early works predicted drug candidates targeting SARS-CoV-2
Mpro/3CL by leveraging the sequence and structure conserva-
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tion of key protein residues in SARS-CoV-1 and SARS-CoV-2
inhibitor-binding pockets.41

A more principled way to overcome the challenge of unsolved
viral protein structure is homology modelling.42 Homology mod-
eling refers to the construction of an atomic-resolution model of
the protein of interest (e.g. SARS-CoV-2 Mpro/3CL) based on its
amino acid sequence and an experimental three-dimensional
structure of a homologous protein (e.g. SARS-CoV-1
Mpro/3CL).43 For example, Wu et al.44 systematically applied
homology modeling to all of the proteins encoded by SARS-
CoV-2 genes, predicting 19 structures. The authors then used
these predicted structures to perform molecular docking against
compound libraries such as the ZINC drug database45 and a data-
base of natural products. The study identified 78 commonly used
antiviral drugs, including those currently on the market and
undergoing clinical trials, as potential targets for SARS-CoV-2
Mpro/3CL (almitrine, carvedilol, telmisartan, conivaptan), RdRp
(idarubicin), and PLpro (ribavirin). Additional studies have fol-
lowed a similar strategy, leveraging homology modeling of the
SARS-CoV-2 proteins RdRp,46,47 Mpro/3CL,48 Plpro,49 helicase,50

and the spike protein,51 as well as the human protein
TMPRSS252,53 in their docking studies. After the crystal structures
of SARS-CoV-2 viral proteins were resolved, a second wave of
papers applied docking methods directly to these solved struc-
tures to predict additional drug targets.54–60 Interestingly, the
predictions made by docking methods that used solved struc-
tures largely differed from those made using methods that lever-
aged homology modeling, with ribavirin being the most notable
prediction made by methods in both categories.

Next, we illustrate how homology modeling, molecular dock-
ing and experimental techniques can be successfully combined
by looking in depth at the study by Jin et al.61 In an effort to
develop drugs against human coronaviruses, an earlier study by
Yang et al.62 had found an MPro/3CL substrate recognition
pocket that is highly conserved in the genus Coronavirus.62 On
the basis of this finding, Yang et al.62 designed a wide-spectrum
inhibitor of Mpro/3CL, named N3, that showed antiviral activity
against SARS-CoV-1 and MERS. Jin et al.61 started by constructing
a homology model for SARS-CoV-2 Mpro/3CL, and used molec-
ular docking to ascertain that N3 can target the modeled
Mpro/3CL. Next, Jin et al.61 experimentally assessed the efficacy
of N3 for SARS-CoV-2 Mpro/3CL through analysis of binding
kinetics, showing potent inhibition. In addition, the study deter-
mined the crystal structure of SARS-CoV-2 Mpro/3CL in complex
with N3. The determined structure helped reveal a substrate-
binding pocket highly conserved among Mpro/3CL in all coron-
aviruses. This served as a model for in silico screening of candi-
date inhibitors to target SARS-CoV-2 Mpro/3CL. Using the
GLIDE docking software package, the analysis identified cinan-
serin, a well-characterized serotonin antagonist previously
shown to inhibit SARS-CoV-1 Mpro/3CL,63 as a potential inhibi-
tor of SARS-CoV-2 Mpro/3CL. To discover other potential
Mpro/3CL inhibitors, Jin et al.61 used a fluorescence resonance
energy transfer assay to screen a library of about 10,000 com-
pounds consisting of approved drugs, clinical-trial drug candi-
dates and natural products. The primary candidates included
the approved drug disulfiram, as well as the clinical-trial drug
candidate ebselen, which had shown efficacy against other
viruses.64–66 Further in vitro experiments measuring viral replica-
tion in cell-based assays confirmed strong antiviral activity for
N3 and ebselen.

Although docking methods can assess the fitness of an inter-
action between a drug and its intended target, they typically pre-
dict a large number of potential drug candidates. An effective
way to restrict this pool of candidates is provided by Molecular
Dynamics (MD) simulations. Docking methods are based on a
static description of the interactions between drugs and targets,
whereas MD gives a view of their dynamic interactions by ana-
lyzing the motion of atoms and molecules over time. Because
molecular systems typically consist of a vast number of particles,
the computational cost of MD simulations can be considerable.
Therefore, it is computationally prohibitive to employ MD simu-
lations to screen systematically against large drug databases, and
MD simulations are typically applied to the most promising tar-
gets preselected through docking. MD and docking methods
complement each other, leading to more reliable predictions
and to less follow-up experimental work. Multiple software pack-
ages for MD simulations are available, including GROMACS,67

and AMBER.68 MD simulations, in combination with molecular
docking, have been used to identify drug candidates against
SARS-CoV-2 Mpro/3CL,53,69–74 RdRp,75 nsp16 and nsp10,76

against the human protein ACE2,77 and against the complex
between the SARS-CoV-2 spike protein and ACE2.51,78
Structure-guided machine-learning approaches
The recent rapid growth of drug-related data sets, as well as of
open data initiatives, has led to new developments in machine-
learning methods, especially in deep-learning techniques. Dock-
ing methods compute binding affinity using the detailed molec-
ular structures of drugs and their targets, whereas machine-
learning models use simplified vector representations of these
structures. In the simplest case, for example, the so-called ‘finger-
print’ representation of a molecule is a vector of the structural
fragments in the molecule. Machine-learning models require a
training set that pairs up input features, that is molecular descrip-
tors of drugs and their targets (such as their molecular finger-
prints), and outputs such as binding affinities. Like docking
methods, trained machine-learning models produce a prediction
that is an estimate of the binding affinity between a drug candi-
date and its target proteins, either viral or host. When compared
to docking, machine-learning models have additional advan-
tages in that (1) they can be applied in the absence of a solved
3D protein structure, which was the case for some early papers
using this approach and (2) the calculation of the binding affin-
ity is more computationally efficient.

Focusing on the SARS-CoV-2 Mpro/3CL, Gao et al.79 proposed
a machine-learning-based approach in which they compiled a
carefully selected training set of 314 SARS-CoV-1 or SARS-CoV-
2 Mpro/3CL protease inhibitors and their binding affinities col-
lected from single protein experiments. The input variables for
each inhibitor were constructed by encoding its high-
dimensional biomolecular interactions with Mpro/3CL in a
low-dimensional representation. A gradient boosting decision
tree model showed good performance (Pearson correlation
between predicted and true binding affinities of 0.79). Gao et al.79
www.drugdiscoverytoday.com 2803
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then used the model to predict the binding affinities between the
SARS-CoV-2 Mpro/3CL protease and 1553 US Food and Drug
Administration (FDA)-approved drugs as well as 7012 investiga-
tional or off-market drugs. Among the FDA-approved drugs with
predicted high-affinity scores were chloroxine (an antibacterial
drug that belongs to the same family as chloroquine, but with
a different predicted mechanism of action), demexiptiline (a tri-
cyclic antidepressant) and fluorouracil (an antineoplastic).
Among investigational compounds, the top result was debio-
1347 (a fibroblast growth factor receptor (FGFR) inhibitor under
investigation for the treatment of solid tumors). Interestingly,
the predicted binding affinity of debio-1347 for SARS-CoV-2
Mpro/3CL was higher than that of any of the FDA-approved
drugs, indicating the potential of debio-1347 for COVID-19
repurposing.

Batra et al.80 trained a structure-based machine-learning
model to repurpose drug candidates against the spike protein
and the spike–human ACE2 interface complex. The model used
as input a set of structural and physicochemical features that cap-
ture the interactions between the drug molecule and the target
proteins at various spatial scales. As output, the model predicted
the corresponding AutoDock Vina score. Predictions were based
on a random forest model trained on docking-generated binding
affinities. Top-scoring ligands, including FDA-approved antivi-
rals (such as valaciclovir) and antibacterials (such as sul-
famethoxazole), were further validated in silico by all-atom
docking studies.

Studies by Beck et al.81 and by Ton et al.82 employed deep-
learning-based models, called Molecule Transformer–Drug Target
Interaction (MT–DTI) and Deep Docking, respectively, to predict
drug–target interactions. MT-DTI was trained with a database of
approximately a billion compounds combining data from the
BindingDB database83 and the Drug Target Common database,84

and was used to predict the binding affinity between SARS-CoV-2
proteins and 3411 FDA-approved drugs. Interestingly, the predic-
tions included drug candidates that are able to target multiple
viral proteins simultaneously. For example, atazanavir was pre-
dicted to bind SARS-CoV-2 Mpro/3CL, RdRp, and helicase. Simi-
larly, ganciclovir was predicted to bind to three subunits of the
replication complex. Deep Docking, a recently developed deep-
learning platform shown to provide accurate and fast approxima-
tions of docking outcomes, enabled a virtual screening of the
entire ZINC library of over 109 compounds against Mpro/3CL.45

Analysis of the top 1000 candidate inhibitors showed good
chemical diversity and superior docking scores relative to those
of known Mpro/3CL inhibitors. This method demonstrates the
plausibility of performing exhaustive virtual screening, although
the large number of predictions make it difficult to evaluate the
success rate and the overall clinical applicability.
Network-based approaches
During the viral life cycle, the virus interacts with multiple com-
ponents of the host cell. Previously described approaches have
aimed to identify inhibitory molecules that directly target viral
proteins. An alternative therapeutic option is to target the host
or the virus–host interactome, typically using techniques from
network pharmacology. The host interactome consists of human
2804 www.drugdiscoverytoday.com
proteins as nodes and their interactions as edges, drawing upon
various repositories of protein–protein interactions (PPI). The
virus–host interactome extends this network by including viral
proteins and their interactions with host proteins, typically
leveraging high-throughput experiments. Additional data, such
as transcriptomics, are used to derive subnetworks that are rele-
vant to the disease under study, in this case COVID-19. Finally,
databases of drug targets are utilized to predict druggable nodes
in these subnetworks, identifying potential therapeutics that
can perturb key processes of COVID-19 pathology.

Early papers that aimed to identify COVID-19 disease-relevant
subnetworks needed to overcome the lack of data on interactions
between SARS-CoV-2 and human proteins. Alakwaa85 and Cava
et al.86 focused solely on host networks centered around ACE2,
which is broadly expressed and is critical for SARS-CoV-2 cellular
entry. They identified ACE2-associated networks derived from
the analysis of gene expression in lung tissue transcriptomes in
the public domain (e.g. GTEx87), and mapped databases of drug
perturbations onto these gene sets. The work of Zhou et al.88 built
upon a similar strategy and constructed a broader pan Coron-
avirus–host interactome network, which included a set of 119
host proteins associated with previously characterized human,
mouse, and avian Coronaviruses. The drug repurposing method-
ology rested on the idea that for a drug to be effective, its targets
should be either in the Coronavirus–host interactome or in close
proximity to the interactome within the global human PPI net-
work. Guided by this idea, alongside additional information such
as transcriptomics data, literature-reported antiviral evidence and
known side effects, the authors prioritized four classes of drugs.
These included estrogen receptor modulators, angiotensin recep-
tor blockers, immunosuppressant or antineoplastic agents, and
anti-inflammatory agents. Finally, Zhou et al.88 predicted three
potentially synergistic drug combinations for COVID-19: siroli-
mus (immunosuppressor) + dactinomycin (RNA synthesis inhibi-
tor), toremifene (estrogen receptor modulator) + emodin
(antiviral agent), andmercaptopurine (antineoplastic agent) +me-
latonin (anti-inflammatory agent).

Network-based repurposing strategies require high-confidence
information on interactions between viral and human proteins.
In contrast to the computationally derived interactome in the
Zhou et al.88 study, Gordon et al.89 experimentally identified
332 interactions between SARS-CoV-2 and human proteins. For
each viral protein, a set of interacting host proteins was deter-
mined using affinity purification mass spectrometry, and
assessed via immunological pathway analysis. This analysis
revealed that the interacting host proteins participate in major
cellular processes including DNA replication, epigenetic and
transcriptional regulation, multiple innate immune pathways,
and host translational machinery. Next, the authors predicted
69 agents, including FDA-approved drugs, that would disrupt
host proteins and cellular processes potentially hijacked during
SARS-CoV-2 infection. Further experiments revealed the antiviral
activity of two broad classes of active compounds: those imping-
ing on the translational machinery of the host needed for viral
biogenesis, and those modulating the sigma1 and sigma2 recep-
tors (chaperone proteins at the endoplasmic reticulum). Transla-
tion inhibitors (such as zotatifin and aplidin/plitidepsin) and
sigma receptor ligands that have antiviral activity (such as
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haloperidol and clemastine/cloperastine) were identified as
potential candidates for repurposing of drugs against COVID-19.

Bouhaddou et al.90 performed the first proteomics and phos-
phoproteomics analysis to explore how host pathways rewire
upon SARS-CoV-2 infection. The study revealed a prominent role
of phosphorylation events in modulating the cell cycle and
cytoskeletal organization of infected cells. The strategy for drug
repurposing hinged on detecting changes in phosphorylation
states between SARS-CoV-2-infected and control cells. These
identified changes were then mapped to changes in the activity
of 97 kinases linked by database knowledge with their sub-
strates.91 Of note, several inferred kinases were members of the
virus–host PPI map generated by Gordon et al.89 Finally, Bouhad-
dou et al.90 looked for drugs that were able to inhibit the identi-
fied kinases, producing 87 drug candidates. In vitro assays
involving 68 out of these 87 kinase inhibitors, including silmi-
tasertib (an inhibitor of CK2), gilteritinib (an inhibitor of AXL),
and ARRY-797 (an inhibitor of p38) demonstrated strong antivi-
ral activity.

More recent studies took advantage of the increasing availabil-
ity of transcriptomics data, which make it possible to identify
SARS-CoV-2-regulated genes and pathways, and their overlap
with drug-modulated genes.92,93 By applying network proximity
measures to multi-omics data from diverse tissues, Zhou et al.94

revealed similarities between COVID-19 and other pathologies,
including inflammatory bowel disease and asthma. The shared
pathological processes could suggest candidates for repurposing
in COVID-19.
Hybrid methodologies
An important study of Bojkova et al.,95 which makes and vali-
dates multiple predictions, does not fit the standard computa-
tional drug repurposing classification. We place this study in
the ‘Hybrid’ category because it integrates diverse computational
techniques as well as experimental work.

To identify host pathways that are modulated by SARS-CoV-2
infection, Bojkova et al.95 established a novel cell culture model
using a human epithelial carcinoma cell line. The SARS-CoV-2
infection profile, comprising both viral and host proteins, was
quantified through translatome and proteome analysis at multi-
ple time points within 2–24 hours after infection. First, the
authors identified host proteins whose translation kinetics
showed high correlation with those of viral proteins. Network
and enrichment analyses of these proteins showed a strong
increase in the host translation machinery, suggesting that trans-
lation inhibitors may reduce SARS-CoV-2 replication. This
hypothesis was validated using two translation inhibitors, cyclo-
heximide and emetine. To gain further insight into host pro-
teome changes after infection, Bojkova et al.95 performed
hierarchical clustering of the host proteins’ expression profiles
over time. This revealed an upregulated cluster of proteins that
was enriched in spliceosome components and carbon metabo-
lism, suggesting that targeting these two pathways may prevent
SARS-CoV-2 replication. Both hypotheses were validated using,
respectively, pladienolide B (a spliceosome inhibitor) and 2-
deoxy-D-glucose (an inhibitor of hexokinase implicated in car-
bon metabolism). Additional correlation analysis of the kinetics
of host and viral proteins showed that SARS-CoV-2 replication
can be also inhibited using ribavirin and NMS-873 (a compound
targeting the protein homeostasis machinery). Altogether, this
work revealed that SARS-CoV-2 infection modulates critical host
functions such as splicing, diverse metabolism sub-pathways,
and proteostasis. Drugs that interfere with these pathways can
be successfully repurposed to prevent SARS-CoV-2 replication
in a human cell line and are good candidates for further testing
in clinical settings for COVID-19.
Mining of text and healthcare records
The compilation of knowledge on COVID-19 has grown expo-
nentially since the beginning of the pandemic. Several initia-
tives, such as the COVID-19 Open Research Dataset (CORD-19)
and LitCovid, have made the published work more easily acces-
sible.96,97 This opens up great opportunities for analysis based
on text mining and natural language processing. A recent publi-
cation by Wang et al.97 provides a review of the different text-
mining systems and their applications to COVID-19 research,
including information retrieval, automated annotation, and drug
repurposing.98 The COVID-19 Drug Repository is the first signif-
icant work on computational drug repurposing based on text
mining.36 The goal of this repository, which integrates data from
PubMed, clinical trials and drug databases, is to centralize infor-
mation on drugs against COVID-19 in a structured framework.
The available information includes drug descriptions, side
effects, pharmacology-oriented data, and drug–gene interactions.
The resource makes it possible to identify putative repurposing
candidates by analyzing omics data in conjunction with mined
drug–target interactions.

More generally, text mining can be used to derive ‘knowledge
graphs’. These are models of entities and relationships in a partic-
ular domain (for example, COVID-19 research) that can support
the inference of novel relationships. In our context, a novel rela-
tionship could represent the potential efficacy of an existing drug
against COVID-19.98 Finally, another promising research direc-
tion is the mining of electronic health records, prescription
records and medical insurance claims.99 As these data types accu-
mulate in the context of COVID-19, frameworks that identify
new uses for on-market prescription drugs by systematically ana-
lyzing healthcare databases can be applied.100 Although still in
their early stages, the mining of text and healthcare records will
become an increasingly important tool in addressing the infor-
mation overload, and in generating new hypotheses for drug
repurposing.
Summary and conclusions
Computational drug repurposing for SARS-CoV-2 has homed in
on two main mechanisms of action (Table 1). The most frequent
mechanism is the direct inhibition of SARS-CoV-2 viral proteins
(Fig. 2A, seen in 31 of 44 reviewed works). The criterion for repur-
posing is the high binding affinity of the drugs to viral proteins,
which is estimated using molecular docking or machine learn-
ing. This strategy has previously led to successful repurposing
of antimicrobial drugs, including inhibitors of the Zika Virus.17

In the context of SARS-CoV-2, potentially repurposable drugs
include multiple inhibitors of RdRp, Mpro/3CL protease, and
www.drugdiscoverytoday.com 2805



TABLE 1

List of FDA-approved and investigational compounds predicted by computational drug repurposing methods to be effective against COVID-19. The predicted mechanism of
action and current indication is included where available. Hyperlinks are provided for compounds in clinical trials. *Compound faili experimental validation or clinical trial.

Drug Name Predicted MOA Predicted Class Current indication Referen Validation

Bedaquiline inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Antibacterial 101 In vitro (cell culture)
Carmofur inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Antineoplastic 61 In vitro (cell culture & FRET assay)
Cinanserin inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) No current pharmaceutical use 63 In vitro (tissue culture)
Disulfiram inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Alcoholism medication 61 In vitro (cell culture & FRET assay)
Ebselen inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Potential diabetes medication 61 In vitro (cell culture & FRET assay)
N3 inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) No current pharmaceutical use 61 In vitro (cell based assays)
PX-12 inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Potential antineoplastic

medication

61 In vitro (cell culture & FRET assay)

Shikonin inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Homeopathic medication 61 In vitro (cell culture & FRET assay),
TDZD-8 inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Potential Alzheimer's medication 61 In vitro (cell culture & FRET assay)
Tideglusib inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Potential Alzheimer's medication 61 In vitro (cell culture & FRET assay)
Baloxavir marboxil inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Antiviral for influenza 102 In vivo (clinical trial)
Mefloquine inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Antimalarial agent 103 In vitro (cell culture)
Almitrine inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Potential agent for the treatment

of COPD

104 In vivo

Ritonavir inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Antiviral for HIV 105 In vivo (clinical trial)*
Indinavir inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Antiviral for HIV 106 In vitro (cell culture)*
Telmisartan inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Anti-hypertensive clinical t In vivo (clinical trial)
Atazanavir inhibitor of MPro/3CL, RdRp,

Helicase
inhibitor of SARS-CoV-2 protein(s) Antiviral for HIV 107 In vitro (cell culture)

Remdesivir inhibitor of MPro/3CL, RdRp inhibitor of SARS-CoV-2 protein(s) Antiviral for Ebola, approved for
use for SARS CoV-2

18 In vivo (clinical trial)

Ciclesonide inhibitor of MPro/3CL, NSP15 inhibitor of SARS-CoV-2 protein(s) Agent for the treatment of
Asthma (anti-inflammatory)

108 In vitro (cell culture)

Sofosbuvir inhibitor of RdRp inhibitor of SARS-CoV-2 protein(s) Antiviral for HepC clinical t In vivo (clinical trial)
Hydroxychloroquine (HCQ) inhibitor of RdRp inhibitor of SARS-CoV-2 protein(s) Antimalarial agent 109 In vivo (clinical trial)*
Favipiravir inhibitor of RdRp inhibitor of SARS-CoV-2 protein(s) Antiviral agent clinical t In vivo (clinical trial)
Ribavirin inhibitor of PLpro inhibitor of SARS-CoV-2 protein(s) Antiviral, broad-spectrum 110 In vivo (clinical trial)*
Amodiaquine based on similarity to HCQ inhibitor of SARS-CoV-2 protein(s) Anti-malarial 111 In vitro (cell culture)
Cycloheximide protein translation inhibitor inhibitor of host protein(s)/pathway(s) No current pharmaceutical use 95 In vitro (cell culture)
Emetine protein translation inhibitor inhibitor of host protein(s)/pathway(s) Antiprotozoal 112 In vitro (cell culture)
Rapamycin mTOR inhibitor inhibitor of host protein(s)/pathway(s) Immunosuppressant with

antifungal and antineoplastic
properties

clinical t In vivo (clinical trial)

Toremifene estrogen receptor modulators inhibitor of host protein(s)/pathway(s) Selective estrogen receptor
modulator

113 In vitro (cell culture)

Tamoxifen estrogen receptor modulators inhibitor of host protein(s)/pathway(s) Selective estrogen receptor
modulator

114 In vitro (cell culture)

Chloroquine sigma1 receptor of Endoplasmic
Reticulum

inhibitor of host protein(s)/pathway(s) Antiparasitic 115 In vitro (cell culture)

Merimepodib inhibitor of host proteins
interacting with SARS-CoV-2
Nsp14

inhibitor of host protein(s)/pathway(s) IMPDH inhibitor clinical t In vivo (clinical trial)

Mycophenolic acid inhibitor of host proteins
interacting with SARS-CoV-2
Nsp14

inhibitor of host protein(s)/pathway(s) Immunosuppressant 116 In vitro (cell culture)
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TABLE 1 (CONTINUED)

Drug Name Predicted MOA Predicted Class Current indication Reference Validation

Silmitasertib Kinase inhibitor inhibitor of host protein(s)/pathway(s) Potential antineoplastic 90 In vitro (cell culture)
Gilteritinib Kinase inhibitor inhibitor of host protein(s)/pathway(s) Antineoplastic 90 In vitro (cell culture)
ARRY-797 Kinase inhibitor inhibitor of host protein(s)/pathway(s) Potential cardiovascular agent 90 In vitro (cell culture)
MAPK13-IN-1 Kinase inhibitor inhibitor of host protein(s)/pathway(s) Potential antineoplastic 90 In vitro (cell culture)
SB203580 Kinase inhibitor inhibitor of host protein(s)/pathway(s) Potential antineoplastic 90 In vitro (cell culture)
Ralimetinib Kinase inhibitor inhibitor of host protein(s)/pathway(s) Potential antineoplastic 90 In vitro (cell culture)
Apilimod Kinase inhibitor inhibitor of host protein(s)/pathway(s) Antiviral and antineoplastic 90 In vitro (cell culture)
Imatinib Kinase inhibitor inhibitor of host protein(s)/pathway(s) Antineoplastic 116 In vitro (cell culture)
Dinaciclib Kinase inhibitor inhibitor of host protein(s)/pathway(s) Potential antineoplastic 90 In vitro (cell culture)
Camostat mesylate TMPRSS2 inhibitor inhibitor of host protein(s)/pathway(s) Agent for treatment of

pancreatitis

117 In vitro (cell culture)

Nafamostat mesylate TMPRSS2 inhibitor inhibitor of host protein(s)/pathway(s) Anticoagulant clinical trial In vivo (clinical trial)
Lopinavir Protease inhibitor inhibitor of host protein(s)/pathway(s) Antiretroviral 112 In vitro (cell culture)
Zotatifin translation inhibitor inhibitor of host protein(s)/pathway(s) Potential antineoplastic clinical trial in vivo (clinical trial)
Colchicine Anti-inflammatory inhibitor of host protein(s)/pathway(s) Anti-inflammatory clinical trial In vivo (clinical trial)
Melatonin Anti-inflammatory inhibitor of host protein(s)/pathway(s) Anti-inflammatory clinical trial In vivo (clinical trial)
Siltuximab IL6 inhibitor inhibitor of host protein(s)/pathway(s) Anti-inflammatory agent 118 In vivo
Tetrandrine Calcium channel blocker inhibitor of host protein(s)/pathway(s) Agent for the treatment of

hypertension

119 In vitro (cell culture)

Lacking validation

Carvedilol inhibitor of SARS-CoV-2 protein
(s), MPro/3CL

inhibitor of SARS-CoV-2 protein(s) Treatment of high blood
pressure, congestive heart failure

Conivaptan inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Treatment for hyponatremia
Chloroxine inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Antibacterial
Demexiptiline inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Antidepressant
Fluorouracil inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Antineoplastic
Debio-1347 inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Antineoplastic
Mercaptopurine inhibitor of MPro/3CL inhibitor of SARS-CoV-2 protein(s) Antineoplastic agent with

immunosuppressant properties
Emodin inhibitor of MPro/3CL, Spike

protein
inhibitor of SARS-CoV-2 protein(s) Treatment of Polycystic kidney

Ganciclovir inhibitor of MPro/3CL, RdRp,
Helicase

inhibitor of SARS-CoV-2 protein(s) Antiviral

Idarubicin inhibitor of RdRp inhibitor of SARS-CoV-2 protein(s) Antineoplastic
Valaciclovir inhibitor of Spike protein & Spike

protein - ACE2 interface complex
inhibitor of SARS-CoV-2 protein(s) Antiviral

Sulfamethoxazole inhibitor of Spike protein & Spike
protein - ACE2 interface complex

inhibitor of SARS-CoV-2 protein(s) Antibacterial

Dactinomycin RNA synthesis inhibitor inhibitor of host protein(s)/pathway(s) Antineoplastic
Plitidepsin translation inhibitor inhibitor of host protein(s)/pathway(s) Antineoplastic
Haloperidol sigma1/2 receptor of

Endoplasmic Reticulum
inhibitor of host protein(s)/pathway(s) Antipsychotic

Clemastine sigma1/2 receptor of
Endoplasmic Reticulum

inhibitor of host protein(s)/pathway(s) Anti allergy

Cloperastine sigma1/2 receptor of
Endoplasmic Reticulum

inhibitor of host protein(s)/pathway(s) Cough suppressant

Pladienolide B spliceosome inhibitor inhibitor of host protein(s)/pathway(s) Potential antineoplastic
2-deoxy-D-glucose carbon metabolism inhibitor of host protein(s)/pathway(s) Potential antineoplastic and

antiviral
NMS-873 protein homeostasis machinery inhibitor of host protein(s)/pathway(s) No current pharmaceutical use
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FIGURE 2
Classification of predictions based on the mechanism of action. A. Proportions of reviewed works predicting drugs that target viral proteins, host proteins, or
both. B. The most commonly predicted drugs, classified as either virus or host targeting. Several drugs have been predicted by multiple works.
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other viral proteins. We found extensive overlap between the
drug compounds predicted by the reviewed works. Many com-
monly used antivirals that have garnered international attention
and have been used clinically in the treatment of COVID-
19,101,102 such as ritonavir and ribavirin, were predicted by up
to 12 different computational approaches (Fig. 2B).

The second mechanism is the inhibition of host pathways
predicted by network-based and hybrid approaches (Fig. 2A, seen
in 9 of 44 reviewed works). These methods identified host targets
involved in virus life cycle, particularly entry and RNA synthesis.
Progress in identifying inhibitors of host pathways that con-
tribute to pathogenesis is critical, particularly for a virus that
has already mutated enough to render some previously effective
therapeutics significantly less potent. Of note, current methods
are less effective in identifying drugs that target other key host
pathways that contribute to pathology, such as aberrant immune
responses and thrombosis, whose therapeutic manipulation
showed promising results.103–106 This may be due to a poor
molecular understanding of the systems-level effects of SARS-
CoV-2 infection. Finally, a few studies have identified both viral
and host proteins as potential targets (Fig. 2A, seen in 4 of 44
reviewed works). These predictions were produced by docking
and structure-based machine learning, which are not intrinsi-
cally limited to the identification of viral proteins as targets.

The overall strengths, limitations, and successful applications
of the methodologies included in this review have been dis-
cussed previously.19–25 In the context of COVID-19, an addi-
tional challenge is the lack of solid prior biological knowledge.
The knowledge required for each of the different method classes
is being accumulated at different rates. For example, the SARS-
CoV-2 protein structure, which is required for docking, was
quickly solved for several viral proteins. On the other hand,
the mapping of the virus–host interactome, which is needed
for network approaches, is a research objective that will require
2808 www.drugdiscoverytoday.com
longer-term effort. Therefore, efforts to assess the success rates
of the different methods for COVID-19 drug repurposing are still
premature. Regardless of the specific method being used, the pre-
conditions for success go beyond target activity to encompass
other key pharmacological aspects, such as safety, toxicity and
drug–drug interactions. Furthermore, as noted by Edwards,107

the success rate of hypothesis-driven repurposing research far
exceeds that of large-scale, hypothesis-free screenings. This con-
cept is also evident in works of Gordon et al.,89 Jin et al.61 and
Bojkova et al.95 reviewed here, which first produced data specifi-
cally for hypothesis generation, before validating the predictions
in vitro. Going forward, the increasing accumulation of data, as
well as improved knowledge of COVID-19 pathology, should
enhance our ability to strike the right balance between
hypothesis-driven screenings and the predominantly data-
driven repurposing strategies reviewed here.

With this objective in mind, we have curated a list of COVID-
19-specific data portals. We also include a list of other relevant
resources typically employed by computational repurposing
methods, both for COVID-19 and more broadly (Table 2). These
repositories contain data describing gene and protein sequences
and structures; drugs and drug targets; properties of chemical
compounds; and biological networks and pathways. Further-
more, several -omics datasets, profiling SAR-CoV-2 infection in
various tissues, have been published.108–113 Although not
exhaustive, our curated lists include the most commonly utilized
repositories and provides a basis for future work.

Effective treatment of complex diseases, such as viral infec-
tions, may require the targeting of multiple host and viral pro-
cesses. Severity and mortality of COVID-19 are highly
dependent upon biological factors, such as older age, and upon
pre-existing conditions, such as hypertension, diabetes, cardio-
vascular disease, or chronic obstructive pulmonary disease
(COPD).114–117 The optimal treatment is likely to depend on a



TABLE 2

Curated list of COVID-19-specific resources and repositories relevant to computational drug repurposing.

Resource/ data
type

Resource name Website Description Reference

COVID-19 platform CORD-19 https://www.kaggle.com/allen-institute-for-ai/
CORD-19-research-challenge

Scholarly articles on COVID-19, SARS-CoV-2, and other related
coronaviruses, with a focus on natural language processing and other AI
techniques

97

COVID-19 portfolio https://icite.od.nih.gov/covid19/search/ Publications and preprints on COVID-19 and SARS-CoV-2 –

COVIDScholar https://covidscholar.org/ Search engine that utilizes natural language processing to aid in the search
for COVID-19 articles

–

COVID-19 research explorer https://covid19-research-explorer.appspot.com/ Search engine for COVID-19 that operates on question-based searches –

SPIKE-CORD https://spike.covid-19.apps.allenai.org/
search/covid19

Search engine for CORD-19 which operates on query modes to perform
extractive searches

–

Virus-CKB https://www.cbligand.org/g/virus-ckb Knowledgebase for research on COVID-19 and similar viral infections 123

SciSight https://scisight.apps.allenai.org/ Tool used to visualize the directions of the emerging literature network
related to COVID-19

–

KnetMiner https://knetminer.org/COVID-19/ Search engine that aids in COVID-19 related search queries based on
keywords, gene lists, and genomic regions

–

COVID-19 Primer https://covid19primer.com/dashboard Tool that uses natural language processing (NLP) to summarize research
trends, news coverage, and social media discussions on the topic of
COVID-19 and SARS-CoV-2

–

COVID-19 drug and gene set

library

https://maayanlab.cloud/covid19/ A collection of drug and gene sets related to COVID-19 research
contributed by the community

35

CDC COVID-19 Databases

and Journals

https://www.cdc.gov/library/researchguides/
2019novelcoronavirus/databasesjournals.html

Compilation of selected databases and journals that can help researchers
to find scholarly articles and data relating to COVID-19

–

LitCovid https://www.ncbi.nlm.nih.gov/
research/coronavirus/

A curated literature hub for tracking up-to-date scientific information
about SARS-CoV-2

124

iSearch COVID-19 portfolio https://icite.od.nih.gov/covid19/search/ An expert-curated database containing published papers and preprints –

WHO COVID-19 research

article database

https://www.who.int/emergencies/diseases/
novel-coronavirus-2019/global-research-on-
novel-coronavirus-2019-ncov

A database gathering the latest international multilingual scientific
findings and knowledge on COVID-19

–

COVID-KOP https://covidkop.renci.org/ Biomedical reasoning system for data collected about the COVID-19
pandemic, including information on drugs, literature co-occurrences and
phenotypes

125

HIT-COVID https://akuko.io/post/covid-intervention-
tracking

Quantification of the effectiveness of public health measures on SARS-CoV-
2 transmission

126

COVID Moonshot https://covid.postera.ai/covid Crowdsourced initiative to accelerate the development of a COVID-19
antiviral

127

CIDO http://www.ontobee.org/ontology/CIDO Community-based ontology that supports COVID-19 knowledge and data
standardization, integration, sharing, and analysis

128

COVEX https://exbio.wzw.tum.de/covex/about Online network and systems medicine platform for data analysis that
integrates virus–human interactions for SARS-CoV-2 and SARS-CoV-1

129

The COVIDome Project https://www.ncbi.nlm.nih.gov/sars-cov-2/ Collaborative effort to generate multidimensional datasets from
biospecimens from COVID-19 patients and controls

–

NCBI SARS-CoV-2 Resource https://www.ncbi.nlm.nih.gov/sars-cov-2/ An expert-curated database which was developed to increase the
useability of existing resources

–

PDBe COVID-19 https://www.ebi.ac.uk/pdbe/covid-19 3D-structure data for large biological molecules, such as proteins and
nucleic acids, that are specific to SARS-CoV-2

130

(continued on next page)
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TABLE 2 (CONTINUED)

Resource/ data
type

Resource name Website Description Reference

Compound
database

ZINC15 https://zinc15.docking.org/ 3D formats of purchasable compounds and their different properties, such
as rings, substances, tranches, and patterns

45

Drug response PharmGKB https://www.pharmgkb.org/ Data on the impact of genetic variations on drug response and annotated
information on drugs

131

Drugs and drug
targets

IUPHAR/BPS guide to

pharmacology

https://www.guidetopharmacology.org/ Information on drug targets, and on prescription and experimental
medications that act on them

–

DrugBank https://www.drugbank.ca/ Information on drugs and their chemical and pharmacological properties;
this resource also contains information on drug targets and their
sequences, structures, and pathways

132

Drug Target Commons

Database

https://drugtargetcommons.fimm.fi/ Bioactivity data for drugs and their targets 84

Drugs Drug repurposing for COVID-

19

http://covid19.md.biu.ac.il/ Database of existing drugs that have potential or proven efficacy against
SARS-CoV-2

–

Binding affinities BindingDB https://www.bindingdb.org/bind/index.jsp Information on the binding affinities between molecular entities and
protein targets

83

Gene GenBank https://www.ncbi.nlm.nih.gov/genbank/ Publicly available DNA sequences 133

EMBL-ENA https://www.ebi.ac.uk/ena Nucleotide sequencing information 134

GeneCards https://www.genecards.org/ Annotated and predicted human genes 135

CMAP https://www.broadinstitute.org/connectivity-
map-cmap

Gene expression profiles and disease-associated genes 136

MSigDB https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp

Annotated gene sets that can be utilized with Gene Set Enrichment
Analysis (GSEA) software

137

Protein UniProt https://covid-19.uniprot.org/uniprotkb?query=* Information on protein sequence and annotation of SARS-CoV-2 138

Swiss-Prot https://www.uniprot.org/statistics/Swiss-Prot Part of UniProt, this resource includes protein sequences and their
functional information

139

PDB https://www.rcsb.org/ 3D structure data for large biological molecules, such as proteins and
nucleic acids

130

PRIDE https://www.ebi.ac.uk/pride/ Mass spectrometry proteomics and genomic data 140

CORUM http://mips.helmholtz-muenchen.de/corum/ Protein complexes, protein subunits, literature references, and
experimental reports

141

Multi type KEGG https://www.genome.jp/kegg Information on drugs, genes, proteins and pathways 142
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specific patient’s characteristics, so future repurposing methods
may account for variation in risk factors, leading to personalized
treatments.

Combination therapies increase the spectrum of disease mod-
ulation, improving drug efficacy/toxicity ratios and combating
drug resistance.118 A synergistic effect can be created by using
several drugs that target different disease pathways.119 For exam-
ple, combination drug therapy has become the gold standard in
the treatment of cancer120 and in the treatment of several virus
infections, notably HIV.121 The principle of ‘complementary
exposure’,122 which optimizes drug effects over a large portion
of the disease network, has predicted several synergistic drug
combinations for the treatment of COVID-19. One example is
sirolimus and dactinomycin, which inhibit mTOR signaling
and RNA synthesis pathways, respectively. An important chal-
lenge and a promising objective for future computational drug
repurposing is the ability to design effective drug combinations
that target multiple COVID-19 pathological pathways.

Computational drug repurposing has led to remarkable suc-
cess stories in several disease areas, including cancer, autoim-
mune diseases, and viral infections. Despite the many
challenges, our review lays out the early promising steps towards
successful computational repurposing for COVID-19.
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