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Abstract

Variable importance (VI) tools describe how much covariates contribute to a prediction model’s

accuracy. However, important variables for one well-performing model (for example, a linear

model f (x) = xT β with a fixed coefficient vector β) may be unimportant for another model.

In this paper, we propose model class reliance (MCR) as the range of VI values across all well-

performing model in a prespecified class. Thus, MCR gives a more comprehensive description

of importance by accounting for the fact that many prediction models, possibly of different

parametric forms, may fit the data well. In the process of deriving MCR, we show several

informative results for permutation-based VI estimates, based on the VI measures used in Random

Forests. Specifically, we derive connections between permutation importance estimates for a single
prediction model, U-statistics, conditional variable importance, conditional causal effects, and

linear model coefficients. We then give probabilistic bounds for MCR, using a novel, generalizable

technique. We apply MCR to a public data set of Broward County criminal records to study the

reliance of recidivism prediction models on sex and race. In this application, MCR can be used to

help inform VI for unknown, proprietary models.
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1. Introduction

Variable importance (VI) tools describe how much a prediction model’s accuracy depends

on the information in each covariate. For example, in Random Forests, VI is measured by

the decrease in prediction accuracy when a covariate is permuted (Breiman, 2001; Breiman
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et al., 2001; see also Strobl et al., 2008; Altmann et al., 2010; Zhu et al., 2015; Gregorutti

et al., 2015; Datta et al., 2016; Gregorutti et al., 2017). A similar “Perturb” VI measure has

been used for neural networks, where noise is added to covariates (Recknagel et al., 1997;

Yao et al., 1998; Scardi and Harding, 1999; Gevrey et al., 2003). Such tools can be useful

for identifying covariates that must be measured with high precision, for improving the

transparency of a “black box” prediction model (see also Rudin, 2019), or for determining

what scenarios may cause the model to fail.

However, existing VI measures do not generally account for the fact that many prediction

models may fit the data almost equally well. In such cases, the model used by one analyst

may rely on entirely different covariate information than the model used by another analyst.

This common scenario has been called the “Rashomon” effect of statistics (Breiman et al.,

2001; see also Lecué, 2011; Statnikov et al., 2013; Tulabandhula and Rudin, 2014; Nevo

and Ritov, 2017; Letham et al., 2016). The term is inspired by the 1950 Kurosawa film of

the same name, in which four witnesses offer different descriptions and explanations for

the same encounter. Under the Rashomon effect, how should analysts give comprehensive

descriptions of the importance of each covariate? How well can one analyst recover the

conclusions of another? Will the model that gives the best predictions necessarily give the

most accurate interpretation?

To address these concerns, we analyze the set of prediction models that provide near-optimal

accuracy, which we refer to as a Rashomon set. This approach stands in contrast to training

to select a single prediction model, among a prespecified class of candidate models. Our

motivation is that Rashomon sets (defined formally below) summarize the range of effective

prediction strategies that an analyst might choose. Additionally, even if the candidate models

do not contain the true data generating process, we may hope that some of these models

function in similar ways to the data generating process. In particular, we may hope there

exist well performing candidate models that place the same importance on a variable of

interest as the underlying data generating process does. If so, then studying sets of well-

performing models will allow us to deduce information about the data generating process.

Applying this approach to study variable importance, we define model class reliance (MCR)

as the highest and lowest degree to which any well-performing model within a given class

may rely on a variable of interest for prediction accuracy. Roughly speaking, MCR captures

the range of explanations, or mechanisms, associated with well-performing models. Because

the resulting range summarizes many prediction models simultaneously, rather a single

model, we expect this range to be less affected by the choices that an individual analyst

makes during the model-fitting process. Instead of reflecting these choices, MCR aims to

reflect the nature of the prediction problem itself.

We make several, specific technical contributions in deriving MCR. First, we review a core

measure of how much an individual prediction model relies on covariates of interest for

its accuracy, which we call model reliance (MR). This measure is based on permutation

importance measures for Random Forests (Breiman et al., 2001; Breiman, 2001), and can

be expanded to describe conditional importance (see Section 8, as well as Strobl et al.

2008). We draw a connection between permutation-based importance estimates (MR) and
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U-statistics, which facilitates later theoretical results. Additionally, we derive connections

between MR, conditional causal effects, and coefficients for additive models. Expanding

on MR, we propose MCR, which generalizes the definition of MR for a class of models.
We derive finite-sample bounds for MCR, which motivate an intuitive estimator of MCR.

Finally, we propose computational procedures for this estimator.

The tools we develop to study Rashomon sets are quite general, and can be used to

make finite-sample inferences for arbitrary characteristics of well-performing models. For

example, beyond describing variable importance, these tools can describe the range of risk

predictions that well-fitting models assign to a particular covariate profile, or the variance of

predictions made by well-fitting models. In some cases, these novel techniques may provide

finite-sample confidence intervals (CIs) where none have previously existed (see Section 5).

MCR and the Rashomon effect become especially relevant in the context of criminal

recidivism prediction. Proprietary recidivism risk models trained from criminal records data

are increasingly being used in U.S. courtrooms. One concern is that these models may be

relying on information that would otherwise be considered unacceptable (for example, race,

sex, or proxies for these variables), in order to estimate recidivism risk. The relevant models

are often proprietary, and cannot be studied directly. Still, in cases where the predictions

made by these models are publicly available, it may be possible to identify alternative

prediction models that are sufficiently similar to the proprietary model of interest.

In this paper, we specifically consider the proprietary model COMPAS (Correctional

Offender Management Profiling for Alternative Sanctions), developed by the company

Northpointe Inc. (subsequently, in 2017, Northpointe Inc.,Courtview Justice Solutions Inc.,

and Constellation Justice Systems Inc. joined together under the name Equivant). Our goal

is to estimate how much COMPAS relies on either race, sex, or proxies for these variables

not measured in our data set. To this end, we apply a broad class of flexible, kernel-based

prediction models to predict COMPAS score. In this setting, the MCR interval reflects the

highest and lowest degree to which any prediction model in our class can rely on race and

sex while still predicting COMPAS score relatively accurately. Equipped with MCR, we

can relax the common assumption of being able to correctly specify the unknown model

of interest (here, COMPAS) up to a parametric form. Instead, rather than assuming that

the COMPAS model itself is contained in our class, we assume that our class contains at

least one well-performing alternative model that relies on sensitive covariates to the same

degree that COMPAS does. Under this assumption, the MCR interval will contain the VI

value for COMPAS. Applying our approach, we find that race, sex, and their potential proxy

variables, are likely not the dominant predictive factors in the COMPAS score (see analysis

and discussion in Section 10).

The remainder of this paper is organized as follows. In Section 2 we introduce notation, and

give a high level summary of our approach, illustrated with visualizations. In Sections 3 and

4 we formally present MR and MCR respectively, and derive theoretical properties of each.

We also review related variable importance practices in the literature, such as retraining a

model after removing one of the covariates. In Section 5, we discuss general applicability of

our approach for determining finite-sample CIs for other problems. In Section 6, we present
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a general procedure for computing MCR. In Section 7, we give specific implementations

of this procedure for (regularized) linear models, and linear models in a reproducing kernel

Hilbert space. We also show that, for additive models, MR can be expressed in terms of the

model’s coefficients. In Section 8 we outline connections between MR, causal inference, and

conditional variable importance. In Section 9, we illustrate MR and MCR with a simulated

toy example, to aid intuition. We also present simulation studies for the task of estimating

MR for an unknown, underlying conditional expectation function, under misspecification.

We analyze a well-known public data set on recidivism in Section 10, described above. All

proofs are presented in the appendices.

2. Notation & Technical Summary

The label of “variable importance” measure has been broadly used to describe approaches

for either inference (van der Laan, 2006; Díaz et al., 2015; Williamson et al., 2017) or

prediction. While these two goals are highly related, we primarily focus on how much

prediction models rely on covariates to achieve accuracy. We use terms such as “model

reliance” rather than “importance” to clarify this context.

In order to evaluate how much prediction models rely on variables, we now introduce

notation for random variables, data, classes of prediction models, and loss functions for

evaluating predictions. Let Z = Y , X1, X2 ∈ Z be a random variable with outcome Y ∈ Y
and covariates X = X1, X2 ∈ X, where the covariate subsets X1 ∈ X1 and X2 ∈ X2 may

each be multivariate. We assume that observations of Z are iid, that n ≥ 2, and that solutions

to arg min and arg max operations exist whenever optimizing over sets mentioned in

this paper (for example, in Theorem 4, below). Our goal is to study how much different

prediction models rely on X1 to predict Y.

We refer to our data set as Z = [ y X ], a matrix composed of a n-length outcome vector y
in the first column, and a n × p covariate matrix X = [ X1 X2 ] in the remaining columns.

In general, for a given vector v, let v[j] denote its jth element(s). For a given matrix A, let

A′, A[i,·], A[·,j] and A[i,j] respectively denote the transpose of A, the ith row(s) of A, the jth

column(s) of A, and the element(s) in the ith row(s) and jth column(s) of A.

We use the term model class to refer to a prespecified subset ℱ ⊂ f f :X Y  of the

measurable functions from X to Y. We refer to member functions f ∈ ℱ as prediction
models, or simply as models. Given a model f, we evaluate its performance using a

nonnegative loss function L: ℱ × Z ℝ ≥ 0. For example, L may be the squared error

loss Lse(f, (y, x1, x2)) = (y − f (x1, x2))2 for regression, or the hinge loss Lh(f, (y, x1, x2))

= (1 − y f (x1, x2))+ for classification. We use the term algorithm to refer to any procedure

A:Zn ℱ that takes a data set as input and returns a model f ∈ ℱ as output.

2.1 Summary of Rashomon Sets & Model Class Reliance

Many traditional statistical estimates come from descriptions of a single, fitted prediction

model. In contrast, in this section, we summarize our approach for studying a set of

near-optimal models. To define this set, we require a prespecified “reference” model,
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denoted by fref, to serve as a benchmark for predictive performance. For example, fref

may come from a flowchart used to predict injury severity in a hospital’s emergency

room, or from another quantitative decision rule that is currently implemented in practice.

Given a reference model fref, we define a population ϵ-Rashomon set as the subset of

models with expected loss no more than ϵ above that of fref. We denote this set as

ℛ ϵ : = f ∈ ℱ:EL f, Z ≤ EL fref, Z + ϵ , where E denotes expectations with respect

to the population distribution. This set can be thought of as representing models that

might be arrived at due to differences in data measurement, processing, filtering, model

parameterization, covariate selection, or other analysis choices (see Section 4).

Figure 1–A illustrates a hypothetical example of a population ϵ-Rashomon set. Here, the

y-axis shows the expected loss of each model f ∈ ℱ, and the x-axis shows how much each

model relies on X1 for its predictive accuracy. More specifically, given a prediction model

f, the x-axis shows the percent increase in f’s expected loss when noise is added to X1. We

refer to this measure as the model reliance (MR) of f on X1, written informally as

MR f : = Expected loss of f under noise
Expected loss of f without noise . (2.1)

The added noise must satisfy certain properties, namely, it must render X1 completely

uninformative of the outcome Y, without altering the marginal distribution of X1 (for details,

see Section 3, as well as Breiman, 2001; Breiman et al., 2001).

Our central goal is to understand how much, or how little, models may rely on covariates of

interest (X1) while still predicting well. In Figure 1–A, this range of possible MR values is

shown by the highlighted interval along the x-axis. We refer to an interval of this type as a

population-level model class reliance (MCR) range (see Section 4), formally defined as

[MCR−(ϵ), MCR+(ϵ)] : = min
f ∈ ℛ ϵ

MR f , max
f ∈ ℛ ϵ

MR f . (2.2)

To estimate this range, we use empirical analogues of the population ϵ-Rashomon set, and of

MR, based on observed data (Figure 1–B). We define an empirical ϵ-Rashomon set as the set

of models with in-sample loss no more than ϵ above that of fref, and denote this set by ℛ ϵ .

Informally, we define the empirical MR of a model f on X1 as

MR f : = In‐sample loss of f under noise
In‐sample loss of f without noise , (2.3)

that is, the extent to which f appears to rely on X1 in a given sample (see Section 3 for

details). Finally, we define the empirical model class reliance as the range of empirical MR

values corresponding to models with strong in-sample performance (see Section 4), formally

written as

[MCR−(ϵ), MCR+(ϵ)] : = min
f ∈ ℛ ϵ

MR f , max
f ∈ ℛ ϵ

MR f . (2.4)
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In Figure 1–B, the above range is shown by the highlighted portion of the x-axis.

We make several technical contributions in the process of developing MCR.

• Estimation of MR, and population-level MCR: Given f, we show desirable

properties of MR(f) as an estimator of MR(f), using results for U-statistics

(Section 3.1 and Theorem 5). We also derive finite sample bounds for

population-level MCR, some of which require a limit on the complexity of ℱ
in the form of a covering number. These bounds demonstrate that, under fairly

weak conditions, empirical MCR provides a sensible estimate of population-level

MCR (see Section 4 for details).

• Computation of empirical MCR: Although empirical MCR is fully determined

given a sample, the minimization and maximization in Eq 2.4 require nontrivial

computations. To address this, we outline a general optimization procedure for

MCR (Section 6). We give detailed implementations of this procedure for cases

when the model class ℱ is a set of (regularized) linear regression models, or a

set of regression models in a reproducing kernel Hilbert space (Section 7). The

output of our proposed procedure is a closed-form, convex envelope containing

ℱ, which can be used to approximate empirical MCR for any performance

level ϵ (see Figure 2 for an illustration). Still, for complex model classes where

standard empirical loss minimization is an open problem (for example, neural

networks), computing empirical MCR remains an open problem as well.

• Interpretation of MR in terms of model coefficients, and causal effects: We

show that MR for an additive model can be written as a function of the model’s

coefficients (Proposition 15), and that MR for a binary covariate X1 can be

written as a function of the conditional causal effects of X1 on Y (Proposition

19).

• Extensions to conditional importance: We provide an extension of MR that

is analogous to the notion of conditional importance (Strobl et al., 2008). This

extension describes how much a model relies on the specific information in X1

that cannot otherwise be gleaned from X2 (Section 8.2).

• Generalizations for Rashomon sets: Beyond notions of variable importance,

we also generalize our finite sample results for MCR to describe arbitrary

characterizations of models in a population ϵ-Rashomon set. As we discuss

in concurrent work (Coker et al., 2018), this generalization is analogous to the

profile likelihood interval, and can, for example, be used to bound the range

of risk predictions that well-performing prediction models may assign to a

particular set of covariates (Section 5).

We begin in the next section by formally reviewing model reliance.

3. Model Reliance

To formally describe how much the expected accuracy of a fixed prediction model f relies

on the random variable X1, we use the notion of a “switched” loss where X1 is rendered
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uninformative. Throughout this section, we will treat f as a pre-specified prediction model

of interest (as in Hooker, 2007). Let Z(a) = (Y (a), X1
(a), X2

(a)) and Z(b) = (Y (b), X1
(b), X2

(b)) be

independent random variables, each following the same distribution as Z = (Y, X1, X2). We

define

eswitcℎ f : = EL{f, (Y b , X1
a , X2

b )}

as representing the expected loss of model f across pairs of observations (Z(a), Z(b)) in which

the values of X1
(a) and X1

(b) have been switched. To see this interpretation of the above

equation, note that we have used the variables (Y (b), X2
(b)) from Z(b), but we have used the

variable X1
(b) from an independent copy Z(b). This is why we say that X1

(a) and X1
(b) have

been switched; the values of (Y (b), X1
(a), X2

(b)) do not relate to each other as they would if they

had been chosen together. An alternative interpretation of eswitch(f) is as the expected loss of

f when noise is added to X1 in such a way that X1 becomes completely uninformative of Y,

but that the marginal distribution of X1 is unchanged.

As a reference point, we compare eswitch(f) against the standard expected loss when none

of the variables are switched, eorig(f) : = EL(f, (Y , X1, X2)) . From these two quantities, we

formally define model reliance (MR) as the ratio,

MR f : = eswitch f
eorig f , (3.1)

as we alluded to in Eq 2.1. Higher values of MR(f) signify greater reliance of f on X1. For

example, an MR(f) value of 2 means that the model relies heavily on X1, in the sense that

its loss doubles when X1 is scrambled. An MR(f) value of 1 signifies no reliance on X1, in

the sense that the model’s loss does not change when X1 is scrambled. Models with reliance

values strictly less than 1 are more difficult to interpret, as they rely less on the variable of

interest than a random guess. Interestingly, it is possible to have models with reliance less

than one. For instance, a model f′ may satisfy MR(f′) < 1 if it treats X1 and Y as positively

correlated when they are in fact negatively correlated. However, in many cases, the existence

of a model f′ ∈ ℱ satisfying MR(f′) < 1 implies the existence of another, better performing

model f″ ∈ ℱ satisfying MR(f″) < 1 and eorig(f″) ≤ eorig(f′). That is, although models may

exist with MR values less than 1, they will typically be suboptimal (see Appendix A.2).

Model reliance could alternatively be defined as a difference rather than a ratio, that is,

as MRdifference(f) : = eswitch(f) − eorig(f) . In Appendix A.5, we discuss how many of our

results remain similar under either definition.

3.1 Estimating Model Reliance with U-statistics, and Connections to Permutation-based
Variable Importance

Given a model f and data set Z = [y X], we estimate MR(f) by separately estimating the

numerator and denominator of Eq 3.1. We estimate eorig(f) with the standard empirical loss,
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eorig f : = 1
n i 1

n
L f y i X1 i X2 i . (3.2)

We estimate eswitch(f) by performing a “switch” operation across all observed pairs, as in

eswitch f : = 1
n n − 1 i 1

n

j i
L f y j X1 i X2 j . (3.3)

Above, we have aggregated over all possible combinations of the observed values for (Y,
X2) and for X1, excluding pairings that are actually observed in the original sample. If the

summation over all possible pairs (Eq 3.3) is computationally prohibitive due to sample size,

another estimator of eswitch(f) is

edivide f : = 1
2 n/2 i 1

n 2
L f y i X1 i n 2 X2 i (3.4)

+L f, y i + n/2 , X1 i, ⋅ , X2 i + n/2 , ⋅ . (3.5)

Here, rather than summing over all pairs, we divide the sample in half. We then match the

first half’s values for (Y, X2) with the second half’s values for X1 (Line 3.4), and vice versa

(Line 3.5). All three of the above estimators (Eqs 3.2, 3.3 & 3.5) are unbiased for their

respective estimands, as we discuss in more detail shortly.

Finally, we can estimate MR(f) with the plug-in estimator

MR f : = eswitch f
eorig f , (3.6)

which we define as the empirical model reliance of f on X1. In this way, we formalize the

empirical MR definition in Eq 2.3.

Again, our definition of empirical MR is very similar to the permutation-based variable

importance approach of Breiman (2001), where Breiman uses a single random permutation

and we consider all possible pairs. To compare these two approaches more precisely, let

(π1, … , πn!} be a set of n-length vectors, each containing a different permutation of

the set (1, …, n}. The approach of Breiman (2001) is analogous to computing the loss

i 1
n

L{f (y[i] X1[πl[i] ] X2[i ])} for a randomly chosen permutation vector πl ∈ {π1,

… , πn!}. Similarly, our calculation in Eq 3.3 is proportional to the sum of losses over all

possible (n!) permutations, excluding the n unique combinations of the rows of X1 and the

rows of [X2 y] that appear in the original sample (see Appendix A.3). Excluding these

observations is necessary to preserve the (finite-sample) unbiasedness of eswitch(f).
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The estimators eorig(f), eswitch(f) and edivide(f) all belong to the well-studied class of U-

statistics. Thus, under fairly minor conditions, these estimators are unbiased, asymptotically

normal, and have finite-sample probabilistic bounds (Hoeffding, 1948, 1963; Serfling, 1980;

see also DeLong et al., 1988 for an early use of U-statistics in machine learning, as well as

caveats in Demler et al., 2012). To our knowledge, connections between permutation-based

importance and U-statistics have not been previously established.

While the above results from U-statistics depend on the model f being fixed a priori,

we can also leverage these results to create uniform bounds on the MR estimation error

for all models in a sufficiently regularized class ℱ. We formally present this bound in

Section 4 (Theorem 5), after introducing required conditions on model class complexity. The

existence of this uniform bound implies that it is feasible to train a model and to evaluate

its importance using the same data. This differs from the classical VI approach of Random

Forests (Breiman, 2001), which avoids in-sample importance estimation. There, each tree in

the ensemble is fit on a random subset of data, and VI for the tree is estimated using the

held-out data. The tree-specific VI estimates are then aggregated to obtain a VI estimate for

the overall ensemble. Although sample-splitting approaches such as this are helpful in many

cases, the uniform bound for MR suggests that they are not strictly necessary, depending on

the sample size and the complexity of ℱ.

3.2 Limitations of Existing Variable Importance Methods

Several common approaches for variable selection, or for describing relationships between

variables, do not necessarily capture a variable’s importance. Null hypothesis testing

methods may identify a relationship, but do not describe the relationship’s strength.

Similarly, checking whether a variable is included by a sparse model-fitting algorithm, such

as the Lasso (Hastie et al., 2009), does not describe the extent to which the variable is relied

on. Partial dependence plots (Breiman et al., 2001; Hastie et al., 2009) can be difficult to

interpret if multiple variables are of interest, or if the prediction model contains interaction

effects.

Another common VI procedure is to run a model-fitting algorithm twice, first on all of the

data, and then again after removing X1 from the data set. The losses for the two resulting

models are then compared to determine the importance, or “necessity,” of X1 (Gevrey et al.,

2003). Because this measure is a function of two prediction models rather than one, it does

not measure how much either individual model relies on X1. We refer to this approach as

measuring empirical Algorithm Reliance (AR) on X1, as the model-fitting algorithm is the

common attribute between the two models. Related procedures were proposed by Breiman

et al. (2001); Breiman (2001), which measure the sufficiency of X1.

As we discuss in Section 3.1, the permutation-based VI measure from RFs (Breiman, 2001;

Breiman et al., 2001) forms the inspiration for our definition of MR. This RF VI measure

has been the topic of empirical studies (Archer and Kimes, 2008; Calle and Urrea, 2010;

Wang et al., 2016), and several variations of the measure have been proposed (Strobl

et al., 2007, 2008; Altmann et al., 2010; Hapfelmeier et al., 2014). Mentch and Hooker

(2016) use U-statistics to study predictions of ensemble models fit to subsamples, similar to
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the bootstrap aggregation used in RFs. Procedures related to “Mean Difference Impurity,”

another VI measure derived for RFs, have been studied theoretically by Louppe et al.

(2013); Kazemitabar et al. (2017). All of this literature focuses on VI measures for RFs,

for ensembles, or for individual trees. Our estimator for model reliance differs from the

traditional RF VI measure (Breiman, 2001) in that we permute inputs to the overall model,

rather than permuting the inputs to each individual ensemble member. Thus, our approach

can be used generally, and is not limited to trees or ensemble models.

Outside of the context of RF VI, Zhu et al. (2015) propose an estimand similar to our

definition of model reliance, and Gregorutti et al. (2015, 2017) propose an estimand

analogous to eswitch(f) − eorig(f). These recent works focus on the model reliance of f
on X1 specifically when f is equal to the conditional expectation function of Y (that

is, f(x1, x2) = E[Y |X1 = x1, X2 = x2]). In contrast, we consider model reliance for arbitrary

prediction models f. Datta et al. (2016) study the extent to which a model’s predictions

are expected to change when a subset of variables is permuted, regardless of whether the

permutation affects a loss function L. These VI approaches are specific to a single prediction

model, as is MR. In the next section, we consider a more general conception of importance:

how much any model in a particular set may rely on the variable of interest.

4. Model Class Reliance

Like many statistical procedures, our MR measure (Section 3) produces a description of a

single predictive model. Given a model with high predictive accuracy, MR describes how

much the model’s performance hinges on covariates of interest (X1). However, there will

often be many other models that perform similarly well, and that rely on X1 to different

degrees. With this notion in mind, we now study how much any well-performing model

from a prespecified class ℱ may rely on covariates of interest.

Recall from Section 2.1 that, in order to define a population ϵ-Rashomon set of near-optimal

models, we must choose a “reference” model fref to serve as a performance benchmark. In

order to discuss this choice, we now introduce more explicit notation for the population

ϵ-Rashomon set, written as

ℛ ϵ, fref, ℱ : = f ∈ ℱ : eorig f ≤ eorig fref + ϵ . (4.1)

Note that we write ℛ(ϵ, fref, ℱ) and ℛ(ϵ) interchangeably when fref and ℱ are clear from

context. Similarly, we occasionally write empirical ϵ-Rashomon sets using the more explicit

notation ℛ(ϵ, fref, ℱ) : = {f ∈ ℱ : eorig(f) ≤ eorig(fref) + ϵ}, but typically abbreviate these

sets as ℛ(ϵ).

While fref could be selected by minimizing the in-sample loss, the theoretical study of

ℛ(ϵ, fref, ℱ) is simplified under the assumption that fref is prespecified. For example, fref

may come from a flowchart used to predict injury severity in a hospital’s emergency room,

or from another quantitative decision rule that is currently implemented in practice. The

model fref can also be selected using sample splitting. In some cases it may be desirable

to fix fref equal to the best-in-class model f ⋆ : = arg minf ∈ ℱeorig(f), but this is generally
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infeasible because f⋆ is unknown. Still, for any fref ∈ ℱ, the Rashomon set ℛ ϵ, fref, ℱ
defined using fref will always be conservative in the sense that it contains the Rashomon set

ℛ ϵ, f⋆, ℱ  defined using f⋆.

We can now formalize our definitions of population-level MCR and empirical MCR by

simply plugging in our definitions for MR(f) and MR(f) (Section 3) into Eqs 2.2 & 2.4

respectively. Studying population-level MCR (Eq 2.2) is the main focus of this paper, as

it provides a more comprehensive view of importance than measures from a single model.

If MCR+(ϵ) is low, then no well-performing model in ℱ places high importance on X1,

and X1 can be discarded at low cost regardless of future modeling decisions. If MCR−(ϵ)

is large, then every well-performing model in ℱ must rely substantially on X1, and X1

should be given careful attention during the modeling process. Here, ℱ may itself consist of

several parametric model forms (for example, all linear models and all decision tree models

with less than 6 single-split nodes). We stress that the range [MCR−(ϵ), MCR+(ϵ)| does not

depend on the fitting algorithm used to select a model f ∈ ℱ. The range is valid for any

algorithm producing models in F  F, and applies for any f ∈ ℱ.

In the remainder of this section, we derive finite sample bounds for population-level MCR,

from which we argue that empirical MCR provides reasonable estimates of population-level

MCR (Section 4.1). In Appendix B.7 we consider an alternate formulation of Rashomon

sets and MCR where we replace the relative loss threshold in the definition of ℛ(ϵ) with

an absolute loss threshold. This alternate formulation can be similar in practice, but still

requires the specification of a reference function fref to ensure that ℛ(ϵ) and ℛ(ϵ) are

nonempty.

4.1 Motivating Empirical Estimators of MCR by Deriving Finite-sample Bounds

In this section we derive finite-sample, probabilistic bounds for MCR+(ϵ) and MCR−(ϵ).

Our results imply that, under minimal assumptions, MCR+(ϵ) and MCR−(ϵ) are respectively

within a neighborhood of MCR+ (ϵ) and MCR−(ϵ) with high probability. However, the

weakness of our assumptions (which are typical for statistical-learning-theoretic analysis)

renders the width of our resulting CIs to be impractically large, and so we use these results

only to show conditions under which MCR−(ϵ) and MCR−(ϵ) form sensible point estimates.

In Sections 9.1 & 10, below, we apply a bootstrap procedure to account for sampling

variability.

To derive these results we introduce three bounded loss assumptions, each of which can be

assessed empirically. Let borig, Bind, Bref, Bswitch ∈ ℝ be known constants.

Assumption 1 (Bounded individual loss) For a given model f ∈ ℱ, assume that
0 ≤ L(f, (y, x1, x2)) ≤ Bind for any y, x1, x2 ∈ Y × X1 × X2 .

Assumption 2 (Bounded relative loss) For a given model f ∈ ℱ, assume that
L(f, (y, x1, x2)) − L(fref, (y, x1, x2) ≤ Bref for any y, x1, x2 ∈ Z.
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Assumption 3 (Bounded aggregate loss) For a given model f ∈ ℱ, assume that
ℙ 0 < borig ≤ eorig(f) = ℙ eswitcℎ(f) ≤ Bswitcℎ = 1.

Each assumption is a property of a specific model f ∈ ℱ. The notation Bind and Bref refer to

bounds for any individual observation, and the notation borig and Bswitch refer to bounds on

the aggregated loss L in a sample. These boundedness assumptions are central to our finite

sample guarantees, shown below.

Crucially, loss functions L that are unbounded in general may be used so long as L(f, (y, x1,

x2)) is bounded on a particular domain. For example, the squared-error loss can be used if Y
is contained within a known range, and predictions f (x1, x2) are contained within the same

range for (x1, x2) ∈ X × X2 . We give example methods of determining Bind in Sections 7.3.2

& 7.4.2. For Assumption 3, we can approximate borig by training a highly flexible model

to the data, and setting borig equal to half (or any positive fraction) of the resulting cross-

validated loss. To determine Bswitch we can simply set Bswitch = Bind, although this may

be conservative. For example, in the case of binary classification models for non-separable

groups (see Section 9.1), no linear classifier can misclassify all observations, particularly

after a covariate is permuted. Thus, it must hold that Bind > Bswitch. Similarly, if fref satisfies

Assumption 1, then Bref may be conservatively set equal to Bind. If model reliance is

redefined as a difference rather than a ratio, then a similar form of the results in this section

will apply without Assumption 3 (see Appendix A.5).

Based on these assumptions, we can create a finite-sample upper bound for MCR+(ϵ) and

lower bound for MCR−(ϵ). In other words, we create an “outer” bound that contains the

interval [MCR−(ϵ),MCR+(ϵ)| with high probability.

Theorem 4 (“Outer” MCR Bounds) Given a constant ϵ ≥ 0, let f+, ϵ ∈ arg maxℛ(ϵ)MR(f)
and f−, ϵ ∈ arg minℛ(ϵ)MR(f) be prediction models that attain the highest and lowest model

reliance among models in ℛ(ϵ). If f+,ϵ and f−,ϵ satisfy Assumptions 1, 2 & 3, then

ℙ MCR+ ϵ > MCR+ ϵout + Qout ≤ δ, and (4.2)

ℙ MCR− ϵ < MCR− ϵout − Qout ≤ δ, (4.3)

where ϵout : = ϵ + 2Bref
log(3δ−1)

2n , and Qout: =
Bswitcℎ

borig
−

Bswitcℎ − Bind
log(6δ−1)

n

borig + Bind
log(6δ−1)

2n

.

Eq 4.2 states that, with high probability, MCR+(ϵ) is no higher than MCR+(ϵout) added

to an error term Qout. As n increases, ϵout approaches ϵ and Qout approaches zero.

One practical implication is that, roughly speaking, if MCR+(ϵ) ≈ MCR+(ϵout), then the

empirical estimator MCR+(ϵ) is unlikely to substantially underestimate MCR+(ϵ). By similar

reasoning, we can conclude from Eq 4.3 that if MCR−(ϵ) ≈ MCR−(ϵout), then MCR+(ϵ) is
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unlikely to substantially overestimate MCR−(ϵ). By setting ϵ = 0, Theorem 4 can also be

used to create a finite-sample bound for the reliance of the unique (unknown) best-in-class

model on X1 (see Corollary 22 in Appendix A.4), although describing individual models is

not the main focus of this paper.

We provide a visual illustration of Theorem 4 in Figure 3. A brief sketch of the proof is as

follows. First, we enlarge the empirical ϵ-Rashomon set by increasing ϵ to ϵout, such that, by

Hoeffding’s inequality, f+, ϵ ∈ R(ϵout) with high probability. When f+, ϵ ∈ R(ϵout), we know

that MR(f+, ϵ) ≤ MCR+(ϵout) by the definition of MCR+(ϵout). Next, the term Qout leverages

finite-sample results for U-statistics to account for estimation error of MR(f+,ϵ) = MCR+(ϵ)

when using the estimator MR(f+, ϵ). Thus, we can relate MR(f+, ϵ) to both MCR+(ϵout) and

MCR+(ϵ) in order to obtain Eq 4.2. Similar steps can be applied to obtain Eq 4.3.

The bounds in Theorem 4 naturally account for potential overfitting without an explicit limit

on model class complexity (such as a covering number, Rademacher complexity, or VC

dimension). Instead, these bounds depend on being able to fully optimize MR across sets in

the form of ℛ(ϵ). If we allow our model class ℱ to become more flexible, then the size of

ℛ(ϵ) will also increase. Because the bounds in Theorem 4 result from optimizing over ℛ(ϵ),
increasing the size of ℛ(ϵ) results in wider, more conservative bounds. In this way, Eqs 4.2

and 4.3 implicitly capture model class complexity.

So far, Theorem 4 lets us bound the range of MR values corresponding to models that

predict well, but it does not tell us whether these bounds are actually attained. Similarly, we

can conclude from Theorem 4 that [MCR−(ϵ), MCR+(ϵ)] is unlikely to exceed the estimated

range [MCR−(ϵ), MCR+(ϵ)] by a substantial margin, but we cannot determine whether this

estimated range is unnecessarily wide. For example, consider the models that drive the

MCR+(ϵ) estimator: the models with strong in-sample accuracy, and high empirical reliance

on X1. These models’ in-sample performance could merely be the result of overfitting, in

which case they do not tell us direct information about ℛ(ϵ). Alternatively, even if all of

these models truly do perform well on expectation (that is, even if they are contained in

ℛ(ϵ)), the model with the highest empirical reliance on X1 may merely be the model for

which our empirical MR estimate contains the most error. Either of these scenarios can

cause MCR+(ϵ) to be unnecessarily high, relative to MCR+(ϵ).

Fortunately, both problematic scenarios are solved by requiring a limit on the complexity

of ℱ. We propose a complexity measure in the form of a covering number, which allows

us control a worst case scenario of either overfitting or MR estimation error. Specifically,

we define the set of functions Gr as an r-margin-expectation-cover if for any f ∈ ℱ and any

distribution D, there exists g ∈ Gr such that

EZ ∼ D L f, Z − L g, Z ≤ r . (4.4)

We define the covering number N(ℱ, r  to be the size of the smallest r-margin-expectation-

cover for ℱ. In general, we use ℙV ∼ D and EV ∼ D to denote probabilities and expectations
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with respect to a random variable V following the distribution D. We abbreviate these

quantities accordingly when V or D are clear from context, for example, as ℙD, ℙV , or

simply ℙ. Unless otherwise stated, all expectations and probabilities are taken with respect

to the (unknown) population distribution.

We first show that this complexity measure allows us to control the worst case MR

estimation error, that is, the covering number N(ℱ, r) provides a uniform bound on the

error of MR(f) for all f ∈ ℱ.

Theorem 5 (Uniform bound for MR) Given r > 0, if Assumptions 1 and 3 hold for all
f ∈ ℱ, then

ℙ sup
f ∈ ℱ

MR f − MR f > q δ, r, n ≤ δ,

where

q δ, r, n : = Bswitcℎ
borig

−
Bswitcℎ − Bind

log 4δ−1N ℱ, r 2
n + 2r 2

borig + Bind
log 4δ−1N ℱ, r

2n + 2r
. (4.5)

Theorem 5 states that, with high probability, the largest possible estimation error for MR(f)
across all models in ℱ is bounded by q(δ, r, n), which can be made arbitrarily small by

increasing n and decreasing r. As we noted in Section 3.1, this means that it is possible to

train a model and estimate its reliance on variables without using sample-splitting.

The covering number N(ℱ, r) can also be used to limit the extent of overfitting (see

Appendix B.5.1). As a result, it is possible to set an in-sample performance threshold

low enough so that it will only be met by models with strong expected performance

(that is, by models truly within ℛ(ϵ)). To implement this idea of a stricter performance

threshold, we contract the empirical ϵ-Rashomon set by subtracting a buffer term from

ϵ. This requires that we generalize the definition of an empirical ϵ-Rashomon set

to R(ϵ, fref, ℱ): = {fref}⋃{f ∈ ℱ : eorig(f) ≤ eorig(fref) + ϵ} for ϵ ∈ ℝ, where the explicit

inclusion of fref now ensures that R(ϵ, fref, ℱ) is nonempty, even for ϵ < 0. As before, we

typically omit the notation fref and ℱ, writing R(ϵ) instead.

We are now prepared to answer the questions of whether the bounds from Theorem 4 are

actually attained, and of whether the estimated range [MCR−(ϵ), MCR+(ϵ)] is unnecessarily

wide. Our answer comes in the form of an upper bound on MCR−(ϵ), and a lower bound on

MCR+(ϵ).

Theorem 6 (“Inner” MCR Bounds) Given constants ϵ ≥ 0 and r > 0, if Assumptions 1, 2 and
3 hold for all f ∈ ℱ, and then
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ℙ MCR+ ϵ < MCR+ ϵin − Qin ≤ δ, and (4.6)

ℙ MCR− ϵ > MCR− ϵin + Qin ≤ δ, (4.7)

where ϵin : = ϵ − 2Bref
log 4δ−1N ℱ, r

2n − 2r, and Qin = q δ
2 , r, n , as defined in Eq 4.5.

Theorem 6 can allow us to infer an “inner” bound that is contained within the interval

[MCR−(ϵ), MCR+(ϵ)] with high probability. In Figure 3, we illustrate the result of Theorem

6, and give a sketch of the proof. This proof follows a similar structure to that of Theorem

4, but incorporates Theorem 5’s uniform bound on MR estimation error (Qin term), as well

as an additional uniform bound on the probability that any model has in-sample loss too far

from its expected loss (ϵin term).

A practical implication of Theorem 6 is that, roughly speaking, if MCR+(ϵin) ≈ MCR+(ϵ)
then it is unlikely for the empirical estimator MCR+(ϵ) to substantially underestimate MCR+

(ϵ). Taken together with Theorem 4, we can conclude that, if MCR+(ϵin) ≈ MCR+(ϵout),
then the estimator MCR+(ϵ) is unlikely either to overestimate or to underestimate MCR+

(ϵ) by very much. In large samples, it may be plausible to expect the condition

MCR+(ϵin) ≈ MCR+(ϵout) to hold, since ϵin and ϵout both approach ϵ as n increases. In

the same way, if MCR−(ϵin) ≈ MCR−(ϵout), we can conclude from Eqs 4.3 & 4.7 that the

empirical estimator MCR−(ϵ) is unlikely to either overestimate or underestimate MCR−(ϵ)

by very much. For this reason, we argue that MCR−(ϵ) and MCR+(ϵ) form sensible estimates

of population-level MCR – each is contained within a neighborhood of its respective

estimand, with high probability. The secondary x-axis of Figure 3 gives an illustration of

this argument.

5. Extensions of Rashomon Sets Beyond Variable Importance

In this section we generalize the Rashomon set approach beyond the study of MR. In Section

5.1, we create finite-sample CIs for other summary characterizations of near-optimal, or

best-in-class models. The generalization also helps to illustrate a core aspect of the argument

underlying Theorem 4: models with near-optimal performance in the population tend to have

relatively good performance in random samples.

In Section 5.2, we review existing literature on near-optimal models.

5.1 Finite-sample Confidence Intervals from Rashomon Sets

Rather than describing how much a model relies on X1, here we assume the analyst is

interested in an arbitrary characteristic of a model. We denote this characteristic of interest

as ϕ:ℱ ℝ. For example, if fβ is the linear model fβ(x) = x′β, then ϕ may be defined as the
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norm of the associated coefficient vector (that is, (ϕ(fβ) = ‖β‖2
2) or the prediction fβ would

assign given a specific covariate profile xnew (that is ϕ(fβ) = fβ(xnew)).

Given a descriptor ϕ, we now show a general result that allows creation of finite-sample CIs

for the best performing models ℛ(ϵ). The resulting CIs are themselves based on empirical

Rashomon sets.

Proposition 7 (Finite sample CIs from Rashomon sets) Let ϵ′ : = ϵ + 2Bref
log(2δ − 1)

2n , let

ϕ−(ϵ′) : = minf ∈ ℛ(ϵ′)ϕ(f), and let ϕ+(ϵ′) : = maxf ∈ ℛ(ϵ′)ϕ(f).

If Assumption 2 holds for all f ∈ ℛ(ϵ), then

ℙ ϕ f :f ∈ ℛ ϵ ⊆ ϕ− ϵ′ , ϕ+ ϵ′ ≥ 1 − δ .

Proposition 7 generates a finite-sample CI for the range of values ϕ(f) corresponding to

well-performing models, ϕ(f):f ∈ ℛ(ϵ) . This CI, denoted by [ϕ−(ϵ′), ϕ+(ϵ′), ] can itself be

interpreted as the range of values ϕ(f) corresponding to models f with empirical loss not

substantially above that of fref. Thus, the interval has both a rigorous coverage rate and a

coherent in-sample interpretation. The proof of Proposition 7 uses Hoeffding’s inequality to

show that models in ℱ are contained in ℛ(ϵ′) with high probability, that is, that models with

good expected performance tend to perform well in random samples.

An immediate corollary of Proposition 7 is that we can generate finite-sample CIs for all

best-in-class models f⋆ ∈ arg minf ∈ ℱ EL(f, Z) by setting ϵ = 0. This corollary can be

further strengthened if a single model f⋆ is assumed to uniquely minimize EL(f, Z) over

f ∈ ℱ (see Appendix B.6).

Note that Proposition 7 implicitly assumes that ϕ(f) can be determined exactly for any model

f ∈ ℱ, in order for the interval ϕ−(ϵ′), ϕ+(ϵ′)  to be precisely determined. This assumption

does not hold, for example, if ϕ(f) = MR(f), or if ϕ(f) = Var{f(X1, X2)}, as these quantities

depend on both f and the (unknown) population distribution. In such cases, an additional

correction factor must be incorporated to account for estimation error of ϕ(f), such as the

Qout term in Theorem 4.

In concurrent work, Coker et al. (2018) show that profile likelihood intervals take the same

form as the interval ϕ−(ϵ′), ϕ+(ϵ′)  in Proposition 7. This means that a profile likelihood

interval can also be expressed by minimizing and maximizing over an empirical Rashomon

set. More specifically, consider the case where the loss function L is the negative of the

known log likelihood function, and where fref is the maximum likelihood estimate of

the “true model,” which in this case is f⋆. If additional minor assumptions are met (see

Appendix A.6 for details), then the (1 − δ)-level profile likelihood interval for ϕ(f⋆) is
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equal to [ϕ−(
X1, 1 − δ

2n ), ϕ+(
X1, 1 − δ

2n )], where (ϕ− and ϕ+ are defined as in Proposition 7, and

X1, 1 − δ is the 1 − δ percentile of a chi-square distribution with 1 degree of freedom.

Relative to a profile likelihood approach, the advantage of Proposition 7 is that it does not

require asymptotics, it does not require that the likelihood be known up to a parametric

form, and it can be extended to study the set of near-optimal prediction models ℛ(ϵ), rather

than a single, potentially misspecified prediction model f⋆. This is especially useful when

different near-optimal models accurately describe different aspects of the underlying data

generating process, but none capture it completely. The disadvantage of Proposition 7 is

that the required performance threshold of ϵ′ = ϵ + 2Bref
log(2δ − 1)

2n  decreases more slowly

than the performance threshold of 
X1, 1 − δ

2n  required in a profile likelihood interval. Because

our results from Section 4.1 carry a similar disadvantage, we use these results primarily to

motivate point estimates describing the Rashomon set ℛ(ϵ).

Still, it is worth emphasizing the generality of Proposition 7. Through this result, Rashomon

sets allow us to reframe a wide set of finite-sample inference problems as in-sample

optimization problems. The implied CIs are not necessarily in closed form, but the approach

still opens an exciting pathway for deriving non-asymptotic results. For example, they

imply that existing methods for profile likelihood intervals might be able to be reapplied to

achieve finite-sample results. For highly complex model classes where profile likelihoods

are difficult to compute, such as neural networks or random forests, approximate inference

is sometimes achieved via approximate optimization procedures (for example, Markov chain

Monte Carlo for Bayesian additive regression trees, in Chipman et al., 2010). Proposition

7 shows that similar approximate optimization methods could be repurposed to establish
approximate, finite-sample inferences for the same model classes.

5.2 Related Literature on the Rashomon Effect

Breiman et al. (2001) introduced the “Rashomon effect” of statistics as a problem of

ambiguity: if many models fit the data well, it is unclear which model we should try to

interpret. Breiman suggests that the ensembling many well-performing models together can

resolve this ambiguity, as the new ensemble model may perform better than any of its

individual members. However, this approach may only push the problem from the member

level to the ensemble level, as there may also be many different ensemble models that fit the

data well.

The Rashomon effect has also been considered in several subject areas outside of VI,

including those in non-statistical academic disciplines (Heider, 1988; Roth and Mehta,

2002). Tulabandhula and Rudin (2014) optimize a decision rule to perform well under

the predicted range of outcomes from any well-performing model. Statnikov et al. (2013)

propose an algorithm to discover multiple Markov boundaries, that is, minimal sets of

covariates such that conditioning on any one set induces independence between the outcome

and the remaining covariates. Nevo and Ritov (2017) report interpretations corresponding

to a set of well-fitting, sparse linear models. Meinshausen and Bühlmann (2010) estimate
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structural aspects of an underlying model (such as the variables included in that model)

based on how stable those aspects are across a set of well-fitting models. This set of

well-fitting models is identified by repeating an estimation procedure in a series of perturbed

samples, using varying levels of regularization (see also Azen et al., 2001). Letham et

al. (2016) search for a pair of well-fitting dynamical systems models that give maximally

different predictions.

6. Calculating Empirical Estimates of Model Class Reliance

In this section, we propose a binary search procedure to bound the values of MCR−(ϵ) and

MCR+(ϵ) (see Eq 2.4), which respectively serve as estimates of MCR−(ϵ) and MCR+(ϵ)

(see Section 4.1). Each step of this search consists of minimizing a linear combination of

êorig(f) and êswitch(f) across f ∈ ℱ. Our approach is related to the fractional programming

approach of Dinkelbach (1967), but accounts for the fact that the problem is constrained by

the value of the denominator, êorig(f). We additionally show that, for many model classes,

computing MCR−(ϵ) only requires that we minimize convex combinations of êorig(f) and

êswitch(f), which is no more difficult than minimizing the average loss over an expanded and

reweighted sample (See Eq 6.2 & Proposition 11).

Computing MCR+(ϵ) however will require that we are able to minimize arbitrary linear

combinations of êorig(f) and êswitch(f). In Section 6.3, we outline how this can be done for

convex model classes – classes for which the loss function is convex in the model parameter.

Later, in Section 7, we give more specific computational procedures for when ℱ is the class

of linear models, regularized linear models, or linear models in a reproducing kernel Hilbert

space (RKHS). We summarize the tractability of computing empirical MCR for different

model classes in Table 1.

To simplify notation associated with the reference model fref, we present our computational

results in terms of bounds on empirical MR subject to performance thresholds on

the absolute scale. More specifically, we present bound functions b− and b+ satisfying

b−(ϵabs) ≤ MR(f) ≤ b+(ϵabs) simultaneously for all f, ϵabs:eorig(f) ≤ ϵabs, f ∈ ℱ, ϵabs > 0
(Figures 2 & 8 show examples of these bounds). The binary search procedures we propose

can be used to tighten these boundaries at a particular value ϵabs of interest.

We briefly note that as an alternative to the global optimization procedures we discuss

below, heuristic optimization procedures such as simulated annealing can also prove useful

in bounding empirical MCR. By definition, the empirical MR for any model in ℛ(ϵ) forms

a lower bound for MCR+(ϵ), and an upper bound for MCR−(ϵ). Heuristic maximization and

minimization of empirical MR can be used to tighten these boundaries.

Throughout this section, we assume that 0 < minf ∈ ℱ êorig(f), to ensure that MR is finite.
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6.1 Binary Search for Empirical MR Lower Bound

Before describing our binary search procedure, we introduce additional notation used in

this section. Given a constant γ ∈ ℝ and prediction model f ϵ ℱ, we define the linear

combination ℎ−, γ, and its minimizers (for example, g−, γ, ℱ), as

ℎ−, γ f : = γeorig f + eswitch f , and g−, γ, ℱ ∈ arg min
f ∈ ℱ

ℎ−, γ f .

We do not require that ℎ−, γ is uniquely minimized, and we frequently use the abbreviated

notation g−, γ when ℱ is clear from context.

Our goal in this section is to derive a lower bound on MR for subsets of ℱ in the form of

f ∈ ℱ:eorig(f) ≤ ϵabs . We achieve this by minimizing a series of linear objective functions

in the form of ℎ−, γ, using a similar method to that of Dinkelbach (1967). Often, minimizing

the linear combination ℎ−, γ f  is more tractable than minimizing the MR ratio directly.

Almost all of the results shown in this section, and those in Section 6.2, also hold if we

replace eswitch with edivide throughout (see Eq 3.5), including in the definition of MR and

ℎ−, γ f . The exception is Proposition 11, below, which we may still expect to approximately

hold if we replace eswitch with edivide.

Given an observed sample, we define the following condition for a pair of values

γ, ϵabs ∈ ℝ × ℝ > 0, and argmin function g−, γ:

Condition 8 (Criteria to continue search for MR lower bound) ℎ−, γ(g−, γ) ≥ 0 and

eorig(g − , γ) ≤ ϵabs.

We are now equipped to determine conditions under which we can tractably create a lower

bound for empirical MR.

Lemma 9 (Lower bound for MR) If γ ∈ ℝ satisfies ℎ−, γ(g−, γ) ≥ 0, then

ℎ−, γ g−, γ
ϵabs

− γ ≤ MR f (6.1)

for all f ∈ ℱ satisfying eorig(f) ≤ ϵabs. It also follows that

−γ ≤ MR f for all f ∈ ℱ .

Additionally, if f = g−, γ and at least one of the inequalities in Condition 8 holds with

equality, then Eq 6.1 holds with equality.

Lemma 9 reduces the challenge of lower-bounding MR(f) to the task of minimizing the

linear combination ℎ−, γ f . The result of Lemma 9 is not only a single boundary for a
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particular value of ϵabs, but a boundary function that holds all values of ϵabs > 0, with lower

values of ϵabs leading to more restrictive lower bounds on MR(f).

In addition to the formal proof for Lemma 9, we provide a heuristic illustration of the result

in Figure 4, to aid intuition.

It remains to determine which value of γ should be used in Eq 6.1. The following lemma

implies that this value can be determined by a binary search, given a particular value of

interest for ϵabs.

Lemma 10 (Monotonicity for MR lower bound binary search) The following monotonicity
results hold:

1. ℎ−, γ g−, γ  is monotonically increasing in γ.

2. eorig g−, γ  is monotonically decreasing in γ.

3.
Given ϵabs, the lower bound from Eq 6.1, 

ℎ−, γ(g−, γ)
ϵabs

− γ , is monotonically

decreasing in γ in the range where eorig g−, γ ≤ ϵabs, and increasing otherwise.

Given a particular performance level of interest, ϵabs, Point 3 of Lemma 10 tells us that the

value of γ resulting in the tightest lower bound from Eq 6.1 occurs when γ is as low as

possible while still satisfying Condition 8. Points 1 and 2 show that if γ0 satisfies Condition

8, and one of the equalities in Condition 8 holds with equality, then Condition 8 holds for

all γ ≥ γ0. Together, these results imply that we can use a binary search to determine the

value of γ to be used in Lemma 9, reducing this value until Condition 8 is no longer met. In

addition to the formal proof for Lemma 10, we provide an illustration of the result in Figure

5 to aid intuition.

Next we present simple conditions under which the binary search for values of γ can be

restricted to the nonnegative real line. This result substantially extends the computational

tractability of our approach, as minimizing ℎ−, γ for γ ≥ 0 is equivalent to minimizing a

reweighted empirical loss over an expanded sample of size n2:

ℎ−, γ f = γeorig f + eswitch f =
i 1

n

j 1

n
ωγ i j L f y i X1 j X2 i , (6.2)

where ωγ i, j = γ1 i = j
n + 1 i ≠ j

n n − 1 ≥ 0.

Proposition 11 (Nonnegative weights for MR lower bound binary search) Assume that L
and ℱ satisfy the following conditions.

1. (Predictions are sufficient for computing the loss) The loss L{f, (Y, X1, X2)}

depends on the covariates (X1, X2) only via the prediction function f, that is,

L f, (y, x1
(a), x2

(a)) = L f, (y, x1
(b), x2

(b))  whenever f(x1
(a), x2

(a)) = f(x1
(b), x2

(b)).
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2. (Irrelevant information does not improve predictions) For any distribution D
satisfying X1 ⊥D (X2, Y), there exists a function fD satisfying

EDL fD, Y , X1, X2 = min
f ∈ ℱ

EDL f, Y , X1, X2 ,

and

fD(x1
a , x2) = fD(x1

b , x2) for any x1
a , x1

b ∈ X1 and x2 ∈ X2 . (6.3)

Let γ = 0. Under the above assumptions, it follows that either (i) there exists
a function g−, 0 minimizing ℎ−, 0 that does not. satisfy Condition 8, or (ii)

eorig(g − , 0) ≤ ϵabs and MR(g − , 0) ≤ 1 for any function g−, 0 minimizing ℎ−, 0.

The implication of Proposition 11 is that, when the conditions of Proposition 11 are met,

the search region for γ can be limited to the nonnegative real line, and minimizing ℎ−, γ
will be no harder than minimizing a reweighted empirical loss over an expanded sample (Eq

6.2). To see this, recall that for a fixed value of ϵabs we can tighten the boundary in Lemma

9 by conducting a binary search for the smallest, value of γ that satisfies Condition 8. If

setting γ equal to 0 does not satisfy Condition 8, and the search for γ can be restricted to the

nonnegative real line, where minimizing ℎ−, 0 is more tractable (see Eq 6.2). Alternatively,

if eorig(g − , 0) ≤ ϵabs and MR(g − , 0) ≤ 1, then we have identified a well-performing model

g−,0 with empirical MR no greater than 1. For ϵabs = êorig(fref) + ϵ, this implies that

MCR−(ϵ) ≤ 1, which is a sufficiently precise conclusion for most, interpretational purposes

(see Appendix A.2).

Because of the fixed pairing structure used in êdivide, Proposition 11 will not necessarily

hold if we replace êswitch with êdivide throughout (see Appendix C.3). However, since êdivide

approximates êswitch, we can expect Proposition 11 to hold approximately. The bound from

Eq 6.1 still remains valid if we replace êswitch with êdivide and limit γ to the nonnegative

reals, although in some cases it may not be as tight.

6.2 Binary Search for Empirical MR Upper Bound

We now briefly present a binary search procedure to upper bound MR, which mirrors the

procedure from Section 6.1. Given a constant γ ∈ ℝ and prediction model f ∈ ℱ, we define

the linear combination ℎ+, γ, and its minimizers (for example, g+, γ, ℱ), as

ℎ f+, γ : = eorig f + γeswitch f , and g+, γ, ℱ ∈ arg min
f ∈ ℱ

ℎ+, γ f .

As in Section 6.1, ℎ+, γ need not be uniquely minimized, and we generally abbreviate

g+, γ, ℱ as g+, γ when ℱ is clear from context.
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Given an observed sample, we define the following condition for a pair of values

γ, ϵabs ∈ ℝ ≤ 0 × ℝ > 0, and argmin function g+, γ:

Condition 12 (Criteria to continue search for MR upper bound) ℎ+, γ g+, γ ≥ 0 and

eorig g+, γ ≤ ϵabs.

We can now develop a procedure to upper bound MR, as shown in the next lemma.

Lemma 13 (Upper bound for MR) If γ ∈ ℝ satisfies γ ≤ 0 and ℎ+, γ g+, γ ≥ 0, then

MR f ≤ ℎ+, γ g+, γ
ϵabs

− 1 γ−1 (6.4)

for all f ∈ ℱ satisfying êorig(f) ≤ ϵabs. It also follows that

MR f ≤ γ−1 for all f ∈ ℱ . (6.5)

Additionally, if f = g+, γ and at least one of the inequalities in Condition 12 holds with

equality, then Eq 6.4 holds with equality.

As in Section 6.1, it remains to determine the value of γ to use in Lemma 13, given a

value of interest for ϵabs ≥ minf ∈ ℱ eorig f . The next lemma tells us that the boundary from

Lemma 13 is tightest when γ is as low as possible while still satisfying Condition 12.

Lemma 14 (Monotonicity for MR upper bound binary search) The following monotonicity
results hold:

1. ℎ+, γ g+, γ  is monotonically increasing in γ.

2. eorig g+, γ  is monotonically decreasing in γ for γ ≤ 0, and Condition 12 holds

for γ = 0 and ϵabs ≥ minf ∈ ℱ eorig f .

3.
Given ϵabs, the upper boundary 

ℎ+, γ g+, γ
ϵabs

− 1 γ−1 is monotonically increasing

in γ in the range where eorig g+, γ ≤ ϵabs and γ < 0, and decreasing in the range

where eorig g+, γ > ϵabs and γ < 0.

Together, the results from Lemma 14 imply that we can use a binary search across γ ∈ ℝ to

tighten the boundary on MR from Lemma 13.

6.3 Convex Models

In this section we show that empirical MCR can be conservatively computed when the loss

function is convex in the model parameters – that is, when the models fθ ∈ ℱ are indexed

by a d-dimensional parameter θ ∈ Θ ⊆ ℝd, and when the loss function L(fθ, (y, x1, x2)) is

convex in θ for all x1, x2, y ∈ X1 × X2, Y .
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Fortunately, neither Lemma 9 nor Lemma 13 require an exact minimum for ℎ−, γ or ℎ+, γ.

For Lemma 9, any lower bound on ℎ−, γ is sufficient to determine a lower bound on MR(f).

Likewise, for Lemma 13, any lower bound on ℎ+, γ is sufficient to determine an upper bound

on MR(f).

To find these lower bounds, we note that for “convex” model classes (defined above) the

optimization problems in Sections 6.1 & 6.2 can be written either as convex optimization

problems, or as difference convex function (DC) programs. A DC program is one that can be

written as

min
θ:cDC θ ≤ k, θ ∈ Θ

gDC θ − ℎDC θ ,

where cDC is a constraint function, k ∈ ℝ1, and gDC, hDC, and cDC are convex. Although

precise solutions to DC problems are not always tractable, lower bounds can be attained by

branch-and-bound (B&B) methods (Horst and Thoai, 1999). A simple B&B approach is to

partition Θ into a set of simplexes. Within the jth simplex, a lower bound on gDC(θ)−hDC(θ)

can be determined by replacing hDC with the hyperplane function hj satisfying hj (υ) =

hDC(υ) at each vertex υ of the jth simplex. Within this partition, gDC(θ) − hDC(θ) is lower

bounded by lj := minθ gDC(θ) − hj(θ), which can be computed as the solution to a convex

optimization problem. Any partition for which lj is found to be too high is disregarded. Once

a bound lj is computed for each partition, the partition with the lowest value lj is selected to

be subdivided further, and additional lower bounds are recomputed for each new, resulting

partition. This procedure continues until a sufficiently tight lower bound is attained (for

more detailed procedures, see Horst and Thoai, 1999).

This approach allows us to conservatively approximate bounds on MR(f) in the form of

Eq 6.1 & 6.4 by replacing ℎ−, γ(g−, γ) and ℎ+, γ(g+, γ) with lower bounds from the B&B

procedure. Although it will always yield valid bounds, the procedure may converge slowly

when the dimension of Θ is large, giving highly conservative results. For some special cases

of model classes however, even high dimensional DC problems simplify greatly. We discuss

these cases in the next section.

7. MR & MCR for Linear Models, Additive Models, and Regression Models

in a Reproducing Kernel Hilbert Space

For linear or additive models, many simplifications can be made to our approaches for MR

and MCR. To simplify the interpretation of MR, we show below that population-level MR

for a linear model can be expressed in terms of the model’s coefficients (Section 7.1). To

simplify computation, we show that the cost of computing empirical MR for a linear model

grows only linearly in n (Section 7.1), even though the number of terms in the definition of

empirical MR grows quadratically (see Eqs 3.3 & 3.6).

Moving on from MR, we show how empirical MCR can be computed for the class of

linear models (Section 7.2), for regularized linear models (Section 7.3), and for regression
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models in a reproducing kernel Hilbert space (RKHS, Section 7.4). To do this, we build

on the approach in Section 6 by giving approaches for minimizing arbitrary combinations

of êswitch(f) and êorig(f) across f ∈ ℱ. Even when the associated objective functions are

non-convex, we can tractably obtain global minima for these model classes. We also discuss

procedures to determine an upper bound Bind on the loss for any observation when using

these model classes (see Assumption 1).

Throughout this section, we assume that X ∈ ℝp for p ∈ ℤ+, that Y ⊂ ℝ1, and that L is the

squared error loss function L(f, (y, x1, x2) = (y − f(x1, x2))2. As in Section 6, we also assume

that 0 < minf ∈ ℱ eorig f , to ensure that empirical MR is finite.

7.1 Interpreting and Computing MR for Linear or Additive Models

We begin by considering MR for linear models evaluated with the squared error loss.

For this setting, we can show both an interpretable definition of MR, as well as a

computationally efficient formula for êswitch(f).

Proposition 15 (Interpreting MR, and computing empirical MR for linear models) For
any prediction model f, let eorig(f), eswitch(f), êorig(f), and êswith(f) be defined based on the

squared error loss L(f, (y, x1, x2)) := (y − f (x1, x2))2 for y ∈ ℝ, x1 ∈ ℝp1, and x2 ∈ ℝp2,

where p1 and p2 are positive integers. Let β = (β1, β2) and fβ satisfy β1 ∈ ℝp1, β2 ∈ ℝp2, and

fβ(x) = x′β = x1′β1 + x2′β2. Then

MR(fβ) = 1 + 2
eorig(fβ) Coυ Y , X1 β1 − β2′Coυ X2, X1 β1 , (7.1)

and, for finite samples,

eswitcℎ fβ = 1
n y′y − 2

X′1Wy
X′2y

′
β + β′

X′1X1 X′1WX2
X′2WX1 X′2X2

β , (7.2)

where W: = 1
n − 1 (1n1n′ − In), 1n is the n-length vector of ones, and In is the n × n identity

matrix.

Eq 7.1 shows that model reliance for linear models can be interpreted in terms of the

population covariances, the model coefficients, and the model’s accuracy. Gregorutti et al.

(2017) show an equivalent formulation of Eq 7.1 under the stronger assumptions that fβ
is equal to the conditional expectation function of Y (that is, fβ = E(Y |X = x)), and the

covariates X1 and X2 are centered.

Eq 7.2 shows that, although the number of terms in the definition of êswitch grows

quadratically in n (see Eq 3.3), the computational complexity of êswitch(fβ) for a linear

model fβ grows only linearly in n. Specifically, the terms X1′Wy and X1′WX2 in Eq 7.2 can be

computed as 1
n − 1 (X1′ 1n)(1n′ y) − (X1′ y)  and 1

n − 1 (X1′ 1n)(1n′ X2) − (X1′ X2)  respectively, where

the computational complexity of each term in parentheses grows linearly in n.
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As in Gregorutti et al. (2017), both results in Proposition 15 readily generalize to additive

models of the form fg1,g2 (X1,X2) := g1 (X1) + g2(X2), since permuting X1 is equivalent to

permuting g1(X1).

7.2 Computing Empirical MCR for Linear Models

Building on the computational result from the previous section, we now consider empirical

MCR computation for linear model classes of the form

ℱlm : = fβ : fβ x = x′β, β ∈ ℝp .

In order to implement the computational procedure from Sections 6.1 and 6.2, we must be

able to minimize arbitrary linear combinations of êorig(fβ) and êswitch(fβ). Fortunately, for

linear models, this minimization reduces to a quadratic program, as we show in the next

remark.

Remark 16 (Tractability of empirical MCR for linear model classes) For any fβ ∈ ℱlm and

any fixed coefficients ξorig, ξswitcℎ ∈ ℝ, the linear combination

ξorigeorig fβ + ξswitcℎeswitcℎ fβ (7.3)

is proportional in β to the quadratic function − 2q′β + β′Qβ, where

Q : = ξorigX′X + ξswitcℎ
X1′ X1 X1′ WX2

X2′ WX1 X2′ X2
, q : = ξorigy′X + ξswitcℎ

X1′ Wy
X2′ y

′ ′
,

and W : = 1
n − 1 (1n1n′ − In). Thus, minimizing ξorigêorig(fβ) + ξswitchêswitch(fβ) is equivalent to

an unconstrained (possibly non-convex) quadratic program.

Because our empirical MCR computation procedure from Sections 6.1 and 6.2 consists of

minimizing a sequence of objective functions in the form of Eq 7.3, Remark 16 shows us

that this procedure is tractable for the class of unconstrained linear models.

7.3 Regularized Linear Models

Next, we continue to build on the results from Section 7.2 to calculate boundaries on MR for

regularized linear models. We consider model classes formed by quadratically constrained

subsets of ℱlm, defined as

ℱlm, rlm : = fβ : fβ x = x′β, βϵℝp, β′Mlmβ ≤ rlm , (7.4)

where Mlm and rlm are pre-specified. Again, this class describes linear models with a

quadratic constraint on the coefficient vector.

7.3.1 CALCULATING MCR—As in Section 7.2, calculating bounds on MR via Lemmas 9

& 13 requires that are able to minimizing linear combinations ξorigêorig(fβ) + ξswitchêswitch
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(fβ) across fβ ∈ ℱlm, rlm for arbitrary ξorig, ξswitch ∈ ℝ. Applying Remark 16, we can again

equivalently minimize −2q′β + β′Qβ subject to the constraint in Eq 7.4:

minimize −2q′β + β′Qβ
subject to β′Mlmβ ≤ rlm . (7.5)

The resulting optimization problem is a (possibly non-convex) quadratic program with one

quadratic constraint (QP1QC). This problem is well-studied, and is related to the trust region

problem (Boyd and Vandenberghe, 2004; Pólik and Terlaky, 2007; Park and Boyd, 2017).

Thus, the bounds on MCR presented in Sections 6.1 and 6.2 again become computationally

tractable for the class of quadratically constrained linear models.

7.3.2 UPPER BOUNDING THE LOSS—One benefit of constraining the coefficient vector

(β′Mlmβ ≤ rlm) is that it facilitates determining an upper bound Bind on the loss function

L(fβ, (y, x)) = (y − x′β)2, which automatically satisfies Assumption 1 for all f ∈ ℱlm, rlm.

The following lemma gives sufficient conditions to determine Bind.

Lemma 17 (Loss upper bound for linear models) If Mlm is positive definite, Y is bounded

within a known range, and there exists a known constant rX such that x′Mlm
−1x ≤ rX for all

x ∈ X1 × X2 , then Assumption 1 holds for the model class ℱlm, rlm, the squared error loss

function, and the constant

Bind = max min
y ∈ Y

y − rXrlm
2
, max

y ∈ Y
y − rXrlm

2
.

In practice, the constant rX can be approximated by the empirical distribution of X and Y.

The motivation behind the restriction x′Mlm
−1x ≤ rX in Lemma 17 is to create complementary

constraints on X and β. For example, if Mlm is diagonal, then the smallest elements of Mlm

correspond to directions along which β is least restricted by β′Mlmβ ≤ rlm (Eq 7.5), as well

as the directions along which x is most restricted by x′Mlm
−1x ≤ rX (Lemma 17).

7.4 Regression Models in a Reproducing Kernel Hilbert Space (RKHS)

We now expand our scope of model classes by considering regression models in a

reproducing kernel Hilbert space (RKHS), which allow for nonlinear and nonadditive

features of the covariates. We show that, as in Section 7.3, minimizing a linear combination

of êorig(f) and êswitch(f) across models f in this class can be expressed as a QP1QC, which

allows us to implement the binary search procedure of Sections 6.1 & 6.2.

First we introduce notation required to describe regression in a RKHS. Let D be a (R×p)

matrix representing a pre-specified dictionary of R reference points, such that each row of D

is contained in X = ℝp. Let k be a pre-specified positive definite kernel function, and let μ be

a prespecified estimate of EY . Let KD be the R × R matrix with KD[i,j] = k(D[i,·], D[j,·]). We
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consider prediction models of the following form, where the distance to each reference point

is used as a regression feature:

ℱD, rk = fα : fα x = μ +
i 1

R
k x,D i, ⋅ α i , fα k ≤ rk, αϵℝR . (7.6)

Above, the norm ‖fα‖k is defined as

fα k : =
i 1

R

j 1

R
α i α j k (D i D j ) α KDα . (7.7)

In the next two sections, we show that bounds on empirical MCR can again be tractably

computed for this class, and that the loss for models in this class can be feasibly upper

bounded.

7.4.1 CALCULATING MCR—Again, calculating bounds on MR from Lemmas 9 & 13

requires us to be able to minimize arbitrary linear combinations of êorig(fα) and êswitch(fα).

Given a size-n sample of test observations Z = [ y X ], let Korig be the n × R matrix with

elements Korig[i,j] = k (X[i,·], D[j,·]). Let Zswitch = [ yswitch Xswitch ] be the (n(n − 1)) × (1 +

p) matrix with rows that contain the set {(y[i], X1[j,·], X2[i,·]) : i, j ∈ {1, … , n} and i ≠ j}.

Finally, let Kswitch be the n(n − 1) × R matrix with Kswitch[i,j] = k (Xswitch[i,·], D[j,·]).

For any two constants ξorig, ξswitch ∈ ℝ, we can show that minimizing the linear combination

ξorigeorig(fα) + ξswitcheswitch(fα) over ℱD, rk is equivalent to the minimization problem

minimize ξorig
n y − μ − Korigα 2

2 + ξswitch
n n − 1 yswitch − μ − Kswitchα 2

2 (7.8)

subject to α′KDα < rk . (7.9)

Like Problem 7.5, Problem 7.8-7.9 is a QP1QC. To show Eqs 7.8–7.9, we first write êorig(fα)

as

eorig fα = 1
n i 1

n
y i fα X i

2

= 1
n i 1

n
y i μ

j 1

R
k X i D j α j

2

= 1
n i 1

n
y i μ K orig i α

2

(7.10)
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= 1
n y − μ − Korigα 2

2 . (7.11)

Following similar steps, we can obtain

eswitch fα = 1
n n − 1 yswitch − μ − Kswitchα 2

2 .

Thus, for any two constants ξorig, ξswitch ∈ ℝ, we can see that ξorigêorig(fα)+ξswitchêswitch(fα)

is quadratic in α. This means that we can tractably compute bounds on empirical MCR for

this class as well.

7.4.2 UPPER BOUNDING THE LOSS—Using similar steps as in Section 7.3.2, the following

lemma gives sufficient conditions to determine Bind for the case of regression in a RKHS.

Lemma 18 (Loss upper bound for regression in a RKHS) Assume that Y is bounded within

a known range, and there exists a known constant rD such that υ(x)′KD
−1υ(x) ≤ rD for all

x ∈ (X1 × X2), where υ:ℝp ℝR) is the function satisfying υ(x)[i] = k(x, D[i,·]). Under these

conditions, Assumption 1 holds for the model class ℱD, rk, the squared error loss function,

and the constant

Bind = max min
y ∈ Y

y − μ + rDrk
2
, max

y ∈ Y
y + μ + rDrk

2
.

Thus, for regression models in a RKHS, we can satisfy Assumption 1 for all models in the

class.

8. Connections Between MR and Causality

Our MR approach can be fundamentally described as studying how a model’s behavior

changes under an intervention on the underlying data. We aim to study the causal effect

of this intervention on the model’s performance. This goal mirror’s the conventional causal

inference goal of studying how an intervention on variables will change outcomes generated

by a process in nature.

This section explores this connection to causal inference further. Section 8.1 shows that

when the prediction model in question is the conditional expectation function from nature

itself, MR reduces to commonly studied quantities in the causal literature. Section 8.2

proposes an alternative to MR that focuses on interventions, or data perturbations, that are

likely to occur in the underlying data generating process.
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8.1 Model Reliance and Causal Effects

In this section, we show a connection between population-level model reliance and the

conditional average causal effect. For consistency with the causal inference literature, we

temporarily rename the random variables (Y, X1, X2) as (Y, T, C), with realizations (y,
t, c). Here, T := X1 represents a binary treatment indicator, C := X2 represents a set of

baseline covariates (“C” is for “covariates”), and Y represents an outcome of interest. Under

this notation, eorig f  represents the expected loss of a prediction function f, and eswitch f
denotes the expected loss in a pair of observations in which the treatment has been switched.

Let f0 t, c : = E Y C = c, T = t  be the (unknown) conditional expectation function for Y,

where we place no restrictions on the functional form of f0.

Let Y1 and Y0 be potential outcomes under treatment and control respectively, such that

Y = Y 0 1 − T + Y 1T . The treatment effect for an individual is defined as Y1 − Y0, and

the average treatment effect is defined as E Y 1 − Y 0 . Let CATE c : = E Y 1 − Y 0 C = c  be

the (unknown) conditional average treatment effect of T for all patients with C = c.

Causal inference methods typically assume Y 1 − Y 0 ⊥ T C (conditional ignorability), and

0 < ℙ T = 1 C = c < 1 for all values of c (positivity), in order for f0 and CATE to be well

defined and identifiable.

The next proposition quantifies the relation between the conditional average treatment effect

function (CATE) and the model reliance of f0 on X1.

Proposition 19 (Causal interpretations of MR) For any prediction model f, let eorig(f) and

eswitch(f) be defined based on the squared error loss L f, y, t, c : = y − f t, c 2.

If Y 1 − Y 0 ⊥ T C (conditional ignorability) and 0 < ℙ T = 1 C = c < 1 for all values of c

(positivity), then MR(f0) is equal to

1 + V ar T
ET , CV ar Y T , C t 0 1

E Y 1 Y 0 T t 2 V ar CATE C T t , (8.1)

where Var(T) is the marginal variance of the treatment assignment.

We see above that model reliance decomposes into several terms that are each individually

important in causal inference: the treatment prevalence (via Var(T)); the variability in Y that

is not explained by C or T; the magnitude of the average treatment effect, conditional on T;

and the variance of the conditional average treatment effect across subgroups. For example,

if all patients are treated, then scrambling the treatment in a random pair of observations

has no effect on the loss. In this case we see that Var(T) = 0 and MR(f0) = 1, indicating no

reliance. When Var(T) > 0, a higher average treatment effect magnitude (E Y 1 − Y 0 T = t)2

corresponds to f0 requiring T more heavily to predict Y, all else equal. Similarly, if there is a

high degree of treatment effect heterogeneity across subgroups (that is, when Var(CATE(C)|

T = t) is large), the model f0 will again use T more heavily when predicting Y. For example,

a treatment may be important for predicting Y even if the average treatment effect is zero, so

long as the treatment helps some subgroups more than others.
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8.2 Conditional Importance: Adjusting for Dependence Between X1 and X2

One common scenario where multiple models achieve low loss is when the sets of predictors

X1 and X2 are highly correlated, or contain redundant information. Models may predict well

either through reliance on X1, or through reliance on X2, and so MCR will correctly identify

a wide range of potential reliances on X1. However, we may specifically be interested how

much models rely on the information in X1 that cannot alternatively be gleaned from X2.

For example, age and accumulated wealth may be correlated, and both may be predictive of

future promotion. We may wish to know the how much a model for predicting promotion

relies on information that is uniquely available from wealth measurements.

To formalize this notion, we define an alternative to eswitch where noise is added to X1

in a way that accounts for the dependence between X1 and X2. Given a fixed prediction

model f, we ask: how well would the model f perform if the values of X1 were scrambled

across observations with the same value for X2. Specifically, let Z(a) = (Y (a), X1
(a), X2

(a)) and

Z b = Y b , X1
b , X2

b  denote a pair of independent random vectors following the same

distribution as Z = Y , X1, X2 , as in Section 3, and let

econd f : = EX2E(Y b , X1
a , X2

b ) L{f, (Y b , X1
a , X2

b )}|X2
a = X2

b = X2 . (8.2)

In words, econd(f) is the expected loss of a given model f across pairs of observations (Z(a),

Z(b)) in which the values of X1
(a) and X1

(b) have been switched, given that these pairs match

on X2. This quantity can also be interpreted as the expected loss of f if noise were added

to X1 in such a way that X1 was no longer informative of Y, given X2, but that the joint

distribution of the covariates (X1, X2) was maintained.

We then define conditional model reliance, or “core” model reliance (CMR) for a fixed

function f as

CMR f =
econd f
eorig f .

That is, CMR is the factor by which the model’s performance degrades when the

information unique to X1 is removed. If X1 ⊥ X2, then X1 contains no redundant

information, and CMR and MR are equivalent. Otherwise, all else equal, CMR will decrease

as X2 becomes more predictive of X1. Analogous to MCR, we define conditional MCR

(CMCR) in the same way as in Eq 2.2, but with MR replaced with CMR. In comparison

with MCR, CMCR will generally result in a range that is closer to 1 (null reliance).

An advantage of CMR is that it restricts the “noise-corrupted” inputs to be within the

domain X, rather than the expanded domain X1 × X2 considered by MR. This means that

CMR will not be influenced by impossible combinations of x1 and x2, while MR may be

influenced by them. Hooker (2007) discuss a similar issue, arguing that evaluations of a
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prediction model’s behavior in different circumstances should be weighted by, for example,

how likely those circumstances are to occur.

A challenge facing the CMR approach is that matched pairs such as those in Eq 8.2

may occur rarely, making it difficult to estimate CMR nonparametrically. We explore this

estimation issue next.

8.2.1 ESTIMATION OF CMR BY WEIGHTING, MATCHING, OR IMPUTATION—If the covariate

space is discrete and low dimensional, nonparametric methods based on weighting or

matching can be effective means of estimating CMR. Specifically, we can weight each

pair of sample points i, j according to how likely the covariate combination X1 i, ⋅ , X2 j, ⋅
is to occur, as in

eweight(f): = 1
n(n − 1) i 1

n

j i
ω(X1 i X2 j ) × L{f, (Y j , X1 i, ⋅ , X2 j, ⋅ )},

where w x1, x2 : =
ℙ X1 = x1 X2 = x2

ℙ X1 = x1
 is an importance weight (see also Hooker, 2007). Here,

pairs of observations corresponding to unlikely or impossible combinations of covariates

are down-weighted or discarded, respectively. If the probabilities ℙ X1 = x1 X2 = x2  and

ℙ X1 = x1  are known, then eweigℎt f  is unbiased for econd(f) (see Appendix A.7).

Alternatively, if X2 is discrete and low dimensional, we can restrict estimates of econd(f) to
only consider pairs of sample observations in which X2 is constant, or “matched,” as in

ematch f : = 1
n n − 1 i 1

n

j i

1 X2 j X2 i
ℙ X2 X2 i

× L f, Y j , X1 i, ⋅ , X2 j, ⋅ .
(8.3)

This approach allows estimation of CMR without knowledge of the conditional distribution

ℙ X1 = x1 X2 = x2 . If the inverse probability weight ℙ X2 = X2 i, ⋅
−1 is known, then

êmatch(f) is unbiased for econd(f) (see Appendix A.7). The weight ℙ X2 = X2 i, ⋅
−1 accounts

for the fact that, for any given value x2, the proportion of observations of X2 taking the

value x2 will generally not be the same as the proportion of matched pairs X2
a , X2

b  taking

value the x2, and so simply summing over all matched pairs would lead to bias. In practice,

the proportion ℙ X2 = X2 i, ⋅  can be approximated as 1
n − 1 j i1(X2[i ] X2[j ]), with

minor adjustments to Eq 8.3 to avoid dividing by zero. The resulting estimate is analogous

to exact matching procedures commonly used in causal inference, which are known to work

best when the covariates are discrete and low dimensional, in order for exact matches to be

common (Stuart, 2010).
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However, when the covariate space is continuous or high dimensional, we typically cannot

estimate CMR nonparametrically. For such cases, we propose to estimate CMR under an

assumption of homogeneous residuals. Specifically, we define μ1 to be the conditional

expectation function μ1 x2 = E X1 X2 = x2 , and assume that the random residual X − μ1(X2)

is independent of X2. Under this assumption, it can be shown that

econd f = EL f, Y b , X1
a − μ1 X2

a + μ1 X2
b , X2

b .

That is, econd(f) is equal to the expected loss of f across random pairs of observations (Z(a),

Z(b)) in which the value of the residual terms (in curly braces) have been switched. Because

of the independence assumption, no matching or weighting is required. If μ1 is known, then

we can again produce an unbiased estimate using the U-statistic

e impute f : = 1
n n − 1 i 1

n

j i
L f y j X1 i μ1 X2 i μ1 X2 j X2 j .

This estimator aggregates over all pairs in our sample, switching the values of the residual

terms (in curly braces) within each pair. In practice, when μ1 is not known, an estimate of μ1

can be achieved via regression or related machine learning techniques, and plugged in to the

above equation. In this way, the assumption that X − μ1 X2 ⊥ X2 allows us to estimate CMR

without explicitly modeling the joint distribution of X1 and X2.

In the existing literature, Strobl et al. (2008) introduce a similar procedure for estimating

conditional variable importance. However, a formal comparison to Strobl et al. is

complicated by the fact that the authors do not define a specific estimand, and that their

approach is limited to tree-based regression models. Other existing approaches conditional

importance approaches include methods for redefining X1 and X2 to induce approximate

independence, before computing an importance measure analogous to MR. This can be done

by reducing the total number of covariates used, and hence reducing how well any one

variable can be predicted by the others (as in Gregorutti et al., 2017). Alternatively, variables

in X2 that are predictive of X1 can be regrouped directly into X1 (as in Toloşi and Lengauer,

2011; see also the discussion from Kirk, Lewin and Stumpf, in Meinshausen and Bühlmann

2010).

In summary, CMR allows us to see how much a model relies on the information uniquely

available in X1. While CMR is more difficult to estimate than MR, several tractable

approaches exist when X2 is discrete, or when a homogenous residual assumption can be

applied. One may also consider extending CMR by conditioning only on a subset of X2. For

example, we may consider conditioning only on elements of X2 that are believed to causally

effect X1, by changing the outer expectation in Eq 8.2. For simplicity, we focus on the base

case of estimating MR in this paper. Similar results could potentially be carried over for

CMR as well.
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9. Simulations

In this section, we first present a toy example to illustrate the concepts of MR, MCR, and

AR. We then present a Monte Carlo simulation studying the effectiveness of bootstrap CIs

for MCR.

9.1 Illustrative Toy Example with Simulated Data

To illustrate the concepts of MR, MCR, and AR (see Section 3.2), we consider a toy

example where X = X1, X2 ∈ ℝ2 , and Y ∈ {−1, 1} is a binary group label. Our primary

goal in this section is to build intuition for the differences between these three importance

measures, and so we demonstrate them here only in a single sample. We focus on the

empirical versions of our importance metrics (MR, MCR− and MCR+), and compare them

against AR, which is typically interpreted as an in-sample measure (Breiman, 2001), or as an

intermediate step to estimate an alternate importance measure in terms of variable rankings

(Gevrey et al., 2003; Olden et al., 2004).

We simulate X Y = − 1 from an independent, bivariate normal distribution with means

E X1 Y = − 1 = E X2 Y = − 1 = 0 and variances V ar X1 Y = − 1 = V ar X2 Y = − 1 = 1
9 .

We simulate X|Y = 1 by drawing from the same bivariate normal distribution, and then

adding the value of a random vector C1, C2 : = cos U , sin U , where U is a random

variable uniformly distributed on the interval −π, π . Thus, (C1, C2) is uniformly distributed

across the unit circle.

Given a prediction model f :X ℝ, we use the sign of f(X1, X2) as our prediction of Y.

For our loss function, we use the hinge loss L f, y, x1, x2 = 1 − yf x1, x2 +, where a + = a
if a ≥ 0 and (a)+ = 0 otherwise. The hinge loss function is commonly used as a convex

approximation to the zero-one loss L f, y, x1, x2 = 1 y ≠ sign f x1, x2 .

We simulate two samples of size 300 from the data generating process described above, one

to be used for training, and one to be used for testing. Then, for the class of models used to

predict Y, we consider the set of degree-3 polynomial classifiers

ℱd3 = fθ:fθ x1, x2 = θ 1 + θ 2 x1 + θ 3 x2 + θ 4 x1
2 + θ 5 x2

2 + θ 6 x1x2 + θ 7 x1
3 + θ 8 x2

3 + θ 9 x1
2x2

+ θ 10 x1x2
2; θ −1 2

2 ≤ rd3 ,

where θ[−1] denotes all elements of θ except θ[1], and where we set rd3 to the value that

minimizes the 10-fold cross-validated loss in the training data. Let Ad3 be the algorithm that

minimizes the hinge loss over the (convex) feasible region fθ:‖θ[ − 1]‖2
2 ≤ rd3 . We apply

Ad3 to the training data to determine a reference model fref. Also using the training data,

we set ϵ equal to 0.10 multiplied by the cross-validated loss of Ad3, such that ℛ(ϵ, fref, ℱd3)
contains all models in ℱd3 that exceed the loss of fref by no more than approximately 10%

(see Eq 4.1). We then calculate empirical AR, MR, and MCR using the test observations.
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We begin by considering the AR of Ad3 on X1. Calculating AR requires us to fit two

separate models, first using all of the variables to fit a model on the training data, and

then again using only X2. In this case, the first model is equivalent to fref. We denote the

second model as f2. To compute AR, we evaluate fref and f2 in the test observations. We

illustrate this AR computation in Figure 6–A, marking the classification boundaries for fref

and f2 by the black dotted line and the blue dashed lines respectively, and marking the test

observations by labelled points (“x” for Y = 1, and “o” for Y = −1). Comparing the loss

associated with these two models gives one form of AR–an estimate of the necessity of X1

for the algorithm Ad3. Alternatively, to estimate the sufficiency of X1, we can compare the

reference model fref against the model resulting from retraining algorithm Ad3 only using

X1. We refer to this third model as f1, and mark its classification boundary by the solid blue

lines in Figure 6–A.

Each of the classifiers in Figure 6–A can also be evaluated for its reliance on X1, as shown

in Figure 6–C. Here, we use êdivide in our calculation of MR (see Eq 3.5). Unsurprisingly,

the classifier fit without using X1 (blue dashed line) has a model reliance of MR f2 = 1.

The reference model fref (dotted black line) has a model reliance of MR fref = 3.47. Each

MR value has an interpretation contained to a single model. That is, MR compares a

single model’s behavior under different data distributions, rather than the AR approach

of comparing different models’ behavior on marginal distributions from a single joint

distribution.

We illustrate MCR in Figure 6–B. In contrast to AR, MCR is only ever a function

of well-performing prediction models. Here, we consider the empirical ϵ-Rashomon set

ℛ ϵ, fref, ℱd3 , the subset of models in ℱd3 with test loss no more than ϵ above that of fref.

We show the classification boundary associated with 15 well-performing models contained

in R ϵ, fref, Fd3  by the gray solid lines. We also show two of the models in R ϵ, fref, Fd3
that approximately maximize and minimize empirical reliance on X1 among models in

R ϵ, fref, Fd3 . We denote these models as f+, ϵ and f−, ϵ, and mark them by the solid green

and dashed green lines respectively. For every model shown in Figure 6–B, we also mark its

model reliance in Figure 6–C. We can then see from Figure 6–C that MR for each model in

ℛ ϵ, fref, ℱd3  is contained between MR f−, ϵ  and MR f+, ϵ , up to a small approximation

error.

In summary, unlike AR, MCR is only a function of models that fit the data well.

9.2 Simulations of Bootstrap Confidence Intervals

In this section we study the performance of MCR under model class misspecification. Our

goal will be to estimate how much the conditional expectation function f0 x = E Y X = x
relies on subsets of covariates. Given a reference model fref and model class ℱ, our ability to

describe MR(f0) will hinge on two conditions:
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Condition 20 (Nearly correct model class) The class ℱ contains a well-performing model
f ∈ ℛ ϵ, fref, ℱ  satisfying MR f = MR f0  (see Eq 4.1).

Condition 21 (Bootstrap coverage) Bootstrap CIs for empirical MCR give appropriate
coverage of population-level MCR.

Condition 20 ensures that the interval [MCR−(ϵ),MCR+(ϵ)] contains MR(f0), and Condition

21 ensures that this interval can be estimated in finite samples. Condition 20 can also be

interpreted as saying that the model reliance value of MR(fc) is “well supported” by the class

ℱ, even if ℱ does not contain f0. Our primary goal is to assess whether CIs derived from

MCR can give appropriate coverage of MR(f0), which depends on both conditions. As a

secondary goal, we also would like to be able to assess Conditions 20 & 21 individually.

Verifying the above conditions requires that we are able to calculate population-level

MCR. To this end, we draw samples with replacement from a finite population of 20,000

observations, in which MCR can also be calculated directly. To derive a CI based on MCR,

we divide each simulated sample Zs into a training subset and analysis subset. We use

the training subset to fit a reference model fref,s, which is required for our definition of

population-level MCR. We calculate a bootstrap CI by drawing 500 bootstrap samples from

the analysis subset, and computing MCR− ϵ  and MCR+ ϵ  in each bootstrap sample by

optimizing over ℛ ϵ, fref, s, ℱ . We then take the 2.5% percentile of MCR− ϵ  values across

bootstrap samples, and the 97.5% percentile of MCR+ ϵ  values across bootstrap samples, as

the lower and upper endpoints of our CI, respectively. We repeat this procedure for both X1

and X2.

We generate data according to a model with increasing amounts of nonlinearity. For

γ ∈ 0, 0.1, 0.2, 0.3, 0.4, 0.5 , we simulate continuous outcomes as Y = f0 X + E, where f0

is the function f0(x) = j 1
p jx[j] γx[j]

2  the covariate dimension p is equal to 2, with

X1 and X2 defined as the first and second elements of X; the covariates X are drawn

from a multivariate normal distribution with E X1 = E X2 = 0, Var X1 = Var X2 = 0, and

Cov X1, X2 = 1/4; and E is a normally distributed noise variable with mean zero and

variance equal to σE2 : = Var f0 X . We consider sample sizes of n = 400 and 800, of which

ntr = 200 or 300 observations are assigned to the training subset respectively.

To implement our approach, we use the model class

ℱlm = fβ : fβ(x) = β[1] + j 1
2 x[j]β[j 1] β ℛ3 . We set the performance threshold ϵ

equal to 0.1 × σE2 . We refer to this MCR implementation with ℱlm as “MCR-Linear.”

As a comparator method, we consider a simpler bootstrap approach, which we refer to as

“Standard-Linear.” Here, we take 500 bootstrap samples from the simulated data Zs. In each

bootstrap sample, indexed by b, we set aside ntr training points to train a model fb ∈ ℱlm,

and calculate MR(fb) from the remaining data points. We then create a 95% bootstrap
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percentile CI for MR(f0) by taking the 2.5% and 97.5% percentiles of MR(fb) across b = 1,

… , 500.

9.2.1 RESULTS—Overall, we find that MCR provides more robust and conservative

intervals for the reliance of f0 on X1 and X2, relative to standard bootstrap approaches.

We also find that higher sample size generally exacerbates coverage errors due to

misspecification, as methods become more certain of biased results.

MCR-Linear gave proper coverage for up to moderate levels of misspecification (γ = 0.3),

where Standard-Linear began to break down (Figure 7). For larger levels of misspecification

(γ ≥ 0.4), both MCR-Linear and Standard-Linear failed to give appropriate coverage.

The increased robustness of MCR comes at the cost of wider CIs. Intervals for MCR-Linear

were typically larger than intervals for Standard-Linear by a factor of approximately 2-4.

This is partly due to the fact that CIs for MCR are meant to cover the range of values

[MCR−(ϵ), MCR+(ϵ)] (defined using fref,s), rather than to cover a single point.

When investigating Conditions 20 & 21 individually, we find that the coverage errors for

MCR-Linear were largely attributable to violations of Condition 20. Condition 21 appears

to hold conservatively for all scenarios studied–within each scenario, at least 95.9% of

bootstrap CIs contained population-level MCR.

These simulation results highlight an aspect of MCR that is both a strength and a weakness:

MCR is generic. MCR does not assume a particular means by which misspecification

may occur, and is less powerful than sensitivity analyses which make that assumption

correctly. Nonetheless, MCR still appears to add robustness. For sufficiently strong signals,

an informative interval may still be returned. In our applied data analysis, below, we see that

this is indeed the case.

10. Data Analysis: Reliance of Criminal Recidivism Prediction Models on

Race and Sex

Evidence suggests that bias exists among judges and prosecutors in the criminal justice

system (Spohn, 2000; Blair et al., 2004; Paternoster and Brame, 2008). In an aim to counter

this bias, machine learning models trained to predict recidivism are increasingly being used

to inform judges’ decisions on pretrial release, sentencing, and parole (Monahan and Skeem,

2016; Picard-Fritsche et al., 2017). Ideally, prediction models can avoid human bias and

provide judges with empirically tested tools. But prediction models can also mirror the

biases of the society that generates their training data, and perpetuate the same bias at scale.

In the case of recidivism, if arrest rates across demographic groups are not representative

of underlying crime rate (Beckett et al., 2006; Ramchand et al., 2006; U.S. Department of

Justice - Civil Rights Devision, 2016), then bias can be created in both (1) the outcome

variable, future crime, which is measured imperfectly via arrests or convictions, and (2)

the covariates, which include the number of prior convictions on a defendant’s record

(Corbett-Davies et al., 2016; Lum and Isaac, 2016). Further, when a prediction model’s
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behavior and mechanisms are an opaque black box, the model can evade scrutiny, and fail to

offer recourse or explanations to individuals rated as “high risk.”

We focus here on the issue of transparency, which takes an important role in the recent

debate about the proprietary recidivism prediction tool COMPAS (Larson et al., 2016;

Corbett-Davies et al., 2016). While COMPAS is known to not rely explicitly on race, there is

concern that it may rely implicitly on race via proxies-variables statistically dependent with

race (see further discussion in Section 11).

Our goal is to identify bounds for how much COMPAS relies on different covariate subsets,

either implicitly or explicitly, under certain assumptions (defined below). We analyze a

public data set of defendants from Broward County, Florida, in which COMPAS scores have

been recorded (Larson et al., 2016). Within this data set, we only included defendants

measured as African-American or Caucasian (3,373 in total) due to sparseness in the

remaining categories. The outcome of interest (Y) is the COMPAS violent recidivism score.

Of the available covariates, we consider three variables which we refer to as “admissible”:

an individual’s age, their number of priors, and an indicator of whether the current charge is

a felony. We also consider two variables which we refer to as “inadmissible”: an individual’s

race and sex. Our labels of “admissible” and “inadmissible” are not intended to be legally

precise-indeed, the boundary between these types of labels is not always clear (see Section

10.2). We compute empirical MCR and AR for each variable group, as well as bootstrap CIs

for MCR (see Section 9.2).

To compute empirical MCR and AR, we consider a flexible class of linear models in a

RKHS to predict the COMPAS score (described in more detail below). Given this class,

the MCR range (See Eq 2.2) captures the highest and lowest degree to which any model in

the class may rely on each covariate subset. We assume that our class contains at least one

model that relies on “inadmissible variables” to the same extent that COMPAS relies either

on “inadmissible variables” or on proxies that are unmeasured in our sample (analogous to

Condition 20). We make the same assumption for “admissible variables.” These assumptions

can be interpreted as saying that the reliance values of COMPAS are relatively “well

supported” by our chosen model class, and allows us to identify bounds on the MR values

for COMPAS. We also consider the more conventional, but less robust approach of AR

(Section 3.2), that is, how much would the accuracy suffer for a model-fitting algorithm

trained on COMPAS score if a variable subset was removed?

These computations require that we predefine our loss function, model class, and

performance threshold. We define MR, MCR, and AR in terms of the squared error loss

L f, y, x1, x2 = y − f x1, x2
2. We define our model class ℱD, rk in the form of Eq 7.6,

where we determine D, μ, k, and rk based on a subset S of 500 training observations. We set

D equal to the matrix of covariates from S; we set μ equal to the mean of Y in S; we set k

equal to the radial basis function kσs(x, x) = exp − ‖x − x‖2
2σs

, where we choose σs to minimize

the cross-validated loss of a Nadaraya-Watson kernel regression (Hastie et al., 2009) fit to

S; and we select the parameters rk by cross-validation on S. We set ϵ equal to 0.1 times the
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cross-validated loss on S. Also using S, we train a reference model fref ∈ ℱD, rk Using the

held-out 2,873 observations, we then estimate MR(fref) and MCR for ℱD, rk. To calculate

AR, we train models from ℱD, rk using S, and evaluate their performance in the held-out

observations.

10.1 Results

Our results imply that race and sex play somewhere between a null role and a modest role

in determining COMPAS score, but that they are less important than “admissible” factors

(Figure 8). As a benchmark for comparison, the empirical MR of fref is equal to 1.09 for

“inadmissible variables,” and 2.78 for “admissible variables.” The AR is equal to 0.94 and

1.87 for “inadmissible” and “admissible” variables respectively, roughly in agreement with

MR. The MCR range for “inadmissible variables” is equal to [1.00, 1.56], indicating that

for any model in ℱD, rk with empirical loss no more than ϵ above that of fref, the model’s

loss can increase by no more than 56% if race and sex are permuted. Such a statement

cannot be made solely based on AR or MR methods, as these methods do not upper

bound the reliance values of well-performing models. The bootstrap 95% CI for MCR on

“inadmissible variables” is [1.00, 1.73]. Thus, under our assumptions, if COMPAS relied on
sex, race, or their unmeasured proxies by a factor greater than 1.73, then intervals as low as
what we observe would occur with probability < 0.05.

For “admissible variables” the MCR range is equal to [1.77,3.61], with a 95% bootstrap

CI of [1.62, 3.96]. Under our assumptions, this implies if COMPAS relied on age, number
of priors, felony indication, or their unmeasured proxies by a factor lower than 1.77, then
intervals as high as what we observe would occur with probability < 0.05. This result is

consistent with Rudin et al. (2019), who find age to be highly predictive of COMPAS score.

It is worth noting that the upper limit of 3.61 maximizes empirical MR on “admissible

variables” not only among well-performing models, but globally across all models in the

class (see Figure 8, and Eq 6.5). In other words, it is not possible to find models in ℱD, rk
that perform arbitrarily poorly on perturbed data, but still perform well on unperturbed data,

and so the ratio of êswitch(f) to êorig(f) has a finite upper bound. Because the regularization

constraints of ℱD, rk preclude MR values higher than 3.61, the MR of COMPAS on

“admissible variables” may be underestimated by empirical MCR. Note also that both MCR

intervals are left-truncated at 1, as it is often sufficiently precise to conclude that there exists

a well-performing model with no reliance on the variables of interest (that is, MR equal to 1;

see Appendix A.2).

10.2 Discussion & Limitations

Asking whether a proprietary model relies on sex and race, after adjusting for other

covariates, is related to the fairness metric known as conditional statistical parity (CSP). A

decision rule satisfies CSP if its decisions are independent of a sensitive variable, conditional

on a set of “legitimate” covariates C (Corbett-Davies et al., 2017; see also Kamiran et al.,

2013). Roughly speaking, CSP reflects the idea that groups of people with similar covariates
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C are treated similarly (Dwork et al., 2012), regardless of the sensitive variable (for example,

race or sex). However, the criteria becomes superficial if too many variables are included in

C, and care should be taken to avoid including proxies for the sensitive variables. Several

other fairness metrics have also been proposed, which often form competing objectives

(Kleinberg et al., 2017; Chouldechova, 2017; Nabi and Shpitser, 2018; Corbett-Davies et al.,

2017). Here, if COMPAS was not influenced by race, sex, or variables related to race or sex

(conditional on a set of “legitimate” variables), it would satisfy CSP.

Unfortunately, it is often difficult to distinguish between “legitimate” (or “admissible”)

variables and “illegitimate” variables. Some variables function both as part of a reasonable

predictor for risk, and, separately, as a proxy for race. Because of disproportional arrest

rates, particularly for misdemeanors and drug-related offenses (U.S. Department of Justice -

Civil Rights Devision, 2016; Lum and Isaac, 2016), prior misdemeanor convictions may act

as such a proxy (Corbett-Davies et al., 2016; Lum and Isaac, 2016).

Proxy variables for race (defined as being statistically dependent with race) that are

unmeasured in our sample are also not the only reason that race could be predictive of

COMPAS score. Other inputs to the COMPAS algorithm might be associated with race only
conditionally on variables we categorize as “admissible.” However, our result from Section

10.1 that race has limited predictive utility for COMPAS score suggests that such conditional

relationships are also limited.

11. Conclusion

In this article, we propose MCR as the upper and lower limit on how important a set of

variables can be to any well-performing model in a class. In this way, MCR provides a more

comprehensive and robust measure of importance than traditional importance measures for a

single model. We derive bounds on MCR, which motivate our choice of point estimates. We

also derive connections between permutation importance, U-statistics, conditional variable

importance, and conditional causal effects. We apply MCR in a data set of criminal

recidivism, in order to help inform the characteristics of the proprietary model COMPAS.

Several exciting areas remain open for future research. One research direction closely

related to our current work is the development of exact or approximate MCR computation

procedures for other model classes and loss functions. We have shown that, for model

classes where minimizing the empirical loss is a convex optimization problem, MCR can

be conservatively computed via a series of convex optimization problems. Further, we have

shown that computing MCR− is often no more challenging that minimizing the empirical

loss over a reweighted sample. General computation procedures for MCR are still an open

research area.

Another direction is to consider MCR for variable selection. If MCR+ is small for a variable,

then no well-performing predictive model can heavily depend on that variable, indicating

that it can be eliminated.

Our theoretical analysis of Rashomon sets depends on ℱ and fref being prespecified. Above,

we have actualized this by splitting our sample into subsets of size n1 and n2, using the first
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subset to determine ℱ and fref, and conditioning on ℱ and fref when estimating MCR in the

second subset. As a result, the boundedness constants in our assumptions (Bind, Bref, Bswitch,

and borig) depend on ℱ, and hence on n1. However, because our results are non-asymptotic,

we have not explored how Rashomon sets behave when n1 and n2 grow at different rates.

An exciting future extension of this work is to study sequences of triples ϵn1, fref, n1, ℱn1
that change as n1 increases, and the corresponding Rashomon sets ℛ ϵn1, fref, n1, ℱn1 , as this

may more thoroughly capture how model classes are determined by analysts.

While we develop Rashomon sets with the goal of studying MR, Rashomon sets can also

be useful for finite sample inferences about a wide variety of other attributes of best-in-class

models (for example, Section 5). Characterizations of a Rashomon set itself may also be of

interest. For example, in ongoing work, we are studying the size of a Rashomon set, and its

connection to generalization of models and model classes (Semenova and Rudin, 2019). We

are additionally developing methods for visualizing Rashomon sets (Dong and Rudin, 2019).
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Appendix A.: Miscellaneous Supplemental Sections

All labels for items in the following appendices begin with a letter (for example, Section

A.2), while references to items in the main text contain only numbers (for example,

Proposition 19).

A.1. Code

R code for our example in Section 9.1 and analysis in Section 10 is available at https://

github.com/aaronjfisher/mcr-supplement.

A.2 Model Reliance Less than 1

While it is counterintuitive, it is possible for the expected loss of a prediction model to

decrease when the information in X1 is removed. Roughly speaking, a “pathological” model

fsilly may use the information in X1 to “intentionally” misclassify Y, such that eswitch(fsilly)

< eorig(fsilly) and MR(fsilly) < 1. The model fsilly may even be included in a population

ϵ-Rashomon set (see Section 4) if it is still possible to predict Y sufficiently well from the

information in X2.

However, in these cases there will often exist another model that outperforms fsilly, and

that has MR equal to 1 (i.e., no reliance on X1). To see this, consider the case where

ℱ = fθ :θ ∈ ℝd  is indexed by a parameter θ. Let θsilly and θ⋆ be parameter values such

that fθsilly is equivalent to fsilly, and fθ⋆ is the best-in-class model. If fθ⋆ satisfies MR(fθ⋆)
> 1 and if the model reliance function MR is continuous in θ, then there exists a parameter
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value θ1 between θsilly and θ⋆ such that MR(fθ1) = 1. Further, if the loss function L is

convex in θ, then eorig(fθ⋆) ≤ eorig(fsilly), and any population ϵ-Rashomon set containing fsilly

will also contain fθ1.

A.3 Relating e switch(f) to All Possible Permutations of the Sample

Following the notation in Section 3, let [π1,…, πn!} be a set of n-length vectors, each

containing a different permutation of the set {1,…,n}. We show in this section that eswitch(f)
is equal to the product of

l 1

n

i 1

n
L{f (y i X1[πl i ] X2 i )}1(πl i ≠ i), (A.1)

and a proportionality constant that is only a function of n.

First, consider the sum

l 1

n

i 1

n
L{f (y i X1[πl i ] X2 i )}, (A.2)

which omits the indicator function found in Eq A.1.

The summation in Eq A.2 contains n(n!) terms, each of which is a two-way combination

of the form L{f, (y[i], X1[j,·], X2[i,·])} for i,j ∈ {1, … n}. There are only n2 unique

combinations of this form, and each must occur in at least (n − 1)! of the n(n!)

terms in Eq A.2. To see this, consider selecting two integer values i , j ∈ 1, …n , and

enumerating all occurrences of the term L{f, (y[i ], X1[j, ⋅ ], X2[i , ⋅ ])} within the sum in

Eq A.2. Of the permutation vectors [π1,…, πn!}, we know that (n − 1)! of them

place i  in the jtℎ position, i.e., that satisfy πl[i ] = j. For each such permutation πl,

the inner summation in Eq A.2 over all possible values of i must include the term

L{f, (y[i ], X1[πl[i ], · ], X2[i , ⋅ ])} = L{f, (y[i ], X1[j, ⋅ ], X2[i , ⋅ ])}. Thus, Eq A.2 contains at least

(n − 1)! occurrences of the term L{f, (y[i ], X1[j, ⋅ ], X2[i , ⋅ ])}.

So far, we have shown that each unique combination occurs at least (n − 1)! times, but it also

follows that each unique combination must occur precisely (n − 1)! times. This is because

each of the n2 unique combinations must occur at least (n − 1)! times, which accounts for

n2((n − 1)!) = n(n!) terms in total. As noted above, Eq has A.2 has only n(n)! terms, so there

can be no additional terms. We can then simplify Eq A.2 as

l 1

n

i 1

n
L{f (y i X1[πl i ] X2 i )} = n − 1 !

i 1

n

j 1

n
L{f (y i X1 j X2 i )} .

By the same logic, we can simplify Eq A.1 as
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l 1

n

i 1

n
L{f (y i X1[πl i ] X2 i )}1(πl i ≠ i)

= n − 1 !
i 1

n

j 1

n
L{f (y i X1 j X2 i )}1(j ≠ i)

= n − 1 !
i 1

n

j 1
L{f (y i X1 j X2 i )},

and Line A.3 is proportional to êswitch(f) up to a function of n.

A.4 Bound for MR of the Best-in-class Prediction Model

Although describing individual models is not the primary focus of this work, a corollary

of Theorem 4 is that we can create a probabilistic bound for the reliance of the (unknown)

best-in-class model f⋆ on X1.

Corollary 22 (Bound on Best-in-class MR) Let f⋆ ∈ arg minf ∈ ℱ eorig(f) be a prediction

model that attains the lowest possible expected loss, and let f+,ϵ and f−,ϵ be defined as in
Theorem 4· If f+,ϵ and f−,ϵ satisfy Assumptions 1, 2 and 3, then

ℙ MR f⋆ ∈ MCR− ϵbest − Qbest, MCR+ ϵbest + Qbest ≥ 1 − δ,

where ϵbest: = 2Bref
log(6δ−1)

2n , and Qbest: =
Bswitcℎ

borig
−

Bswitcℎ − Bind
log(12δ−1)

n

borig + Bind
log(12δ−1)

2n

.

The above result does not require that f⋆ be unique. If several models achieve the minimum

possible expected loss, the above boundaries apply simultaneously for each of them. In the

special case when the true conditional expectation function E(Y X1, X2) is equal to f⋆, then

we have a boundary for the reliance of the function E(Y X1, X2) on X1. This reliance bound

can also be translated into a causal statement using Proposition 19.

A.5 Ratios versus Differences in MR Definition

We choose our ratio-based definition of model reliance, MR(f) =
eswitch(f)
eorig(f) , so that the

measure can be comparable across problems, regardless of the scale of Y. However, several

existing works define VI measures in terms of differences (Strobl et al., 2008; Datta et al.,

2016; Gregorutti et al., 2017), analogous to

MRdifference f : = eswitch f − eorig f . (A.4)

While this difference measure is less readily interpretable, it has several computational

advantages. The mean, variance, and asymptotic distribution of the estimator
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MRdifference(f) : = eswitch(f) − eorig(f) can be easily determined using results for U-

statistics, without the use of the delta method (Dorfman, 1938; Lehmann and Casella, 2006;

see also Ver Hoef, 2012). Estimates in the form of MRdifference(f) will also be more stable

when minf ∈ ℱ eorig(f) is small, relative to estimates for the ratio-based definition of MR. To

improve interpretability, we may also normalize MRdifference(f) by dividing by the variance

of Y, which can be easily estimated without the use of models, as in Williamson et al.

(2017).

Under the difference-based definition for MR (Eq A.4), the results from Theorem 4,

Theorem 6, and Corollary 22 will still hold under the following modified definitions of

Qout, Qin, and Qbest:

Qout, difference : = 1 + 1
2 Bind

log 6δ−1

n ,

Qin, difference : = Bind
log 8δ−1N ℱ, r 2

n +
log 8δ−1N ℱ, r

2n + 2r 2 + 1 , and

Qbest, difference : = 1 + 1
2 Bind

log 12δ−1

n .

Respectively replacing Qout, Qin, Qbest, MR, and MR with Qout,difference, Qin,difference,

Qbest,difference, MRdifference and MRdifference entails only minor changes to the corresponding

proofs (see Appendices B.3, B.5, and B.4). The results will also hold without Assumption 3,

as is suggested by the fact that borig and Bswitch do not appear in Qout,difference, Qin,difference,

or Qbest,difference.

We also prove an analogous version of Theorem 5, on uniform bounds for MRdifference, in

Appendix B.5.1.

A.6 Rashomon Sets and Profile Likelihood Intervals

We note in Section 5.1 that, under certain conditions, the CIs returned from Proposition

7 take the same form as profile likelihood CIs (Coker et al., 2018). For completeness, we

briefly review this connection. We assume here that models fθ ∈ ℱ are indexed by a finite

dimensional parameter vector θ ∈ Θ, where θ = (γ, ψ) contains a 1-dimensional parameter

of interest γ ∈ ℝ1, and a nuisance parameter ψ ∈ Ψ. We further assume and that eorig(fθ)

is minimized by a unique parameter value θ⋆ = (γ⋆, ψ⋆) ∈ Θ, and that our goal is to learn

about γ⋆.
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If sθ : = Zexp L(fθ z) dz is finite for all θ ∈ Θ, we can convert L into the likelihood

function ℒ: (Z × Θ) ℝ1 satisfying ℒ(z; θ) = exp{ − L(fθ, z)}/sθ. As an abbreviation,

let ℒ(Z; θ) denote ∏i = 1
n ℒ(Z i, · ; θ). Additionally, let θ : = arg minθ ∈ Θeorig(fθ) be the

empirical loss minimizer, and hence the maximum likelihood estimator of θ⋆. If ℒ is indeed

the correct likelihood function, then θ⋆ = (γ⋆, ψ⋆) corresponds to the true parameter vector.

Further, if ϕ(fθ) = ϕ(f(γ, ψ)) = γ returns the parameter element of interest (γ), then the (1 −

δ)-level profile likelihood interval for ϕ(fθ⋆) = γ⋆ is

PLI δ : = γ : log ℒ Z; θ − log ℒ Z; θγ ≤ X1, 1 − δ
2 , where θγ

= arg max
θ ∈ Θ:ϕ fθ = γ

ℒ Z; θ

= γ : ∃θγ satisfying ϕ fθγ = γ and log ℒ Z; θ − log ℒ Z; θγ

≤ X1, 1 − δ
2
= γ : ∃θγ satisfying ϕ fθγ = γ and eorig fθγ ≤ eorig fθ + X1, 1 − δ

2n
= γ : ∃fθγ satisfying ϕ fθγ = γ and fθγ ∈ ℛ X1, 1 − δ

2n , fθ , ℱ

(A.5)

where X1, 1 − δ is the 1 − δ percentile of a chi-square distribution with 1 degree of freedom.

If PLI(α) is indeed a contiguous interval, then maximizing and minimizing ϕ(fθ) across

models fθ in the empirical Rashomon set in Eq A.5 yields the same interval.

A.7 Unbiased Estimates of CMR

We claim in Section 8.2 that both

ematch f = 1
n n − 1 i 1

n

j i

1 X2 j X2 i
ℙ X2 X2 i

× L f, y j , X1 i, ⋅ , X2 j, ⋅ .

and

eweight f = 1
n n − 1 i 1

n

j i

ℙ X1 X1 i X2 X2 j
ℙ X1 X1 i

× L f, y j , X1 i, ⋅ , X2 j, ⋅ ,

are unbiased for

econd f = EX2E L{f, (Y b , X1
a , X2

b )}|X2
a = X2

b , X2 .

To show that êmatch(f) is unbiased, we first note that each summation term in êmatch(f) has

the same expectation. Following the notation in Section 3, let Z a = Y a , X1
a , X2

a  and

Fisher et al. Page 44

J Mach Learn Res. Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Z b = Y b , X1
b , X2

b  be independent random variables following the same distribution as Z

= (Y, X1, X2). The expectation of êmatch(f) is

Eematch f = E
1(X2

a = X2
b )

px2(X2
a )

× L{f, (Y b , X1
a , X2

b )}

= EX2
a E

1(X2
a = X2

b )

px2(X2
a )

× L{f, (Y b , X1
a , X2

b )}|X2
a

= EX2
a px2(X2

a )E 1
px2(X2

a )
× L{f, (Y b , X1

a , X2
b )}|X2

a = X2
b , X2

a + 0

= EX2
a E L{f, (Y b , X1

a , X2
b )}|X2

a = X2
b , X2

a

= econd f .

To show that eweight(f) is unbiased, we similarly note that each summation term in eweight(f)
has the same expectation. Without loss of generality, we show the result for discrete

variables (Y, X1, X2). Let Yx2 be the domain of Y conditional on the event that X2 =

x2. The expectation of eweight(f) is

Eeweight f =
x2

b X2 y b Yx2
b x1

a X1

L{f (y b x1
a x2

b )}
ℙ(X1 x1

a X2 x2
b )

ℙ(X1 x1
a )

× ℙ(X1 = x1
a )ℙ(Y = y b , X2 = x2

b )

=
x2

b X2

ℙ(X2 x2
b )

y b Yx2
b x1

a X1

L{f (y b x1
a x2

b )}

× ℙ(X1 = x1
a |X2 = x2

b )ℙ(Y = y b |X2 = x2
b )

= EX2
b E L{f (Y b X1

a X2
b )}|X2

a X2
b X2

b )

= econd f .

Appendix B.: Proofs for Statistical Results

We present proofs for our statistical results in this section, and conclude by presenting

proofs for our computational results in Appendix C.

B.1. Lemma Relating Empirical and Population Rashomon Sets

Throughout the remaining proofs, it will be useful to express the definition of population ϵ-

Rashomon sets in terms of the expectation of a single loss function, rather than a comparison

of two loss functions. To do this, we simply introduce the “standardized” loss function L,

defined as
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L f, z : = L f, z − L fref, z . (B.1)

Above, recall from Section 2 that L(f, z) denotes L(f, (y, x1, x2)) for z = (y, x1, x2). Because

we assume fref is prespecified and fixed, we omit notation for fref in the definition of L. We

can now write

ℛ ϵ = fref ⋃ f ∈ ℱ : EL f, Z ≤ EL fref, Z + ϵ

= fref ⋃ f ∈ ℱ : EL f, Z ≤ ϵ ,

and, similarly,

ℛ ϵ = fref ⋃ f ∈ ℱ : EL f, Z ≤ ϵ .

With this definition, the following lemma allows us to limit the probability that a given

model f1 ∈ ℛ ϵ  is excluded from an empirical Rashomon set.

Lemma 23 For ϵ ∈ ℝ and δ ∈ (0, 1), let ϵ1′ : = ϵ + 2Bref
log(δ−1)

2n , and let f1 ∈ ℛ ϵ  denote a

specific, possibly unknown prediction model. If f1 satisfies Assumption 2, then

ℙ{f1 ∈ ℛ(ϵ1′ )} ≥ 1 − δ .

Proof If fref and f1 are the same function, then the result holds trivially. Otherwise, the proof

follows from Hoeffding’s inequality (Theorem 2 of Hoeffding, 1963). First, note that if f1

satisfies Assumption 2, then L(f1) is bounded within an interval of length 2Bref. Applying

this in line B.3, below, we see that

ℙ{f1 ∉ ℛ(ϵ1′)} = ℙ EL f1, Z > ϵ1′ from f1 ∉ fref

= ℙ EL f1, Z − ϵ > 2Bref
log δ−1

2n from definition of ϵ1′
(B.2)

≤ ℙ EL f1, Z − EL f1, Z > 2Bref
log δ−1

2n from EL f1, Z ≤ ϵ

≤ exp − 2n
2Bref

2 2Bref
log δ−1

2n

2

from Hoeffding’s inequality

(B.3)

= δ . (B.4)

For the inequality used in Line B.3, see Theorem 2 of Hoeffding, 1963. ■
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B.2 Lemma to Transform Between Bounds

The following lemma will help us translate from bounds for variables to bounds for

differences and ratios of those variables. We will apply this lemma to transform from bounds

on empirical losses to bounds on empirical model reliance, defined either in terms of a ratio

or in terms of a difference.

Lemma 24 Let X, Z, μX ,μZ, kX, kZ ∈ ℝ be constants satisfying |Z − μZ| ≤ kZ and |X − μX| ≤

kX, then

Z − X − μZ − μX ≤ qdifference kZ, kX , (B.5)

where qdifference is the function

qdifference kZ, kX : = kZ + kX . (B.6)

Further, if there exists constants borig and Bswitch such that 0 < borig ≤ X, μX and Z, μZ ≥

Bswitch < ∞, then

Z
X − μZ

μX
≤ qratio kZ, kX , (B.7)

where qratio is the function

qratio kZ, kX : = Bswitcℎ
borig

− Bswitcℎ − kZ
borig + kX

. (B.8)

Proof Showing Eq B.5,

Z − X − μZ − μX ≤ Z − μZ + μX − X
≤ kZ + kX .

Showing Eq B.7, let Az = max(Z, μz), aX = min(X, μX), dZ = |Z − μZ|, and dX = |X − μX|.

This implies that max(X, μX) = aX + dX and min(Z, μZ) = AZ − dZ. Thus, Z
X  and μZ

μX  are both

bounded within the interval

min Z,μZ
max X,μX

,
max Z,μZ
min X,μX

=
AZ − dZ
aX + dX

,
AZ
aX

,

which implies

Z
X − μZ

μX
≤ AZ

aX
− AZ − dZ

aX + dX
. (B.9)

Taking partial derivatives of the right-hand side, we get
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∂
∂aX

AZ
aX

−
AZ − dZ
aX + dX

=
−AZ
aX

2 +
AZ − dZ
aX + dX 2 ≤ 0,

∂
∂AZ

AZ
aX

−
AZ − dZ
aX + dX

= 1
aX

− 1
aX + dX

≥ 0,

∂
∂dX

AZ
aX

−
AZ − dZ
aX + dX

=
AZ − dZ
aX + dX 2 > 0,

and ∂
∂dZ

AZ
aX

−
AZ − dZ
aX + dX

= 1
aX + dX

> 0.

So the right-hand side of B.9 is maximized when dZ, dX, and AZ are maximized, and when

aX is minimized. Thus, in the case where |Z − μZ| ≤ kZ; |X − μX| ≤ kX; 0 < borig ≤ X, μX ; and

Z, μZ ≤ Bswitch < ∞, we have

Z
X − μZ

μX
≤

AZ
aX

−
AZ − dZ
aX + dX

≤
Bswitch

borig
−

Bswitch − kZ
borig + kX

.

B.3 Proof of Theorem 4

Proof We proceed in 4 steps.

B.3.1 STEP 1: SHOW THAT ℙ MR f+, ϵ ≤ MCR+ ϵOUT ≥ 1 − δ
3 .

Consider the event that

MR f+, ϵ ≤ MCR+ ϵout . (B.10)

Eq B.10 will always hold if f+, ϵ ∈ ℛ(ϵout), since MCR+ ϵout  upper bounds the empirical

model reliance for models in ℛ ϵout  by definition. Applying the above reasoning in Line

B.11, below, we get

ℙ MR f+, ϵ > MCR+ ϵout ≤ ℙ f+, ϵ ∉ ℛ ϵout (B.11)

≤ δ
3 from ϵout definition and Lemma 23. (B.12)
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B.3.2 STEP 2: CONDITIONAL ON MR f+, ϵ ≤ MCR+ ϵout , UPPER BOUND MR(f+,ϵ) BY

MCR+ ϵout  ADDED TO AN ERROR TERM.

When Eq B.10 holds we have,

MR f+, ϵ ≤ MCR+ ϵout

MR f+, ϵ ≤ MCR+ ϵout + MR f+, ϵ − MR f+, ϵ

MR f+, ϵ ≤ MCR+ ϵout + MR f+, ϵ − MR f+, ϵ .
(B.13)

B.3.3 STEP 3: PROBABILISTICALLY BOUND THE ERROR TERM FROM STEP 2.

Next we show that the bracketed term in Line B.13 is less than or equal to Qout with high

probability. For k ∈ ℝ, let qdiference and qratio be defined as in Eqs B.6 and B.8. Let q:ℝ ℝ

be the function such that q(k) = qratio k, k
2 . Then

Qout =
Bswitch

borig
−

Bswitch − Bind
log 6δ−1

n

borig + Bind
log 6δ−1

2n

= qratio Bind
log 6δ−1

n , Bind
log 6δ−1

2n

= q Bind
log 6δ−1

n .

Applying this relation below, we have

ℙ MR f+, ϵ − MR f+, ϵ > Qout

≤ ℙ MR f+, ϵ − MR f+, ϵ > q Bind
log 6δ−1

n

≤ ℙ eorig f+, ϵ − eorig f+, ϵ > Bind
log 6δ−1

2n

eswitcℎ f ϵ eswitcℎ f ϵ Bind
log 6δ 1

n from Lemma 24

≤ ℙ eorig f+, ϵ − eorig f+, ϵ > Bind
log 6δ−1

2n

+ℙ eswitcℎ f+, ϵ − eswitcℎ f+, ϵ > Bind
log 6δ−1

2n from the Union bound

(B.14)
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≤ 2 exp − 2n
Bind − 0 2 Bind

log 6δ−1

2n

2

+2 exp − n
Bind − 0 2 Bind

log 6δ−1

n

2

from Hoeffding′s bound for U−statistics

(B.15)

= 2δ
6 + 2δ

6 = 2δ
3 . (B.16)

In Line B.15, above, recall that eorig(f+, ϵ) and eswitch(f+, ϵ) are both U-statistics. Note that

E [eswitch(f+, ϵ)] = eswitch(f+, ϵ) because eswitch(f+, ϵ) is an average of terms, and each term

has expectation equal to eswitch(f+,ϵ). For the same reason, E [eorig(f+, ϵ)] = eorig(f+, ϵ). This

allows us to apply Eq 5.7 of Hoeffding, 1963 (see also Eq 1 on page 201 of Serfling, 1980,

in Theorem A) to obtain Line B.15.

Alternatively, if we instead define model reliance as MRdifference(f) = eswitch(f) − eorig(f) (see

Appendix A.5), define empirical model reliance as MRdifference(f) : = eswitch(f) − eorig(f),
and define

Qout, difference : = 1 + 1
2 Bind

log 6δ−1

n = qdifference Bind
log 6δ−1

n , Bind
log 6δ−1

2n ,

then the same proof holds without Assumption 3 if we replace MR, MR, Qout, respectively

with MRdifference, MRdifference, Qout,difference, and redefine q:ℝ ℝ as the function

q(k) = qdifference k, k
2 .

Eqs B.14–B.16 also hold if we replace êswitch throughout with êdivide, including in

Assumption 3, since the same bound can be used for both êswitch and êdivide (Eq 5.7 of

Hoeffding, 1963; see also Theorem A on page 201 of Serfling, 1980).

B.3.4 STEP 4: COMBINE RESULTS TO SHOW Eq 4.2

Finally, we connect the above results to show Eq 4.2. We know from Eq B.12 that Eq B.10

holds with high probability. Eq B.10 implies Eq B.13, which bounds MCR+(ϵ) = MR(f+,ϵ)

up to a bracketed residual term. We also know from Eq B.16 that, with high probability, the

residual term in Eq B.13 is less than Qout = q Bind
log(6δ−1)

n . Putting this together We can

show Eq 4.2:
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ℙ MCR+ ϵ > MCR+ ϵout + Qout

= ℙ MR f+, ϵ > MCR+ ϵout + Qout

≤ ℙ MR f+, ϵ > MCR+ ϵout MR f ϵ MR f ϵ Qout from Step 2

≤ ℙ MR f+, ϵ > MCR+ ϵout + ℙ MR f+, ϵ − MR f+, ϵ > Qout

≤ δ
3 + 2δ

3 = δ . from Steps 1&3

(B.17)

This completes the proof for Eq 4.2. For Eq 4.3 we can use the same approach, shown below

for completeness. Analogous to Eq B.12, we have

ℙ MR f−, ϵ < MCR− ϵout ≤ δ
3 .

Analogous to Eq B.13, when MR f−, ϵ ≥ MR f−, ϵout  we have

MR f−, ϵ ≥ MCR− ϵout
MR f−, ϵ ≥ MCR− ϵout + MR f−, ϵ − MR f−, ϵ
MR f−, ϵ ≥ MCR− ϵout − MR f−, ϵ − MR f−, ϵ .

Analogous to Eq B.16, we have

ℙ MR f−, ϵ − MR f−, ϵ > q Bind
log 6δ−1

n ≤ 2δ
3 . (B.18)

Finally, analogous to Eq B.17, we have

ℙ MCR− ϵ < MCR− ϵout − Qout

≤ ℙ MR f−, ϵ < MCR− ϵout MR f ϵ MR f ϵ q Bind
log 6δ 1

n
(B.19)

≤ ℙ MR f−, ϵ < MCR− ϵout + ℙ MR f−, ϵ − MR f−, ϵ > q Bind
log 6δ−1

n

≤ δ
3 + 2δ

3 = δ .

Again, the same proof holds without Assumption 3 if we replace MR, MR, Qout respectively

with MRdifference, MRdifference, Qout,difference, and redefine q as the function satisfying

q(k) = qdifference k, k
2  in Eqs B.18 & B.19. ■
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B.4 Proof of Corollary 22

Proof By definition, MR(f−,ϵbest) ≤ MR(f⋆) ≤ MR(f+,ϵbest). Applying this relation in Line

B.20, below, we see

ℙ MR f⋆ ∈ MCR− ϵbest − Qbest, MCR+ ϵbest + Qbest

= 1 − ℙ MR f⋆ < MCR− ϵbest − Qbest MR f MCR ϵbest Qbest

≥ 1 − ℙ MR f⋆ < MCR− ϵbest − Qbest − ℙ MR f⋆ > MCR+ ϵbest + Qbest

≥ 1 − ℙ MR f−, ϵ < MCR− ϵbest − Qbest − ℙ MR f+, ϵ > MCR+ ϵbest + Qbest

(B.20)

≥ 1 − δ
2 − δ

2 from Theorem 4. (B.21)

To apply Theorem 4 in Line B.21, above, we note that Qbest and ϵbest are equivalent to the

definitions of Qout and ϵout in Theorem 4, but with δ replaced by δ
2 .

Alternatively, if we define model reliance as MRdifference(f) = eswitch(f) − eorig(f) (see

Appendix A.5), and define empirical model reliance as MRdifference(f) = eswitch(f) − eorig(f),
then let

Qbest, difference : = 1 + 1
2 Bind

log 12δ−1

n .

The term Qbest,difference is equivalent to Qout,difference but with δ replaced with δ
2 . Under this

difference-based definition of model reliance, Theorem 4 holds without Assumption 3 if we

replace Qout with Qout,difference (see Section B.3), and so we can apply this altered version of

Theorem 4 in Line B.21. Thus, Theorem 22 also holds without Assumption 3 if we replace

MR, MR, and Qbest respectively with MRdifference, MRdifference, and Qbest,difference. ■

B.5 Proof of Theorems 5 & 6

We begin by proving Theorem 5, along with related results. We then apply these results to

show Theorem 6.

B.5.1 PROOF OF THEOREM 5, AND OTHER LIMITS ON ESTIMATION ERROR, BASED ON COVERING NUMBER

The following theorem uses the covering number based on r-margin-expectation-covers to

jointly bound empirical losses for any function f ∈ ℱ. Theorem 5 in the main text follows

directly from Eq B.25, below.

Theorem 25 If Assumptions 1, 2 and 3 hold for all f ∈ ℱ, then for any r > 0
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ℙD sup
f ∈ ℱ

eorig f − eorig f > Bind
log 2δ−1N ℱ, r

2n + 2r ≤ δ, (B.22)

ℙD sup
f ∈ ℱ

EL f, Z − EL f, Z > 2Bref
log 2δ−1N ℱ, r

2n + 2r ≤ δ, (B.23)

ℙD sup
f ∈ ℱ

eswitcℎ f − eswitcℎ f > Bind
log 2δ−1N ℱ, r

n + 2r ≤ δ, (B.24)

ℙ sup
f ∈ ℱ

eorig f
eswitcℎ f − eorig f

eswitcℎ f > Q4 ≤ δ, (B.25)

ℙD sup
f ∈ ℱ

eswitcℎ f − eorig f − eswitcℎ f − eorig f > Q4, difference

≤ δ,
(B.26)

where

Q4 : = qratio Bind
log 4δ−1N ℱ, r 2

n + 2r 2, Bind
log 4δ−1N ℱ, r

2n

+ 2r ,
(B.27)

Q4, difference: = qdifference Bind
log 4δ−1N ℱ, r 2

n + 2r 2,

Bind
log 4δ−1N ℱ, r

2n + 2r ,
(B.28)

and qratio and qdifference are defined as in Lemma 24. For Eq B.26, the result is unaffected if
we remove Assumption 3.

B.5.2 PROOF OF Eq B.22

Proof Let Gr be a r-margin-expectation-cover for ℱ of size N(ℱ, r). Let Dp denote the

population distribution, let Ds be the sample distribution, and let D⋆ be the uniform mixture

of Dp and Ds, i.e., for any z ∈ Z,
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ℙD⋆(Z ≤ z) = 1
2ℙDp(Z ≤ z) + 1

2ℙDs(Z ≤ z) . (B.29)

Unless otherwise stated, we take expectations and probabilities with respect to Dp. Since Gr
is a r-margin-expectation-cover, we know that for any f ∈ ℱ we can find a function g ∈ Gr
such that ED⋆ |L(g, Z) − L(f, Z) | = ED⋆ |L(g, Z) − L(f, Z) | ≤ r, and

EL f, Z − EL f, Z = EL f, Z − EL f, Z + EL g, Z − EL g, Z + EL g, Z − EL g, Z (B.30)

≤ EL g, Z − EL g, Z + EL g, Z − EL f, Z + EL f, Z − EL g, Z

≤ EL g, Z − EL g, Z + EDp L g, Z − L f, Z + EDs L f, Z − L g, Z

= EL g, Z − EL g, Z + 2ED⋆ L g, Z − L f, Z

≤ EL g, Z − EL g, Z + 2r .

Applying the above relation in Line B.31 below, we have

ℙ sup
f ∈ ℱ

EL f, Z − EL f, Z > Bind
log 2δ−1N ℱ, r

2n + 2r

= ℙ ∃f ∈ ℱ : EL f, Z − EL f, Z > Bind
log 2δ−1N ℱ, r

2n + 2r

≤ ℙ ∃gϵGr : EL g, Z − EL g, Z + 2r > Bind
log 2δ−1N ℱ, r

2n + 2r

(B.31)

= ℙ
gϵGr

EL g Z EL g Z Bind
log 2δ 1N ℱ r

2n

≤
gϵGr

ℙ EL g Z EL g Z Bind
log 2δ 1N ℱ r

2n from the Union bound

≤ N ℱ, r 2 exp − 2n
Bind

2 Bind
log 2δ−1N ℱ, r

2n

2

from Hoeffding’s inequality

(B.32)

= δ . (B.33)

To apply Hoeffding’s inequality (Theorem 2 of Hoeffding, 1963) in Line B.32, above, we

use the fact that L(g, Z) is bounded within an interval of length Bind. ■
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B.5.3 PROOF OF Eq B.23

Proof The proof for Eq B.23 is nearly identical to the proof for Eq B.22. Simply replacing L
and Bind respectively with L and (2Bref) in Eqs B.30–B.33 yields a valid proof for Eq B.23.

■

B.5.4 PROOF OF Eq B.24

Proof Let FD denote the cumulative distribution function for a distribution D. Let Ds be the

distribution such that

FDp Y = y, X1 = x1, X2 = x2 = FDp Y = y, X2 = x2 FDp X1 = x1 .

Let Dp be the distribution satisfying

ℙDs Y = y, X1 = x1, X2 = x2 = 1
n n − 1 i 1

n

j 1
1 y j y X1 i x1 X2 j x2 .

Let D⋆ be the uniform mixture of Dp and Ds, as in Eq B.29. Replacing eorig, êorig, Dp, Ds,

and D⋆ respectively with eswitch, êswitch, Dp, Ds, and D⋆, we can follow the same steps as in

the proof for Eq B.22. For any f ∈ ℱ, we know that there exists a function g ∈ Gr satisfying

ED⋆ |L(g, Z) − L(f, Z) | ≤ r, which implies

eswitch f − eswitch f = eswitch f − eswitch f + eswitch g − eswitch g + eswitch g − eswitch g
≤ eswitch g − eswitch g + EDp L g, Z − L f, Z + EDs L f, Z − L g, Z

= eswitch g − eswitch g + 2ED⋆ L g, Z − L f, Z
≤ eswitch g − eswitch g + 2r .

As a result,

ℙ sup
f ∈ ℱ

eswitch f − eswitch f > Bind
log 2δ−1N ℱ, r

n + 2r

≤ ℙ ∃g ∈ Gr: eswitch g − eswitch g + 2r > Bind
log 2δ−1N ℱ, r

n + 2r

≤
g Gr

ℙ eswitch g − eswitch g > Bind
log 2δ−1N ℱ, r

n

≤ N ℱ, r 2 exp − n
Bind − 0 2 Bind

log 2δ−1N ℱ, r
n

2

= δ .

(B.34)
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In Line B.34, above, we apply Eq 5.7 of Hoeffding, 1963 (see also Eq 1 on page 201 of

Serfling, 1980, in Theorem A), in the same way as in Eq B.15. ■

B.5.5 PROOF FOR Eq B.25

Proof We apply Lemma 24 and Eq B.27 in Line B.36, below, to obtain

ℙ sup
f ∈ ℱ

eorig f
eswitch f − eorig f

eswitch f > Q4 (B.35)

= ℙ ∃f ∈ ℱ :
eorig f

eswitch f −
eorig f

eswitch f > Q4

≤ ℙ ∃f ∈ ℱ : eorig f − eorig f > Bind
log 4δ−1N ℱ, r

2n + 2r (B.36)

f ℱ eswitch f eswitch f Bind
log 4δ 1N ℱ r 2

n 2r 2

= ℙ sup
f ∈ ℱ

eorig f − eorig f > Bind
log 4δ−1N ℱ, r

2n + 2r

+ℙ sup
f ∈ ℱ

eswitch f − eswitch f > Bind
log 4δ−1N ℱ, r 2

n + 2r 2

≤ δ
2 + δ

2 . from Eqs B.22 and B.24 (B.37)

■

B.5.6 PROOF FOR Eq B.26

Proof Finally, to show B.26, we apply the same steps as in Eqs B.35 through B.37. We apply

Eq B.28 & Lemma 24 to obtain
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ℙ sup
f ∈ ℱ

eswitch f − eorig f − eswitch f − eorig f > Q4, difference

≤ ℙ ∃f ∈ ℱ : eorig f − eorig f > Bind
log 4δ−1N ℱ, r

2n + 2r

f ℱ eswitch f eswitch f Bind
log 4δ 1N ℱ r 2

2n 2r 2

≤ δ
2 + δ

2 .

■

B.5.7 IMPLEMENTING THEOREM 25 TO SHOW THEOREM 6

Proof Consider the event that

∃f+, ϵin ∈ arg max
f ∈ ℛ ϵin

MR f such that MCR+ ϵ < MR f+, ϵin .
(B.38)

A brief outline of our proof for Eq 4.6 is as follows. We expect Eq B.38 to be

unlikely due to the fact that ϵin < ϵ. If Eq B.38 does not hold, then the only way that

MCR+(ϵ) < MCR+(ϵin) − Qin holds is if there exists f+, ϵin ∈ arg maxf ∈ ℛ(ϵin)MR(f) which

has an empirical MR that differs from its population-level MR by at least Qin.

To show that Eq B.38 is unlikely, we apply Theorem 25:

ℙ ∃f+, ϵin ∈ arg max
f ∈ ℛ ϵin

MR f : MCR+ ϵ < MR f+, ϵin

≤ ℙ ∃f ∈ ℛ ϵin : MCR+ ϵ < MR f

= ℙ ∃f ∈ ℛ ϵin \fref : MCR+ ϵ < MR f by MCR+ ϵ ≥ MR fref

≤ ℙ ∃f ∈ ℛ ϵin \fref : EL f, Z > ϵ by MCR+ ϵ Def

= ℙ ∃f ∈ ℱ, EL f, Z > ϵ : EL f, Z ≤ ϵin by ℛ ϵ Def
= ℙ ∃f ∈ ℱ, EL f, Z > ϵ :

EL f, Z − ϵ ≤ − 2Bref
log 4δ−1N ℱ, r

2n − 2r by ϵin Def

(B.39)
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≤ ℙ ∃f ∈ ℱ, EL f, Z > ϵ :

EL f, Z − EL f, Z ≤ − 2Bref
log 4δ−1N ℱ, r

2n − 2r

≤ ℙ sup
f ∈ ℱ

EL f, Z − EL f, Z ≥ 2Bref
log 4δ−1N ℱ, r

2n + 2r

= δ
2 by Thm 25.

(B.40)

If Eq B.38 does not hold, we have

MCR+ ϵ ≥ MR f+, ϵin for all f+, ϵin ∈ arg max
fϵℛ ϵin

MR f

= MR f+, ϵin − MR f+, ϵin − MR f+, ϵin for all f+, ϵin ∈ arg max
f ∈ ℛ ϵin

MR f

= MCR+ ϵin − MR f+, ϵin − MR f+, ϵin for all f+, ϵin ∈ arg max
f ∈ ℛ ϵin

MR f

≥ MCR+ ϵin − sup
f ∈ ℱ

MR f − MR f .

(B.41)

Let qratio and qdifference be defined as in Lemma 24. Then

Qin = Bswitch
borig

−
Bswitch − Bind

log 8δ−1N ℱ, r 2
n + 2r 2

borig + Bind
log 8δ−1N ℱ, r

2n + 2r

= qratio Bind
log 8δ−1N ℱ, r 2

n + 2r 2, Bind
log 8δ−1N ℱ, r

2n + 2r

(B.42)

Theorem 25 implies that the sup term in Eq B.41 is less than Qin with probability at least

1 − δ
2 . Now, examining the left-hand side of Eq 4.6, we see

ℙ MCR+ ϵ < MCR+ ϵin − Qin

≤ ℙ ∃f+, ϵin ∈ arg max
f ∈ ℛ ϵin

MR f : MCR+ ϵ < MR f+, ϵin

sup
f ℱ

MR f MR f Qin from Eq B.41

≤ ℙ ∃f+, ϵin ∈ arg max
f ∈ ℛ ϵin

MR f : MCR+ ϵ < MR f+, ϵin

+ℙ sup
f ∈ ℱ

MR f − MR f > Qin from the Union bound

= δ
2 + δ

2 from Eq B.40, Eq B.42, & Theorem 25.

(B.43)
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This completes the proof for Eq 4.6.

Alternatively, if we have defined model reliance as MR(f) = eswitch(f) − eorig(f) (see

Appendix A.5), with MR(f) = eswitch(f) − eorig(f), and

Qin, difference = Bind
log 8δ−1N ℱ, r 2

n +
log 8δ−1N ℱ, r

2n + 2r 2 + 1

= qdifference Bind
log 8δ−1N ℱ, r 2

n + 2r 2, Bind
log 8δ−1N ℱ, r

2n + 2r ,

then same proof of Eq 4.6 holds without Assumption 3 if we replace Qin with Qin, difference,

and apply Eq B.26 in Eq B.43.

For Eq 4.7 we can use the same approach. Consider the event that

∃f−, ϵin ∈ arg min
f ∈ ℛ ϵin

MR f : MCR− ϵ > MR f−, ϵin .
(B.44)

Applying steps analogous to those used to derive Eq B.40, we have

ℙ ∃f−, ϵin ∈ arg min
f ∈ ℛ ϵin

MR f : MCR− ϵ > MR f−, ϵin

≤ ℙ ∃f ∈ ℱ, EL f, Z > ϵ : EL f, Z ≤ ϵin ≤ δ
2 .

Analogous to B.41, when Eq B.44 does not hold, we have have

MCR− ϵ ≤ MR f−, ϵin for all f−, ϵin ∈ arg min
f ∈ ℛ ϵin

MR f

= MR f−, ϵin + MR f−, ϵin − MR f−, ϵin for all f−, ϵin ∈ arg min
f ∈ ℛ ϵin

MR f

= MCR− ϵin + MR f−, ϵin − MR f−, ϵin for all f−, ϵin ∈ arg min
f ∈ ℛ ϵin

MR f

≤ MCR− ϵin + sup
f ∈ ℱ

MR f − MR f

Finally, analogous to Eq B.43,
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ℙ MCR− ϵ > MCR ϵin + Qin

≤ ℙ ∃f−, ϵin ∈ arg min
f ∈ ℛ ϵin

MR f : MCR− ϵ > MR f−, ϵin

sup
f ℱ

MR f MR f Qin

≤ ℙ ∃f−, ϵin ∈ arg min
f ∈ ℛ ϵin

MR f : MCR− ϵ > MR f−, ϵin

+ℙ sup
f ∈ ℱ

MR f − MR f > Qin

= δ
2 + δ

2 .

(B.45)

Under the difference-based definition of model reliance (see Appendix A.5), the same proof

for Eq 4.7 holds without Assumption 3 if we replace MR, MR, & Qin respectively with

MRdifference, MRdifference, & Qin,difference, and apply Eq B.26 in Eq B.45. ■

B.6 Proof of Proposition 7, and Corollary for a Unique Best-in-class Model.

We first introduce a lemma to describe the performance of any individual model in the

population ϵ-Rashomon set.

Lemma 26 Let ϵ1′ : = 2Bref
log(δ−1)

2n , and let the functions ϕ− and ϕ+ be defined as in

Proposition 7. Given a function f1 ∈ ℛ(ϵ), if Assumption 2 holds for f1, then

ℙ ϕ f1 ∈ ϕ − ϵ1′ , ϕ + ϵ1′ ≥ 1 − δ .

Proof Consider the event that

ϕ f1 ∈ ϕ − ϵ1′ , ϕ + ϵ1′ . (B.46)

Eq B.46 will always hold if f1 ∈ ℛ(ϵ1′ ), since the interval ϕ − ϵ1′ , ϕ + ϵ1′  contains ϕ(f) for

any f ∈ ℛ(ϵ1′ ) by definition. Thus,

ℙ ϕ f1 ∉ [ ϕ − ϵ1′ , ϕ+ ϵ1′ ≤ ℙ f1 ∉ ℛ ϵ1′
≤ δ from Lemma 23.

■
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B.6.1 PROOF OF PROPOSITION 7

Proof Let f−, ϵ, ϕ ∈ arg minf ∈ ℛ(ϵ) ϕ(f) and f+, ϵ, ϕ ∈ arg minf ∈ ℛ(ϵ) ϕ(f) respectively

denote functions that attain the lowest and highest values of ϕ(f) among models f ∈ ℛ(ϵ).
Applying the definitions of f−,ϵ,ϕ and f+,ϵ,ϕ in Line B.47, below, we have

ℙ ϕ f : f ∈ ℛ ϵ ⊄ ϕ− ϵ′ , ϕ+ ϵ′

= ℙ ϕ f−, ϵ, ϕ , ϕ f+, ϵ, ϕ ⊄ ϕ− ϵ′ , ϕ+ ϵ′

= ℙ ϕ f−, ϵ, ϕ ∉ ϕ− ϵ′ , ϕ+ ϵ′ ϕ f ϵ ϕ ∉ ϕ− ϵ′ , ϕ+ ϵ′

≤ ℙ ϕ f−, ϵ, ϕ ∉ ϕ− ϵ′ , ϕ+ ϵ′ + ℙ ϕ f−, ϵ, ϕ ∉ ϕ− ϵ′ , ϕ+ ϵ′

≤ δ
2 + δ

2 = δ from Lemma 26, and the definition of ϵ′ = ϵ + 2Bref
log 2δ−1

2n .

(B.47)

■

B.6.2 COROLLARY FOR A UNIQUE BEST-IN-CLASS MODEL

When the best-in-class model is unique, it can be described by the corollary below.

Corollary 27 Let ϕ−(ϵ0′ ) : = minf ∈ ℛ(ϵ1′ )ϕ(f) and ϕ+(ϵ1′ ) : = maxf ∈ ℛ(ϵ1′ )ϕ(f), where

ϵ0′ : = 2Bref
log(δ−1)

2n . Let f⋆ ∈ arg minf ∈ ℱ eorig(f) be the prediction model that uniquely

attains the lowest possible expected loss. If f⋆ satisfies Assumption 2, then

ℙ ϕ f⋆ ∈ ϕ− ϵ1′ , ϕ+ ϵ1′ ≥ 1 − δ .

Proof Since f⋆ ∈ ℛ(0), Corollary 27 follows immediately from Lemma 26.

Notice that by assuming f⋆ is unique, we can use the threshold ϵ0′ : = 2Bref
log(δ−1)

2n , which

is lower than the threshold of ϵ′ = ϵ + 2Bref
log(2δ−1)

2n  with ϵ = 0, as in Proposition 7. In this

way, assuming uniqueness allows a stronger statement than the one in Proposition 7. ■

B.7 Absolute Losses versus Relative Losses in the Definition of the Rashomon Set

In this paper we primarily define Rashomon sets as the models that perform well relative
to a reference model fref. We can also study an alternate formulation of Rashomon sets by

replacing the relative loss L with the non-standardized loss L throughout. This results in a

new interpretation of the Rashomon set ℛ(ϵabs, fref, ℱ) = {fref} ∪ {f ∈ ℱ : EL(f, Z) ≤ ϵabs}
as the union of fref and the subset of models with absolute loss L no higher than ϵabs, for ϵabs

> 0. The process of computing empirical MCR is largely unaffected by whether L or L is

used, as it is simple to transform from one optimization problem to the other.
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We still require the explicit inclusion of fref in empirical and population Rashomon sets to

ensure that they are nonempty. However, in many cases, this inclusion becomes redundant

when interpreting a Rashomon set (e.g., when ϵ ≥ 0, and EL(fref, Z) ≤ ϵabs}.

Under the replacement of L with L, we also replace Assumption 2 with Assumption 1

(whenever this is not redundant), and replace 2Bref with Bind in the definitions of ϵout, ϵbest,

ϵin, ϵ′ and ϵ1′  in Theorem 4, Corollary 22, Theorem 6, Proposition 7, and Corollary 27.

This is because the motivation for the 2Bref term is that L(f1) is bounded within an interval

of length 2Bref when f1 satisfies Assumption 2. However, under Assumption 1, L(f1) is

bounded within an interval of length Bind.

B.8 Proof of Proposition 15

Proof To show Eq 7.1 we start with eorig(fβ),

eorig(fβ) = E[{Y − X1′ β1 − X2′ β2}2]

= E[{(Y − X2′ β2) − X1′ β1}2]

= E[(Y − X2′ β2)2] − 2E[(Y − X2′ β2)X1′ ]β1 + β′1E[X1X1′ ]β1 .

For eswitch(fβ), we can follow the same steps as above:

eswitch(fβ) = EY (b), X1
(a), X2

(b)[{Y (b) − X1
(a)′β1 − X2

(b)′β2}
2
]

= E[(Y (b) − X2
(b)′β2)

2
] − 2E[(Y (b) − X2

(b)′β2)
2
]E[X1

(a)′]β1 + β′1E[X1
(a)X1

(a)′]β1 .

Since (Y (b), X1
(b), X2

(b)) and (Y (a), X1
(a), X2

(a)) each have the same distribution as (Y, X1, X2), we

can omit the superscript notation to show Eq 7.1:

eswitch(fβ) = E[(Y − X2′ β2)2] − 2E[Y − X2′ β2]E[X1′ ]β1 + β1′ E[X1X1′ ]β1
eswitch(fβ) = eorig(fβ) − 2E[Y − X2′ β2]E[X1′ ]β1 + 2E[(Y − X2′ β2)X1′ ]β1
eswitch(fβ) = eorig(fβ) + 2Cov(Y − X2′ β2, X1)β1
eswitch(fβ) = eorig(fβ) + 2Cov(Y , X1)β1 − 2β2Cov(X2, X1)β1 .

Dividing both sides by eorig(fβ) gives the desired result.

Next, we can use a similar approach to show Eq 7.2:
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eswitch fβ = 1
n n − 1 i 1

n

j 1
y j X2 j β2 X1 i β1

2

n n − 1 eswitch fβ =
i 1

n

j i
y j X2 j β2

2 2 y j X2 j β2 X1 i β1 X1 i β1
2

= n − 1
i 1

n
y i X2 i β2

2

−2
i 1

n

j i
X1 i β1 y j X2 j β2 + n − 1

i 1

n
X1 i β1

2
.

(B.48)

Focusing on the term in braces,

i 1

n

j i
X1 i β1 y j X2 j β2

=
i 1

n

j 1

n
X1 i β1 y j − X2 j, ⋅ β2 −

i 1

n
X1 i β1 y j X2 j β2

=
i 1

n
X1 i β1

j 1

n
y j X2 j β2

i 1

n
X1 i β1 y j X2 j β2

= X1β1 ′1n 1n′ y − X2β2 − X1β1 ′ y − X2β2
= X1β1 ′ 1n1n′ − In y − X2β2 .

(B.49)

Plugging this into Eq B.48, and applying the sample linear algebra representations as in Eq

B.49, we get

n n − 1 eswitch fβ = n − 1 y − X2β2 2
2

−2 X1β1 ′ 1n1n′ − In y − X2β2

+ n − 1 X1β1 2
2

neswitch fβ = y − X2β2 2
2

−2 X1β1 ′W y − X2β2

+ X1β1 2
2

= y′y − 2y′X2β2 + β2′ X2′ X2β2
−2β1′ X1′ Wy + 2β1′ X1′ WX2β2
+β1′ X1′ X1β1

= y′y − 2
X1′ Wy
X2′ y

′
β + β′

X1′ X1 X1′ WX2
X2′ WX1 X2′ X2

β .

■
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B.9 Proof of Proposition 19

Proof First we consider eorig(f0). We briefly recall that the notation f0(t, c) refers to the

true conditional expectation function for both potential outcomes Y1, Y0, rather than the

expectation for Y0 alone.

Under the assumption that (Y1, Y0) ⊥ T|C, we have f0(t, c) = E(Y |C = c, T = t) = E(Y t |C = c).
Applying this, we see that

eorig f0 = EL f0, Y , T , C
= EL f0, YT , T , C

= ETEC TEYT C [ YT − E YT C 2]
= ETEC TVar YT C
= qEC T = 0Var Y 0 C + pEC T = 1Var Y 1 C ,

(B.50)

where p : = ℙ(T = 1) and q : = ℙ(T = 0).

Now we consider eswitch(f0). Let (Y 0
(a), Y 1

(a), T (a), C(a)) and (Y 0
(b), Y 1

(b), T (b), C(b)) be a pair of

independent random variable vectors, each with the same distribution as (Y0, Y1, T, C).

Then

eswitch(f0) = ET (b), T (a), C(b), YT (b)
(b) [{YT (a)

(b)
− f0(T (a), C(b))}

2
]

= ET (b), T (a), C(b), YT (b)
(b) [{YT (b)

(b)
− E(YT (a) C = C(b))}

2
]

= ET (b), T (a)EC(b) T (b)EYT (b)
(b)

C(b)[{YT (b)
(b)

− E(YT (a) C = C(b))}
2
] .

First we expand the outermost expectation, over T(b), T(a):

eswitch(f0)

=
i iϵ{0 1}

ℙ(T (b) i T (a) j)EC(b) T (b) iEYi
(b) C(b)[{Y i

(b) − E(Y j C = C(b))}2] . (B.51)

Since T(b) ⊥ T(a), we can write

ℙ(T (b) = i, T (a) = j) = ℙ(T (b) = i)ℙ(T (a) = j)
= pi + jq2 − i − j .

Plugging this into Eq B.51 we get

eswitch(f0) =
i jϵ{0 1}

pi jq2 i jEC(b)|T (b) = iEYi
(b)|C(b)[{Yi

(b) − E(Y j|C = C(b))}
2
] .
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Since (Y 0
(b), Y 1

(b), C(b), T (b)) are the only random variables remaining, we can omit the

superscript notation (e.g., replace C(b) with C) to get

eswitch f0 =
i jϵ 0 1

pi jq2 i jEC T = iEYi C[ Yi − E Yi C 2]

= :
i jϵ 0 1

Aij,

where Aij = pi + jq2 − i − jEC |T = iEYi |C[ Y i − E(Y j |C) 2]. First, we consider A00 and A11:

A00 = q2EC T = 0EY0 C[ Y0 − E Y0 C 2]

= q2EC T = 0Var Y0 C ,

and, similarly, A11 = p2EC |T = 1Var(Y 1 |C).

Next we consider A01 and A10:

A01: = pqEC T = 0EY0 C [ Y0 − E Y1 C 2]

= pqEC T = 0 E Y0
2 C − 2E Y0 C E Y1 C + E Y1 C 2

= pqEC T = 0 Var Y0 C + E Y0 C 2 − 2E Y0 C E Y1 C + E Y1 C 2

= pqEC T = 0 Var Y0 C + E Y1 C − E Y0 C 2

= pqEC T = 0 Var Y0 C + CATE C 2 ,

and, following the same steps,

A10 = pqEC T = 1 Var Y1 C + CATE C 2 .

Plugging in A00, A01, A10, and A11 we get

eswitch f0 = A00 + A11
+ A01 + A10

= q2EC T = 0 Var Y0 C + p2EC T = 1 Var Y1 C

+ pqEC T = 0 Var Y0 C + CATE C 2 + pqEC T = 1 Var Y0 C + CATE C 2

= q q + p EC T = 0 Var Y 0 C + p p + q EC T = 1 Var Y 1 C (B.52)

+pq EC T = 0 CATE C 2 + EC T = 1 CATE C 2
(B.53)

Fisher et al. Page 65

J Mach Learn Res. Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= eorig f0 (B.54)

+Var T EC T = 0 CATE C 2 + EC T = 1 CATE C 2 . (B.55)

In Lines B.52 and B.53, we consolidate terms involving EC T = 0 Var Y 0 C  and

EC T = 1 Var Y 1 C . In Line B.54, we use p+q = 1 to reduce Line B.52 to the right-hand

side of Eq B.50. Finally, in Line B.55, we use qp = Var(T). Dividing both sides by

eorig f0 = ET , C Var Y T , C  gives the desired result. ■

Appendix C.: Proofs for Computational Results

Almost all of the proofs in this section are unchanged if we replace êswitch (f) with êdivide(f)
in our definitions of ĥ−,γ, ĥ+,γ, ĝ−,γ, ĝ+,γ, and MR. The only exception is in Appendix C.3.

Throughout the following proofs, we will make use of the fact that, for constants a, b, c, d ∈ ℝ
satisfying a ≥ c, the relation a + b ≤ c + d implies

a + b ≤ c + d
a − c ≤ d − b

0 ≤ d − b since 0 ≤ a − c
b ≤ d .

(C.1)

We also make use of the fact that for any γ1, γ2 ∈ ℝ, the definitions of ĝ+,γ1 and ĝ−,γ1 imply

ℎ+, γ1 g+, γ1 ≤ ℎ+, γ1 g+, γ2 , and ℎ−, γ1 g−, γ1 ≤ ℎ−, γ1 g−, γ2 . (C.2)

Finally, for any two values γ1, γ2 ∈ ℝ, we make use of the fact that

ℎ+, γ1 f = eorig f + γ1eswitch f
= eorig f + γ2eswitch f + γ1eswitch f − γ2eswitch f
= ℎ+, γ2 f + γ1 − γ2 eswitch f ,

(C.3)

and, by the same steps,

ℎ−, γ1 f = ℎ−, γ2 f + γ1 − γ2 eorig f . (C.4)

C.1 Proof of Lemma 9 (Lower Bound for MR)

Proof We prove Lemma 9 in 2 parts.
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C.1.1 PART 1: SHOWING Eq 6.1 HOLDS FOR ALL f ∈ ℱ SATISFYING êORIG(f) ≤ ϵABS.

If ĥ−,γ (ĝ−,γ) ≥ 0, then for any function f ∈ ℱ satisfying êorig(f) ≤ ϵabs we know that

1
ϵabs

≤ 1
eorig f

ℎ−, γ g−, γ
ϵabs

≤ ℎ−, γ g−, γ
eorig f .

(C.5)

Now, for any f ∈ ℱ satisfying êorig(f) ≤ ϵabs, the definition of ĝ−,γ implies that

ℎ−, γ f ≥ ℎ−, γ g−, γ
γeorig f + eswitch f ≥ ℎ−, γ g−, γ

γ +
eswitch f
eorig f ≥

ℎ−, γ g−, γ
eorig f

γ +
eswitch f
eorig f ≥

ℎ−, γ g−, γ
ϵabs

from Eq C.5

MR f ≥
ℎ−, γ g−, γ

ϵabs
− γ .

C.1.2 PART 2: SHOWING THAT, IF f = g−, γ, AND AT LEAST ONE OF THE INEQUALITIES IN CONDITION 8 HOLDS

WITH EQUALITY, THEN Eq 6.1 HOLDS WITH EQUALITY.

We consider each of the two inequalities in Condition 8 separately. If ℎ−, γ g−, γ = 0, then

0 = γeorig(g−, γ) + eswitch(g−, γ)
−eswitch(g−, γ)

eorig(g−, γ) = γ .

As a result

ℎ−, γ(g−, γ)
ϵabs

− γ = 0
ϵabs

−
−eswitch(g−, γ)

eorig(g−, γ) = MR(g−, γ) .

Alternatively, if eorig g−, γ = ϵabs, then

ℎ−, γ(g−, γ)
ϵabs

− γ =
γeorig(g−, γ) + eswitch(g−, γ)

eorig(g−, γ) − γ = γ +
eswitch(g−, γ)
eorig(g−, γ) − γ = MR(g−, γ) .

■

C.2 Proof of Lemma 10 (Monotonicity for MR Lower Bound Binary Search)

Proof We prove Lemma 10 in 3 parts.
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C.2.1 PART 1: ℎ−, γ g−, γ  IS MONOTONICALLY INCREASING IN γ.

Let γ1, γ2 ∈ ℝ satisfy γ1 < γ2. We have assumed that 0 < eorig f  for any f ∈ ℱ. Thus, for

any f ∈ ℱ we have

γ1eorig(f) + eswitch(f) < γ2eorig(f) + eswitch(f)
ℎ − , γ1(f) < ℎ − , γ2(f) .

(C.6)

Applying this, we have

ℎ−, γ1(g−, γ1) ≤ ℎ−, γ1(g−, γ2) from Eq C.2

≤ ℎ−, γ2(g−, γ2) from Eq C.6.

This result is analogous to Lemma 3 from Dinkelbach (1967).

C.2.2 PART 2: eORIG g−, γ  IS MONOTONICALLY DECREASING IN γ.

Let γ1, γ2 ∈ ℝ satisfy γ1 < γ2. Then

ℎ−, γ1(g−, γ1) ≤ ℎ−, γ1(g−, γ2) from Eq C.2

ℎ−, γ2(g−, γ1) + (γ1 − γ2)eorig(g−, γ1) ≤ ℎ−, γ2(g−, γ2) + (γ1 − γ2)eorig(g−, γ2) from Eq C.4

(γ1 − γ2)eorig(g−, γ1) ≤ (γ1 − γ2)eorig(g−, γ2) from Eqs C.1 & C.2

eorig(g−, γ1) ≥ eorig(g−, γ2) .

C.2.3 PART 3: 
ℎ−, γ g−, γ

ϵABS
− γ  IS MONOTONICALLY DECREASING IN γ IN THE RANGE WHERE

eORIG g−, γ ≤ ϵABS, AND INCREASING OTHERWISE.

Suppose γ1 < γ2 and eorig g−, γ1 , eorig g−, γ2 ≤ ϵabs. Then, from Eq C.2,

ℎ−, γ2 g−, γ2 ≤ ℎ−, γ2 g−, γ1
ℎ−, γ2 g−, γ2 ≤ ℎ−, γ1 g−, γ1 + γ2 − γ1 eorig g−, γ1 from Eq C.4

ℎ−, γ2 g−, γ2 ≤ ℎ−, γ2 g−, γ1 + γ2 − γ1 ϵabs from eorig g−, γ1 ≤ ϵabs

ℎ−, γ2 g−, γ2
ϵabs

− γ2 ≤
ℎ−, γ1 g−, γ1

ϵabs
− γ1 .

Similarly, if γ1 < γ2 and eorig g−, γ1 , eorig g−, γ2 ≤ ϵabs. Then, from Eq C.2
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ℎ−, γ1 g−, γ1 ≤ ℎ−, γ1 g−, γ2
ℎ−, γ1 g−, γ1 ≤ ℎ−, γ2 g−, γ2 + γ1 − γ2 eorig g−, γ2 from Eq C.4

ℎ−, γ1 g−, γ1 ≤ ℎ−, γ2 g−, γ2 + γ1 − γ2 ϵabs from eorig g−, γ1 ≥ ϵabs

ℎ−, γ1 g−, γ1
ϵabs

− γ2 ≤
ℎ−, γ2 g−, γ2

ϵabs
− γ2 .

■

C.3 Proof of Proposition 11 (Nonnegative Weights for MR Lower Bound Binary Search)

Proof Let γ1 : = 1
n − 1 . First we show that there exists a function g−, γ1 minimizing ℎ−, γ1

such that MR g−, γ1 = 1. Let Ds denote the sample distribution of the data, and let Dm be the

distribution satisfying

ℙDm Y , X1, X2 = Y , X1, X2 = ℙDs Y , X2 = y, x2 × ℙDs X1 = x1

= 1
n2 i 1

n
1 y i y and X2 i x2

j 1

n
1 X1 j x1 .

From γ1 = 1
n − 1  and Eq 6.2, we see that

ℎ−, γ1 f =
i 1

n

j 1

n
L f y i X1 j X2 i ×

γ11 i = j
n + 1 i ≠ j

n n − 1

=
i 1

n

j 1

n
L f y i X1 j X2 i × 1

n n − 1 .

∝ EDmL f, Y , X1, X2 .

Thus, from Condition 2 of Proposition 11, we know there exists a function g−, γ1 that

minimizes ℎ−, γ1 with g−, γ1 x1
a , x2 = g−, γ1 x1

b , x2  for any x1
a , x1

b ∈ X1 and x2 ∈ X2.

Condition 1 of Proposition 11 then implies that L g−, γ1, y, x1
a , x2 = L g−, γ1, y, x1

b , x2

for any x1
a , x1

b ∈ X1, x2 ∈ X2, and y ∈ Y. We apply this result in Line C.7, below, to show

that loss of model g−, γ1 is unaffected by permuting X1 within our sample:
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eswitch g−, γ1 = 1
n i 1

n 1
n 1 j i

L g γ1 y i X1 j X2 j

= 1
n i 1

n 1
n 1 j i

L g γ1 y i X1 j X2 j

= 1
n i 1

n
L g γ1 y i X1 j X2 j

= eorig g−, γ1 .

(C.7)

It follows that MR g−, γ1 = 1. To show the result of Proposition 11, let γ2 = 0. For any

function g−, γ2 minimizing ℎ−, γ2, we know that

ℎ−, γ2 g−, γ2 ≤ ℎ−, γ2 g−, γ1 from the definition of g−, γ2

0 + eswitch g−, γ2 ≤ 0 + eswitch g−, γ1 from γ2 = 0 and the definition of ℎ−, γ2 .
(C.8)

From γ2 ≤ γ1, and Part 2 of Lemma 10, we know that

eorig(g−, γ2) ≥ eorig(g−, γ1) . (C.9)

Combining Eqs C.8 and C.9, we have

MR(g−, γ2) =
eswitch(g−, γ2)
eorig(g−, γ2) ≤

eswitch(g−, γ1)
eorig(g−, γ1) = MR(g−, γ1) = 1. (C.10)

Since ℎ−, γ2 g−, γ2 = eswitch g−, γ2 ≥ 0 by definition, Condition 8 holds for γ2, ϵabs and

g−, γ2 if and only if eorig g−, γ2 ≤ ϵabs. This, combined with Eq C.10, completes the proof.

The same result does not necessarily hold if we replace êswitch with êdivide in our definitions

of ℎ−, γ, MR, and MCR−. This is because êdivide does not correspond to the expectation over

a distribution in which X1 is independent of X2 and Y, due to the fixed pairing structure used

in êdivide. Thus, Condition 2 of Proposition 11 will not apply. ■

C.4 Proof of Lemma 13 (Upper Bound for MR)

Proof We prove Lemma 13 in 2 parts.

C.4.1 PART 1: SHOWING Eq 6.4 HOLDS FOR ALL f ∈ ℱ SATISFYING eORIG f ≤ ϵABS
—If ℎ+, γ g+, γ ≥ 0, then for any function f ∈ ℱ satisfying eorig f ≤ ϵabs we know that
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1
ϵabs

≤ 1
eorig(f)

ℎ+, γ(g+, γ)
ϵabs

≤ ℎ+, γ(g+, γ)
eorig(f) .

(C.11)

Now, if γ ≤ 0, then for any f ∈ ℱ satisfying eorig f ≤ ϵabs, the definition of ĝ+,γ implies

ℎ+, γ(f) ≥ ℎ+, γ(g+, γ)

eorig(f) + γeswitch(f) ≥ ℎ+, γ(g+, γ)

1 + γ
eswitch(f)

eorig(f) ≥
ℎ+, γ(g+, γ)

eorig(f)

1 + γ
eswitch(f)
eorig(f) ≥

ℎ+, γ(g+, γ)
ϵabs

from Eq C.11

1 + γMR(f) ≥
ℎ+, γ(g+, γ)

ϵabs

MR(f) ≤
ℎ+, γ(g+, γ)

ϵabs
− 1 γ−1 .

C.4.2 PART 2: SHOWING THAT IF f = ĝ+,γ, AND AT LEAST ONE OF THE ENEQUALITIES IN

CONDITION 12 HOLDS WITH EQUALITY, THEN Eq 6.4 HOLDS WITH EQUALITY.—We consider each

of the two inequalities in Condition 12 separately. If ℎ+, γ g+, γ = 0, then

0 = eorig(g+, γ) + γeswitch(g+, γ)
−γeswitch(g+, γ) = eorig(g+, γ)

−
eswitch(g+, γ)
eorig(g+, γ) = 1

γ .

As a result,

ℎ+, γ(g+, γ)
ϵabs

− 1 γ−1 = 0
ϵabs

− 1
eswitch(g+, γ)
eorig(g+, γ) = MR(g+, γ) .

Alternatively, if eorig g+, γ ≤ ϵabs, then

ℎ+, γ(g+, γ)
ϵabs

− 1 γ−1 =
eorig(g+, γ) + γeswitch(g+, γ)

eorig(g+, γ) − 1 γ−1 = 1 + γ
eswitch(g+, γ)

eorig(g+, γ) − 1 γ−1

= MR(g+, γ) .

■

C.5 Proof of Lemma 14 (Monotonicity for MR Upper Bound Binary Search)

Proof We prove Lemma 14 in 3 parts.
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C.5.1 PART 1: ℎ+, γ g+, γ  IS MONOTONICALLY INCREASING IN γ.—Let γ1 < γ2 ∈ ℝ satisfy

γ1 ≤ γ2. We have assumed that 0 ≤ eorig f  for any f ∈ ℱ. Thus, for any f ∈ ℱ we have

eorig(f) + γ1eswitch(f) < eorig(f) + γ2eswitch(f)
ℎ+, γ1(f) < ℎ+, γ2(f) . (C.12)

Applying this, we have

ℎ+, γ1(g+, γ1) ≤ ℎ+, γ1(g+, γ2) from Eq C.2

<ℎ+, γ2(g+, γ2) from Eq C.12.

C.5.2 PART 2: eORIG g+, γ2  IS MONOTONICALLY DECREASING IN γ FOR γ ≤ 0, AND

CONDITION 12 HOLDS FOR γ = 0 AND ϵABS ≥ minf ∈ ℱ eORIG f .—Let γ1 < γ2 ∈ ℝ
satisfy γ1 < γ2 ≤ 0. Then

ℎ+, γ1(g+, γ1) ≤ ℎ+, γ1(g+, γ2) from Eq C.2

ℎ+, γ1(g+, γ1) + (γ1 − γ2)eswitch(g+, γ1) ≤ ℎ+, γ2(g+, γ2) + (γ1 − γ2)eswitch(gγ2) from Eq C.3
(γ1 − γ2)eswitch(g+, γ1) ≤ (γ1 − γ2)eswitch(g+, γ2) from Eqs C.1&C.2

eswitch(g+, γ1) ≥ eswitch(g+, γ2)
γ2eswitch(g+, γ1) ≤ γ2eswitch(g+, γ2) from γ2 ≤ 0 .

(C.13)

Now we are equipped to show the result that eorig g+, γ2  is monotonically decreasing in γ

for γ ≤ 0:

ℎ+, γ2(g+, γ2) ≤ ℎ+, γ2(g+, γ1) from Eq C.2
eorig(g+, γ2) + γ2eswitch(g+, γ2) + eorig(g+, γ1) + γ2eswitch(g+, γ1)

eorig(g+, γ2) + γ2eswitch(g+, γ1) from Eqs C.1&C.13.
(C.14)

To show that Condition 12 holds for γ = 0 and minf ∈ ℱ eorig f ≤ ϵabs, we first note that

ℎ0, + g0, + = eorig g0, + , which is positive by assumption. Second, we note that

eorig(g0, + ) = ℎ0, + (g0, + ) = min
f ∈ ℱ

ℎ0, + (f) = min
f ∈ ℱ

eorig(f) ≤ ϵabs .

C.5.3 PART 3: 
ℎ+, γ g+, γ

ϵABS
− 1 γ−1 IS MONOTONICALLY INCREASING IN γ IN THE RANGE

WHERE eORIG g+, γ ≤ ϵABS AND γ < 0, AND DECREASING IN THE RANGE WHERE

eORIG g+, γ > ϵABS AND γ < 0.—To prove the first result, suppose that γ1 < γ2 < 0

and eorig g+, γ1 , eorig g+, γ2 ≤ ϵabs. This implies
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1
γ2

< 1
γ1

eorig(g+, γ1) − ϵabs
γ2

<
eorig(g+, γ1) − ϵabs

γ1
.

(C.15)

Then, starting with Eq C.2,

ℎ+, γ2(g+, γ2) ≤ ℎ+, γ2(g+, γ1)

ℎ+, γ2(g+, γ2) ≤ γ2eswitch(g+, γ1) + eorig(g+, γ1)

ℎ+, γ2(g+, γ2) − ϵabs
γ2

≥ eswitch(g+, γ1) +
eorig(g+, γ1) − ϵabs

γ2

≥ eswitch(g+, γ1) +
eorig(g+, γ1) − ϵabs

γ1
from Eq C.15

=
(ℎ+, γ1)(g+, γ2) − ϵabs

γ1
.

Diving both sides of the above equation by ϵabs proves that 
ℎ+, γ g+, γ

ϵabs
− 1 γ−1 is

monotonically decreasing in γ in the range where eorig g+, γ ≤ ϵabs and γ < 0.

To prove the second result we proceed in the same way. Suppose that γ1 < γ2 < 0 and

eorig g+, γ1  ; eorig g+, γ ≥ ϵabs. This implies

1
γ2

< 1
γ1

eorig(g+, γ2) − ϵabs
γ2

<
eorig(g+, γ2) − ϵabs

γ1
.

(C.16)

Then, starting with Eq C.2,

ℎ+, γ1(g+, γ1) ≤ ℎ+, γ1(g+, γ2)

ℎ+, γ1(g+, γ1) ≤ γ1eswitch(g+, γ2) + eorig(g+, γ2)

ℎ+, γ1(g+, γ1) − ϵabs
γ1

≥ eswitch(g+, γ2) +
eorig(g+, γ2) − ϵabs

γ2

≥ eswitch(g+, γ2) +
eorig(g+, γ2) − ϵabs

γ2
from Eq C.16

=
(ℎ+, γ1)(g+, γ2) − ϵabs

γ2
.
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Diving both sides of the above equation by ϵabs proves that 
ℎ+, γ g+, γ

ϵabs
− 1 γ−1  is

monotonically decreasing in γ in the range where eorig g+, γ > ϵabs and γ < 0. ■

C.6 Proof of Remark 16 (Tractability of Empirical MCR for Linear Model Classes)

Proof To show Remark 16, we apply Proposition 15 to see that

ξorigeorig(fβ) + ξswitcheswitch(fβ)

=
ξorig

n y − Xβ 2
2 + ξswitcheswitch(fβ)

=
ξorig

n (y′y − 2y′Xβ + β′X′Xβ)

+
ξswitch

n y′y − 2
X1′ Wy
X2′ y

β + β′
X1′ X1 X2′ WX2

X2′ WX1 X2′ X2
β

∝β − 2q′β + β′Qβ .

■

C.7 Proof of Lemma 17 (Loss Upper Bound for Linear Models)

Proof Under the conditions in Lemma 17 and Eq 7.5, we can construct an upper bound

on L fβ, y, x = y − x′β 2 by either maximizing or minimizing x′β. First, we consider the

maximization problem

max
β, x ∈ ℝp

x′β subjeted to x′Mlm
−1x ≤ rX and β′Mlmβ ≤ rlm .

(C.17)

We can see that both constraints hold with equality at the solution to this problem. Next, we

apply the change of variables x = 1
Xr D

−1
2 U′x and β = 1

rlm
D

1
2U′β, where UDU′ = Mlm is the

eigendecomposition of Mlm. We obtain

max
β, x ∈ ℝp

x′β rXrlm subject to x′x = 1 and β′β = 1,

which has an optimal objective value equal to Xr rlm. By negating the objective in Eq C.17,

we see that the minimum possible value of x′β, subject to the constraints in Eq 7.5 and

Lemma 17, is found at − Xr rlm. Thus, we know that

L(f, (y, x1, x2)) ≤ max min
y ∈ Y

y − rXrlm
2
, max

y ∈ Y
y + rXrlm

2
,

for any (y, x1, x2) ∈ (Y, X1, X2). ■
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C.8 Proof of Lemma 18 (Loss Upper Bound for Regression in a RKHS)

This proofs follows a similar structure as the proof in Section C.7. From the assumptions of

Lemma 18, we know from Eq 7.7 that the largest possible output from a model fα ∈ ℱD, rk
is

μ + max
x ∈ ℝR, α ∈ ℝR i 1

R
k(x D[i 1])α[i] subjected to υ(x)′KD

−1υ(x) ≤ rD and α′KDα ≤ rk

= μ + max
x ∈ ℝR, α ∈ ℝR

υ(x)′α subjected to υ(x)′KD
−1υ(x) ≤ rD and α′KDα ≤ rk

≤ μ + max
z, α ∈ ℝR

z′α subjected to z′KD
−1z ≤ rD and α′KDα ≤ rk .

The above problem can be solved in the same way as Eq C.17, and has a solution at

(μ + rDrk). The smallest possible model output will similarly be lower bounded by −

(μ + rDrk). Thus, Bind is less than or equal to

max min
y ∈ Y

(y) − (μ + rDrk)
2
, max

y ∈ Y
(y) + (μ + rDrk)

2
.
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Figure 1:
Rashomon sets and model class reliance – Panel (A) illustrates a hypothetical Rashomon

set ℛ ϵ , within a model class ℱ. The y-axis shows the expected loss of each model

f ∈ ℱ, and the x-axis shows how much each model f relies on X1 (defined formally

in Section 3). Along the x-axis, the population-level MCR range is highlighted in blue,

showing the values of MR corresponding to well-performing models (see Section 4). Panel

(B) shows the in-sample analogue of Panel (A). Here, the y-axis denotes the in-sample

loss, EL(f, Z): = 1
n i 1

n L(f Z[i ]); the x-axis shows the empirical model reliance of

each model f ∈ ℱ on X1 (see Section 3); and the highlighted portion of the x-axis shows

empirical MCR (see Section 4).
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Figure 2:
Illustration of output from our empirical MCR computational procedure – Our computation

procedure produces a closed-form, convex envelope that contains ℱ (shown above as the

solid, purple line), which bounds empirical MCR for any value of ϵ (see Eq 2.4). The

procedure works sequentially, tightening these bounds as much as possible near the ϵ value

of interest (Section 6). The results from our data analysis (Figure 8) are presented in the

same format as the above purple envelope.
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Figure 3:
Illustration of terms in Theorems 4 and 6 – Above we show the relation between empirical

MR (x-axis) and empirical loss (y-axis) for models f in a hypothetical model class ℱ. We

mark fref by the black point. For each possible model reliance value r ≥ 0, the curved, dashed

line shows the lowest possible empirical loss for a function in f ∈ ℱ satisfying MR(f) = r.
The set ℛ(ϵ) contains all models in ℱ within the dotted gray lines. To create the bounds

from Theorem 4, we expand the empirical ϵ-Rashomon set by increasing ϵ to ϵout, such

that f+,ϵ (or f−,ϵ) is contained in ℛ(ϵout) with high probability. We then add (or subtract)

Qout to account for estimation error of MR(f+, ϵ) (or MR(f−, ϵ)). These steps are illustrated

above in blue, with the final bounds shown by the blue bracket symbols along the x-axis.

To create the bounds for MCR+(ϵ) (and MCR−(ϵ)) in Theorem 6, we constrict the empirical

ϵ-Rashomon set by decreasing ϵ to ϵin, such that all models with high expected loss are

simultaneously excluded from ℛ(ϵin) with high probability. We then subtract (or add) Qin
to simultaneously account for MR estimation error for models in ℛ(ϵin). These steps are

illustrated above in purple, with the final bounds shown by the purple bracket symbols along

the x-axis. For emphasis, below this figure we show a copy of the x-axis with selected

annotations, from which it is clear that MCR−(ϵ) and MCR+(ϵ) are always within the bounds

produced by Theorems 4 and 6. With high probability, MCR−(ϵ) and MCR+(ϵ) are within a

neighborhood of MCR−(ϵ) and MCR+(ϵ) respectively.

Fisher et al. Page 81

J Mach Learn Res. Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4:
Above, we illustrate the geometric intuition for Lemma 9. In Panel (A), we show an example

of a hypothetical model class ℱ, marked by the enclosed region. For each model f ∈ ℱ, the

x-axis shows eorig(f) and the y-axis shows eswitch(f). Here, we can see that the condition

minf ∈ ℱ eorig(f) > 0 holds. The blue dotted region marks models with higher empirical loss.

We mark two example models within ℱ as f1 and f2. The slopes of the lines connecting the

origin to f1 and f2 are equal to MR(f1) and MR(f2) respectively. Our goal is to lower-bound

the slope corresponding to MR for any model f satisfying êorig(f) ≤ ϵabs. In Panel (B), we

consider the linear combination ℎ−, γ(f) = γeorig(f) + eswitch(f) for γ = 1. Above, contour

lines of ℎ−, γ are shown in red. The solid red line indicates the smallest possible value of

ℎ−, γ across f ∈ ℱ. Specifically, its y-intercept equals minf ∈ ℱ ℎ−, γ(f). If we can determine

this minimum, we can determine a linear border constraint on ℱ, that is, we will know that

no points corresponding to models f ∈ ℱ may lie in the shaded region above. Additionally,

if minf ∈ ℱ ℎ−, γ(f) ≥ 0 (see Lemma 9), then we know that the origin is either excluded by

this linear constraint, or is on the boundary. In Panel (C), we combine the two constraints

from Panels (A) & (B) to see that models f ∈ ℱ satisfying êorig(f) ≤ ϵabs must, correspond

to points in the white, unshaded region above. Thus, as long as the unshaded region does

not contain the origin, any line connecting the origin to the a model f satisfying êorig(f)
< ϵabs (for example, here, f1, f2) must, have a. slope at least, as high as that of the solid

black line above. It. can be shown algebraically that the black line has slope equal to the

left-hand side of Eq 6.1. Thus the left-hand side of Eq 6.1 is a lower bound for MR(f) for all

f ∈ ℱ:eorig(f) ≤ ϵabs .
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Figure 5:
Monotonicity for binary search. Above we show a version of Figure 4–C for two alternative

values of γ. This figure is meant, to add intuition for the monotonicity results in Lemma

10, in addition to the formal proof. Increasing γ is equivalent to decreasing the slope of

the red line in Figure 4–C. We define two values γ1 < γ2, where γ1 corresponds to the

solid red line, above, and γ2 corresponds to the semi-transparent, red line. The y-intercept

values of these lines are equal to ℎ−, γ1(g−, γ1) and ℎ−, γ2(g−, γ2) respectively (see Figure 4–C

caption). The solid and semi-transparent, black dots mark (g−, γ1) and (g−, γ2) respectively.
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Plugging γ1 and γ2 into Eq 6.1 yields two lower bounds for MR, marked by the slopes of

the solid and semi-transparent, black lines respectively (see Figure 4–C caption). We see

that (1) ℎ−, γ1(g−, γ1) ≤ ℎ−, γ2(g−, γ2), that (2) eorig(g−, γ1) ≥ eorig(g−, γ2) ≥, and that (3) the

left-hand side of Eq 6.1 is decreasing in γ when eorig(g−, γ1) ≤ ϵabs. These three conclusions

are marked by arrows in the above figure, with numbering matching the enumerated list in

Lemma 10.
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Figure 6:
Example of AR, MCR & MR for polynomial classifiers. Panels (A) & (B) show the same

300 draws from a simulated data set, with the classification of each data point marked by “x”

for Y = 1, and “o” for Y = −1. In Panel (A), for AR, we show single-feature models formed

by dropping a covariate. Because these models take only a single input, we represent their

classification boundaries as straight lines. In Panel (B), for MCR, we show the classification

boundaries for several (two-feature) models with low in-sample loss. Of these models, the

model with minimal dependence on X1 is shown by the dashed green oval, and the model

with maximal dependence on X1 is shown by the solid green oval. Panel (C) shows the

empirical model reliance on X1 for each of the models in Panels (A) & (B). We see in Panel

(C) that, as expected, no well-performing model relies (empirically) on X1 more than f+, ϵ
does, or relies (empirically) on X1 less than f−, ϵ does. That is, no well-performing model

has an empirical MR value greater than MCR+(ϵ), or less than MCR−(ϵ).
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Figure 7:
MR Coverage - The y-axis shows coverage rate for the reliance of f0 on either X1 (left

column) or X2 (right column), where X2 is simulated to be more influential that X1. The

x-axis shows increasing levels of misspecification (γ). All methods aim to have at least 95%

coverage for each scenario (dashed horizontal line).
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Figure 8:
Empirical MR and MCR for Broward County criminal records data set - For any prediction

model f, the y-axis shows empirical loss (estnd(f)) and the x-axis shows empirical reliance

(MR(f)) on each covariate subset. Null reliance (MR equal to 1.0) is marked by the vertical

dotted line. Reliances on different covariate subsets are marked by color (“admissible” =

blue; “inadmissible” = gray). For example, model reliance values for fref are shown by the

two circular points, one for “admissible” variables and one for “inadmissible” variables.

MCR for different values of ϵ can be represented as boundaries on this coordinate space.

To this end, for each covariate subset, we compute conservative boundary functions (shown

as solid lines, or “bowls”) guaranteed to contain all models in the class (see Section 6).

Specifically, all models in f ∈ ℱD, rk are guaranteed to have an empirical loss (estnd(f)) and

empirical MR value (MR(f)) for “inadmissible variables” corresponding to a point within

the gray bowl. Likewise, all models in ℱD, rk are guaranteed to have an empirical loss and

empirical MR value for “admissible variables” corresponding to a point within the blue

bowl. Points shown as “×” represent additional models in ℱD, rk discovered during our

computational procedure, and thus show where the “bowl” boundary is tight. The goal of our

computation procedure (see Section 6) is to tighten the boundary as much as possible near

the ϵ value of interest, shown by the dashed horizontal line above. This dashed line has a

y-intercept equal to the loss of the reference model plus the ϵ value of interest. Bootstrap CIs

for MCR−(ϵ) and MCR+(ϵ) are marked by brackets.
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Table 1:

Tractability of empirical MCR computation for different model classes - For each case, we describe the

tractability of computing MCR− and MCR+ using our proposed approaches. Computing empirical MCR can

be reduced to a sequence of optimization problems, the form of which are noted in parentheses within the

above table.

Model class and loss function (ℱ&L) Computing MCR− Computing MCR+

(L2 Regularized) Linear models, with the squared error
loss

Highly tractable (QP1QC, see Sections
7.2 & 7.3)

Highly tractable (QP1QC, see
Sections 7.2 & 7.3)

Linear models in a reproducing kernel Hilbert space,
with the squared error loss

Moderately tractable (QP1QC, see Section
7.4.1)

Moderately tractable (QP1QC, see
Section 7.4.1)

Cases where irrelevant covariates do not improve
predictions

Moderately tractable (Convex
optimization problems, see Proposition

11)

Potentially intractable

Cases where minimizing the empirical loss is a convex
optimization problem

Potentially intractable (DC programs, see
Section 6.3)

Potentially intractable (DC
programs, see Section 6.3)
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