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Abstract

Anomaly detection techniques can extract a wealth of information about unusual events. 

Unfortunately, these methods yield an abundance of findings that are not of interest, obscuring 

relevant anomalies. In this work, we improve upon traditional anomaly detection methods by 

introducing Isudra, an Indirectly-Supervised Detector of Relevant Anomalies from time series 

data. Isudra employs Bayesian optimization to select time scales, features, base detector 

algorithms, and algorithm hyperparameters that increase true positive and decrease false positive 

detection. This optimization is driven by a small amount of example anomalies, driving an 

indirectly-supervised approach to anomaly detection. Additionally, we enhance the approach by 

introducing a warm start method that reduces optimization time between similar problems. We 

validate the feasibility of Isudra to detect clinically-relevant behavior anomalies from over 2 

million sensor readings collected in 5 smart homes, reflecting 26 health events. Results indicate 

that indirectly-supervised anomaly detection outperforms both supervised and unsupervised 

algorithms at detecting instances of health-related anomalies such as falls, nocturia, depression, 

and weakness.
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1. INTRODUCTION

Anomaly detection techniques are used to identify unexpected or abnormal data patterns. 

One timely application of anomaly detection is to detect behavioral anomalies from sensor 

data that might indicate a critical health event. The world’s population is aging, and 80% of 

these older adults are diagnosed with at least one chronic health condition (Lock et al. 2017). 

Chronic conditions are frequently accompanied by health events that have a sudden onset 

and last for a brief time. Traditionally, detection and diagnosis of these anomalies rely 

heavily on self-report. Automated detection of health-related behavior anomalies can result 

in more accurate diagnosis and timely treatment. At the same time, acceptance of the 

methods depends on their ability to highlight relevant anomalies without detecting irrelevant 

events that only increase the analysis burden.

Finding anomalies that are valuable for a domain expert is equated with “finding a needle in 

a farm full of haystacks” (Almatrafi, Johri, and Rangwala 2018; Fridman et al. 2017). While 

many detection algorithms have been introduced, their efficacy depends on numerous data 

feature and algorithm hyperparameter choices. One way to improve on current methods is to 

let a small number of known relevant anomalies inform these choices. In this paper, we 

introduce Isudra, an algorithm that offers a new approach for anomaly detection by 

introducing indirect supervision. Using this approach, known anomalies indirectly inform an 

otherwise-unsupervised process. Isudra invokes Bayesian optimization to make choices that 

improve detection of application-relevant anomalies. We hypothesize that this strategy will 

reduce anomaly detection false positive rates while increasing true positive rates. 

Furthermore, we postulate that we can learn from past cases of indirectly-supervised 

anomaly detection to reduce the number of required Bayesian optimization evaluations for 

future cases, known as warm-starting the Bayesian optimization.

We validate these hypotheses by analyzing sensor data collected in smart homes housing 

older adults and labeled by nurse-clinicians with detected health events. We compare our 

proposed approaches to baseline techniques using both real and synthetically-generated 

sensor data.

2. RELATED WORK

Anomaly detection (and the related problem of outlier detection) consists of identifying 

abnormal instances in data. In anomaly detection, two assumptions are typically made, 

namely that anomalous instances are rare and that anomalies differ from typical instances 

with respect to their features. While unsupervised detection is the most common approach to 

anomaly detection and is popular for fraud detection and monitoring of patients, systems, 

and security (Ahmed, Mahmood, and Islam 2016; Jha, Raghunathan, and Zhang 2018; 

Mirsky et al. 2017; Muralidhar et al. 2018), supervised and semi-supervised methods can be 

employed when large amounts of training data are available for the target anomaly. 

Unfortunately, this constraint is not realistic for many applications due to the rarity 

assumption of anomalous instances and the resources involved in obtaining labeled data 

(Goldstein and Uchida 2017). Furthermore, with this approach a separate classifier must be 

trained for each anomaly class of interest.
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Most anomaly detection techniques are unsupervised and therefore flag all abnormalities 

that are present in the data, whether or not they are relevant to a particular goal (Haley et al. 

2009). They give analysts a “fire hose” approach, offering much more information than they 

actually need. Thus for each target type of anomaly, there is substantial effort in selecting the 

most effective features, time frames, and algorithm hyperparameters for each unsupervised 

detector to be sensitive to that anomaly class. One way to address this problem is to use 

expert guidance that can transform a purely unsupervised algorithm into one that is guided 

by indirect input from an expert.

Although it has not been explored for anomaly detection, indirect supervision has been 

investigated for reinforcement learning in which unintentional strategies yield serendipitous 

results (Guu et al. 2017). Researchers investigating structured prediction have also used 

indirect supervision to estimate probabilistic models in cases where the supervised variables 

are only partially accessible (Raghunathan et al. 2016). Others have used indirect 

supervision by receiving supervised training of a problem that is a companion to the problem 

of interest and can, therefore, guide learning of the target challenge (Chang et al. 2010). 

While not directly related to these earlier works, our proposed indirect supervision approach 

to anomaly detection does share marked similarities. Specifically, we do not use supervised 

training to learn a target anomaly class from labeled examples. However, we make use of 

such labeled examples to guide refinement of a related problem, namely fine-tuning the 

representational and hyperparameter choices of a broader unsupervised learning algorithm. 

With indirect supervision, the supervisor provides examples of a category of unsupervised 

patterns (in this case, anomalies) that should ideally be discovered, and the unsupervised 

algorithm is adjusted to encompass the new category by increasing the likelihood of finding 

these highlighted cases.

Also related to our indirect supervision of unsupervised learning algorithms is weakly-

supervised learning. Common types of weak supervision found in the literature are 

incomplete supervision, inexact supervision, and inaccurate supervision (Zhou 2017). In the 

case of incomplete supervision, a small amount of labeled data is available together with a 

large amount of unlabeled data. To address the need for additional training, active learning 

and semi-supervised approaches can be employed to obtain more labels for the unlabeled 

data (Li, Zhu, and Zhang 2018; Pohl, Bouchachia, and Hellwagner 2018). In the case of 

inexact supervision, labeled data is available but is not detailed enough to yield strong 

predictive performance. This case often arises in image processing and audio processing 

(Wang et al. 2018). Finally, in the case of inaccurate supervision, labeled data is available 

but many of the labels are known to be inaccurate. For example, Zhao et. al. (Zhao, Chu, and 

Martinez 2018) introduced a weakly supervised clustering algorithm to make use of freely 

available, but often inaccurate, annotations to analyze images of faces.

Researchers have also explored using weakly labeled data to improve performance without 

directly attempting to provide labels for unlabeled data. In these approaches, the data is used 

to help inform an indirect step that is then used to improve performance without acting on 

the data directly. For example, Gornitz et. al. (Gornitz et al. 2013) proposed a supervised 

approach to unsupervised anomaly detection using what they called “semi-supervised” 
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anomaly detection. Here, unsupervised support vector data descriptions are augmented by 

incorporating known labels into the model that distinguishes normal from abnormal.

While we use anomaly detection to discover health events, there is a growing body of 

research to improve and augment manual detection of health events and health status. These 

approaches represent a technological replication of manual assessment techniques for sleep 

apnea, cardiac defibrillation, atrial fibrillation, chronic obstructive pulmonary disease, 

emotional and mental diseases, and post-op pain (Alvarez-Estevez and Moret-Bonillo 2015; 

Halcox et al. 2017; Just et al. 2017; Ross et al. 2017; Swaminathan et al. 2017). In contrast 

to these methods, we propose that data mining methods work alongside clinicians to analyze 

large amounts of data for monitoring of health events related to ongoing chronic conditions.

Due to the complexity of human behavior data, researchers propose the application of 

anomaly detection techniques for health event detection. Anomaly detection can help inform 

and automate the analysis of large datasets that may be difficult and time consuming for 

human analysts to examine without support. Anomaly detection has been used in various 

studies related to detecting unusual behavior and health events (Aran et al. 2016). In some 

cases, these methods can identify changes and anomalies in behavior data, though these 

methods fall prey to the possibility of finding all anomalies, not just those that are due to a 

health condition of concern (Bakar et al. 2015; Hela, Amel, and Badran 2018). In other 

cases, detection is constrained to a particular type of anomaly correlated with a specific 

health concern. Of particular interest in this area of research is fall detection in home 

environments. Falls represent a significant cause of mortality in older adults (Evans et al. 

2015). A great deal of effort therefore focuses on this case, although some of these methods 

use more intrusive forms of wearable sensors rather than ambient sensors that are embedded 

in a residence (Cola et al. 2015; Han et al. 2014; Khan and Hoey 2017).

Many design choices have to be made when addressing the problem of detecting anomalies 

of interest. Changing any component can dramatically affect the types of anomalies that are 

highlighted. In this work we explore how different combinations of time scale, feature 

representation, base detector, and algorithm parameters affect the ability to detect health 

events. One way to help tune these choices is to exhaustively search the hyperparameter and 

data representation space, run multiple experiments, and obtain clinical feedback to select 

the ideal set of choices. This grid search method is very time consuming and resource 

intensive. Random search can improve upon exhaustive grid search by randomly sampling 

the space of choices (Bergstra and Bengio 2012). Yet another alternative which we employ 

in this work is Bayesian optimization, which has been shown to be more efficient than both 

grid and random search at selecting an optimal set of choices given expert guidance (Feurer 

and Hutter 2019).

3. CLINICAL HEALTH EVENTS IN SMART HOME DATA

We define our indirectly-supervised anomaly detection algorithm, Isudra, in the context of 

detecting clinically-meaningful health events from smart home data. Additionally, we use 

data from this problem domain, with ground truth provided by nurse-clinicians, to evaluate 

our methods. Smart home technologies can empower individuals in managing their own 
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chronic health conditions by automating behavior monitoring, health assessment, and 

evaluation of health interventions (Cook et al. 2018).

As shown in Figure 1, behavior-driven sensor data can be collected from ambient sensors 

embedded in homes and other buildings. These data are collected while residents perform 

their daily routines, with no scripted tasks and no required deviations from their natural 

behavior. Health events are spotted by indirectly-supervised anomaly detectors. An event 

detection can trigger a response to call a care provider, and respond quickly with a treatment 

plan. While current research focuses primarily on a single class of health condition, we 

focus on detecting a variety behavioral aberrations, or anomalies, that are a consequence of 

one or more chronic health conditions. Being able to reliably detect diverse health events in 

one’s home environment helps health care professionals better understand and respond to 

health-critical situations.

3.1 Smart Home Sensor Data

In smart homes, data is collected from ambient sensors continuously while residents perform 

their daily routines. For our experiments, we analyze data collected in CASAS smart homes 

(Cook, Crandall, et al. 2013). These homes are filled with passive infrared (PIR) motion 

sensors and magnetic door sensors (an average of 25 sensors in each home). Sensors 

generate readings when there is a change in state (rather than at a constant sampling rate). 

The smart home middleware collects readings from around the home, adds timestamps and 

sensor identifiers, and stores the data in a password-protected database. A floorplan for one 

of the equipped homes is shown in Figure 2 together with the locations of the installed 

sensors.

Figure 3 provides a sample of collected smart home sensor data. In addition to a date, time, 

sensor locator, and sensor message, each reading is assigned an activity label. This activity 

information together with the sensor readings is analyzed to detect behavioral anomalies. 

The activity labels are provided by AR (Cook, Krishnan, and Rashidi 2013), a real-time 

activity recognition algorithm. AR is trained from human-annotated ground truth data to 

label sensor events using the label set A={Cook, Eat, Sleep, Personal hygiene, Take 
medicine, Work, Leave home, Enter home, Bathe, Relax, Bed-toilet transition, Wash dishes, 
Other activity}. Because the data is not pre-segmented, a sliding window of 30 sensor 

readings is processed at a time. Features are extracted from a single window of data and are 

mapped onto a corresponding activity label. Details of the feature extraction and learning 

process are described in the literature (Aminikhanghahi and Cook 2019).

The activity model we use for our experiments was trained on two months of annotated data 

from 30 smart homes. Based on 3-fold cross validation for the entire dataset, AR recognized 

the activities with an accuracy of 99.3%. Leave-one-home-out validation yielded an 

accuracy of 86.8%. This provides a basis for expected label accuracy as we perform 

anomaly detection evaluation.

3.2 Participant Chronic Health Conditions and Related Health Events

We collected data from 5 smart homes, each housing a single older adult resident. Data are 

collected for a minimum of six months in each home. Each resident was experiencing at 
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least one chronic health condition. These conditions are associated with common health 

events that should be detectable from smart home sensor data. In these homes, such health 

events were detected by clinicians and confirmed by smart home residents. Table 1 provides 

a summary of smart home resident demographics, health conditions, and related health 

events.

Smart home resident 1 suffers from hypoxia, a reduction in the oxygen level for body tissue. 

Common symptoms include shortness of breath, sweating, anxiety, and confusion. Residents 

in smart homes 2 and 4 were diagnosed with Parkinson’s disease (PD), a neurodegenerative 

disorder. PD is characterized by motor features such as rigidity and tremor. Other symptoms 

may appear, such as cognitive impairment, autonomic dysfunction, sleep disorders, 

depression, and hyposmia. Due to changes in posture and difficulty transitioning between 

lying, sitting, and standing, falls are frequent symptoms of PD (Bloem et al. 2004). 

Additionally, smart home resident 2 experiences Sjogren’s syndrome (SS), an autoimmune 

disorder that results in dryness of the mouth and eyes. Likewise, SS can also be associated 

with symptoms of constant thirst, overactive bladder, and nocturia. This resident makes 

frequent trips to the kitchen to get a drink of water in the middle of the night, and he has 

experienced falls during these trips.

Smart home resident 3 is oxygen-dependent due to chronic obstructive pulmonary disease 

(COPD). COPD is an inflammatory lung disease that is accompanied by frequent cough and 

shortness of breath. The resident also experienced situational depression due to loss of a 

family member. Finally, smart home resident 5 is diagnosed with congestive heart failure 

(CHF), an inability of the heart to sufficiently pump blood to metabolizing tissues. CHF can 

present with fatigue, palpitations, shortness of breath, swelling in the feet and ankles, 

nocturia, and chest pain. This resident takes a diuretic to reduce water retention, which 

causes an increase in urination frequency.

During our data collection, smart home residents experienced several varied health events. 

These include falls, nocturia, weakness-related mobility reduction, and behavior changes 

related to depression. Falls are frequent among older adults – more than one-third fall each 

year (Stevens et al. 2006). Of these falls, 10–20% result in severe injury and subsequent 

decrease of functional independence. However, current research is limited in sensor-based 

fall detection because there is a lack of non-scripted examples. In our data, falls are sensed 

as they occur and they were all related to PD. A fall health event is evidenced in a smart 

home by several minutes or hours of abnormal behavior (e.g., extended lack of movement in 

an unusual place at an unusual time). Another observed health event is nocturia, voluntary 

urination that occurs after a person goes to sleep. Nocturia impacts sleep quality, which in 

turn impacts other health-related functions (Umlauf et al. 2004). In a smart home, nocturia 

can be sensed by frequent nighttime bathroom trips.

Weakness, often referring specifically to muscle weakness, is common in older adults and 

can be a consequence of multiple causes, including disease process and injury (Moreland et 

al. 2004). Similarly, depression is a complex health condition with numerous causes. As 

many as 10–15% older adults experience significant depression symptoms (Kok and 

Reynolds 2017). Because depression and weakness have many possible manifestations, we 
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focus on a subset of depression and weaknesses symptoms. Detected depression health 

events include less time spent out of home (isolation and loss of interest in activities), more 

time spent in one place (fatigue), poor sleep (insomnia and hypersomnia), and slower 

walking speed (fatigue). Weakness is evidenced by fatigue and decreased mobility. In a 

smart home, these are evidenced by slower walking speed and longer time spent sitting in 

one place. For both weakness and depression, we identify behavior anomalies that are 

associated with the conditions but occur on smaller, time scales lasting several minutes or 

hours at a time.

To provide ground truth for Isudra, clinicians label sensor data with detected health events. 

These clinicians are trained to interpret the sensor readings and each detected event is 

confirmed by the smart home residents. The clinicians label the start and end sensor readings 

corresponding to each health event and offer possible interpretations of the event and their 

contexts.

4. INDIRECTLY-SUPERVISED ANOMALY DETECTION

The Isudra algorithm offers a way to improve standard unsupervised anomaly detection 

methods. Using indirect supervision, a small amount of labeled anomaly instances guides 

the selection of unsupervised learning parameter choices. Bayesian optimization selects 

these parameters using available labeled data. Here, we focus specifically on time series 

sensor data. We let S denote a time series which is comprised of a sequence of ordered 

events such that S={s1.. st..}, where st represents a data point that is observed at timestamp t. 
We decompose the time series into sliding windows of fixed size. An anomaly θt is a 

subsequence of S, of arbitrary length, that begins at time t in the time series.

Using indirect supervision, each window, or subsequence w∈S, is considered separately. 

Descriptive features are extracted from the window and input to an objective function f(x). 
The function outputs a score, y, representing the anomaly detection performance using a 

particular set of parameter choices, x. Our indirectly-supervised algorithm chooses four 

types of parameters: the unsupervised anomaly detector D, the window size (number of 

sensor readings) ws, the feature set fs, and detector hyperparameters h. The objective 

function consists of using the choice of detector (together with the selected window size, 

feature set, and hyperparameters) to find anomalies within the current window, then 

comparing the findings with ground truth to calculate the score. The process of computing 

the score for a particular set of parameter choices is summarized in Algorithm 1 and 

illustrated in Figure 4.
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Bayesian optimization identifies x*, the most successful combination of parameter choices 

based on performance measure y. Because anomalies are rare occurrences, we utilize a 

gmean score for the performance measure. This measure is popular for assessing learning 

problems on imbalanced data. The gmean score is defined as 

(T P /T P + FP ) × (T P /T P + FN). Here, positive instances are those windows containing 

≥25% sensor readings tagged as anomalous by a clinician, and negative instances are all 

other windows. This threshold was determined empirically with clinician guidance and can 

be modified without changing the nature of the algorithm.

While applying Bayesian optimization to unsupervised anomaly detection is an untapped 

area of research, this technique has been used to tune hyperparameters for numerous 

supervised learning algorithms (Lancaster et al. 2018; Snoek, Larochelle, and Adams 2012; 

Zhang et al. 2015), including some in high-dimensional parameter spaces (Li et al. 2017). 

Bayesian optimization performs n iterations, each of which evaluates a particular set of 

parameter choices. The parameter search space is characterized by χ a bounded subset in 

real values ℝ, integer values ℤ, and (in our approach) categorical values ℂ.

Figure 5 illustrates the Bayesian optimization procedure that is employed by Isudra, and 

Algorithm 2 illustrates how the Bayesian approach optimizes parameter choices based on 

Algorithm 1’s scoring process. Bayesian optimization computes a probability model, M, of 

the objective function. Model represents a mapping of parameter values x to the probability 

of achieving a corresponding objective function score, y. This model acts as a surrogate for 

the actual objective function in Algorithm 1 and it is simpler to optimize. Rather than 

performing grid search or random sampling, Bayesian updates the surrogate model based on 

past information and arrives at an optimized result by reasoning about which parameter 

combinations to try next. The algorithm builds the surrogate probability model of the 

objective function, finds the hyperparameters that perform best on the surrogate, applies the 

hyperparameters to the true objective function, and updates the surrogate model.

As Figure 5 shows, the update procedure is repeated for n iterations. The surrogate model is 

constructed by building a probability model of f(x) using a prior belief distribution over f(x). 
Once the surrogate model is built, an acquisition function α guides exploration of the 

parameter space and choose the next candidate to evaluate. Scores of the parameter 

candidates refine the model. We employ a Tree Parzen estimator (TPE) surrogate model 

(Shahriari et al. 2016; Snoek et al. 2012)1. TPEs are well-suited to conditional spaces. They 

build models by applying Bayes’ rule, thus instead of directly representing p(y|x), they 
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employ the formula p(x|y)p(y)/p(x). The term p(x|y) represents the probability of 

hyperparameters x given the objective function score y.

The acquisition function we use in Algorithm 2 is Expected Improvement, which can be 

expressed as EIy*(x) = ∫−∞
y* y* − y p(y |x)dy. Here, y* is a threshold value of the objective 

function, x is the proposed set of hyperparameters, y is the actual value of the objective 

function using hyperparameters x, and p(y|x) is the surrogate probability model expressing 

the probably of outputting score y given hyperparameters x. The goal is to maximize the 

expected improvement with respect to x, or find the best hyperparameters based on the 

simplified surrogate model. Expected improvement assures that parameter combinations are 

chosen based on their anticipated ability to maximize performance.

5. EXPERIMENTAL RESULTS

5.1 Experimental Conditions

The goal of indirectly-supervised anomaly detection is to improve the detection of true 

positive anomalies while reducing the detection of false positives. We evaluate Isudra’s 

performance using gmean, which reflects these two measures. For these experiments, we 

focus on smart home time series data. Table 2 summarizes the data used for our experiments. 

For each anomaly, we analyze two weeks of sensor data that encompass the event as well as 

readings occurring before and after the event. The actual number of sensor readings vary 

depending on the amount of activity that occurs in the home during the two week period. In 

each case, nurse-clinicians confirmed that the data surrounding the anomaly represent 

typical baseline behavior for the resident. We note that sensor data resulting from complex 

human behavior can contain many irregularities. Because any of these irregularities could be 

considered as an anomaly, gmean scores which indicate the relevance of discovered 

anomalies will likely be low. Our goal is to increase the clinical relevance of discovered 

anomalies over existing methods.

Numerous choices exist for detector algorithms, time scales, feature sets, and algorithm 

hyperparameters. In these experiments, we select five alternative anomaly detection 

algorithms. These are principal components analysis (PCA) (Lee, Yeh, and Wang 2013), 

isolation forest (iForest) (Liu, Ting, and Zhou 2008), k-nearest neighbors (KNN) (Haq et al. 

2015), local outlier factor (LOF) (Breunig et al. 2000), and one-class SVM (SVM) (Amer, 

Goldstein, and Abdennadher 2013). We consider window sizes ranging from 10 to 150 

events. This range is defined based on the minimum and maximum duration of the annotated 

anomalies. Instead of evaluating each possible feature individually and in combination, 

which would dramatically increase computational cost, we consider alternative groups of 

features. These include Sensor, Activity, and Baseline methods that have been used for other 

smart home analysis tasks including activity recognition and automated health assessment 

(Alberdi Aramendi et al. 2018; Krishnan and Cook 2014). Additionally, they include 

Location, Bathroom usage, and Social/sleep behavior feature categories that were suggested 

1Code for the Isudra indirectly-supervised anomaly detection algorithm can be downloaded from https://github.com/jb3dahmen/
indirectsupervision.
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by nurse-clinicians. Details of these feature groups are provided in Table 3. Hyperparameters 

are specific to each detector and are specified by those individual algorithms.

5.2 Comparison of Unsupervised, Supervised, and Indirectly-Supervised Anomaly 
Detection

Because Isudra utilizes a small amount of labeled data to guide parameter selection, we 

compare its performance with both unsupervised and supervised algorithms. For the 

unsupervised detection algorithm, we select iForest because it provided the best overall 

results on the smart home data. Similarly, we select one-class SVM as a supervised detector. 

Table 4 reports the average gmean scores for each class of health event. Performance is 

compared for the unsupervised, supervised, and indirectly-supervised methods. For each 

health event class, scores are averaged over all event occurrences for the two participants 

who experienced the type of health event. Averaging scores over all of these instances 

analyzes the generalizability of each method in detecting the event type. Additionally, Isudra 

results are averaged over 30 runs of Bayesian optimization, each with a different random 

initialization. We report results for n=30 iterations of Bayesian optimization. While 

performance does improve with more evaluations, the computational cost for identifying 

successful parameter combinations also increases. We choose this number because it 

represents a point at which performance plateaued for a majority of the cases.

The results summarized in Table 4 indicate that indirect supervision yields improved 

detection of clinically-relevant anomalies for the real smart home data. Isudra outperforms 

both unsupervised and supervised anomaly detection for fall, nocturia, weakness, and some 

depression-related events. Furthermore, the performance difference for these classes of 

health events is statistically significant. Higher gmean scores indicate higher true positive 

and true negative detection with lower false positive and false negative detection. For 

example, for nocturia detection in home 2, Isudra’s gmean score is 0.1187. with a true 

positive rate (tpr) of 0.3656 and a false positive rate (fpr) of 0.9614. For the same case, 

iForest yields a gmean score of 0.0614 with tpr=0.1946 and fpr=0.9806, while the one-class 

SVM results in a gmean score of 0.0324 with tpr=0.1084 and fpr=0.9892. Thus, the 

proposed method is achieving our goal of decreasing false positive rates while increasing 

true positive anomaly detections.

The improvement over unsupervised detection suggests that taking advantage of labeled 

anomalies is effective because of the number and diversity of parameters that govern 

unsupervised approaches. One possible explanation for the improvement over a supervised 

learner is that the data contains a large amount of diverse normal data in comparison with 

the anomalous data. This situation can be difficult for a classifier to model.

In the case of the depression-related “less time out of home” health event, the one-class 

SVM generates a higher gmean score than Isudra (although the difference is not statistically 

significant). The SVM may prove to be an ideal choice for this type of event. While the 

gmean scores are fairly low for most health events, as is consistent with anomaly detection 

on complex multivariate data, the gmean scores were high for all detectors on this event. The 

strong performance for this health event suggests that the event may be easily detectable by 

a classifier even with a limited amount of labeled data.
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To determine how well Bayesian-optimized decisions generalize to unlabeled data, we 

repeated the experiment by optimizing two weeks of data for each anomaly class and testing 

it on a second two weeks of data from the same home. In this case, the gmean performance 

over all detected anomalies was 0.0876 for Isudra, 0.0489 for iForest, and 0.0756 for the 

one-class SVM.

Additionally, we tested the ability of traditional binary classifiers to recognize each class of 

anomalies using 3-fold cross validation for each home. For this experiment, we selected 

decision tree (DT) and Gaussian naïve Bayes (GNB) classifiers. This is a very difficult 

classification problem for a standard technique to tackle because of the subtle nature of the 

anomalies and the extreme class imbalance. For each of the cases, both DT and GNB are 

unable to generalize the anomaly concept to holdout data and do not detect any true 

positives. The gmean performances of DT and GNB in the homes are thus 0.0000 for each 

case.

5.3 Analysis of Choices Made by Indirect Supervision

Next, we examine the parameters that were chosen by Isudra. This lets us determine the 

diversity of choices that are made for each type of health event. The results may also provide 

insights on the particular algorithms and other parameter choices that are best suited to 

different classes of events.

As shown in Table 5, all parameters vary considerably across the different health events. In 

general, larger window sizes are preferred. This observation may support further expanding 

the range of window sizes in future analyses. Additionally, the listed feature sets in Table 5 

offer insights on the relationship between sensor features and detection of alternative health 

events. For example, features related to disturbed sleep may represent stronger indicators of 

nocturia than features related only to bathroom usage. For other health events, more general 

features describing sensor and activity statistics were preferred over clinician-suggested 

feature categories. The large variation in selected parameters provides evidence to support 

our hypothesis that these choices influence the quality of detected anomalies. The indirect 

supervision employed by Isudra offers one strategy to identify successful choices for clinical 

applications.

6. WARM STARTING INDIRECT SUPERVISION

The goal of indirectly-supervised anomaly detection is to improve the detection of true 

positive anomalies while reducing the detection of false positives. We evaluate Isudra’s 

performance using gmean, which reflects these two measures. For these 

experimentsEmploying Bayesian optimization for indirectly-supervised anomaly detection 

often means restarting the parameter search process for each new type of anomaly. Once 

parameters are selected, the resulting anomaly detector is no more computational expensive 

than the chosen unsupervised method. However, the initial search can be time consuming. 

While the Bayesian optimization algorithm repeats the evaluate-and-update process a user-

specified number of iterations, each evaluation can itself be costly. For example, the one-

class SVM required over 4 minutes to perform a single evaluation on the smart home data 

using a 2.5 GHz computer with 16GB of RAM. In some cases, there are underlying 
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similarities between some anomaly classes that can exploited to speed up the optimization 

process. Because Bayesian optimization relies on Bayesian reasoning and can learn from 

past results, a natural extension is to use a solution from a previous task to jumpstart a 

related optimization task. The result is a reduction in the number of evaluations, n, that are 

needed to find an acceptable solution.

This problem, known as warm starting Bayesian optimization (Poloczek, Wang, and Frazier 

2016), has sparked research by the community. However, many of the existing methods rely 

on the availability of a large number of related examples (Alaa and van der Schaar 2018; 

Kim, Kim, and Choi 2017). Given sufficient use cases, a meta-learner can map parameters of 

the task to Bayesian optimization parameters (Feurer, Letham, and Bakshy 2018; Kim et al. 

2017). A more complex approach proposed by Perrone et al. (Perrone et al. 2017) creates 

multiple adaptive Bayesian linear regression models. The models are offered to a 

feedforward neural network that learns a joint representation. Yet another approach 

suggested by Swersky (Swersky, Snoek, and Adams 2013) reengineers the Bayesian 

optimization framework to incorporate multi-task Gaussian processes. Some proposed 

methods require a large number of optimization parameters to be evaluated. While the extra 

evaluations incur more computational cost, average performance can be computed across 

different configurations and used to warm start the optimization process (Brecque 2018).

In our proposed approach, a surrogate model is shared across related examples. Examples 

from only one other home are used to guide selection of parameters for a new home. This 

reduces the parameter search space to focus on historically well-performing parameter 

combinations. This technique is uniquely beneficial when only a small amount of labeled 

information is available. Specifically, warm-start Isudra guides Bayesian more rapidly to 

optimal regions, even when labeled data is limited. Because obtaining direct observations of 

health events is rare, this enhancement is well suited to detection of clinically-relevant 

anomalies.

In the warm start method, let M* represent a surrogate model that has been constructed over 

several related anomaly examples. M* can be used in place of a newly-constructed M for 

each example. This starts the search process closer to success parameter combinations than a 

random initial model. To further reduce the complexity for problems that require a large 

number of expensive evaluations, warm-start Isudra considered a reduced search space, χ*, 

that is limited to parameters which performed well on past examples. For example, the range 

of considered window sizes is trimmed based on past optimization experiences. The new 

range is defined by the smallest and largest high-performing window sizes in prior examples. 

As each new optimization example is encountered, χ* can replace the original full space χ 
to perform warm started Bayesian optimization in combination with M*. We hypothesize 

that warm starting Bayesian optimization can achieve the same (or better) gmean 

performance as a non-warm started procedure, in fewer iterations. Warm-start Isudra’s goal 

is thus to lower the number of evaluations, n.

To evaluate our proposed warm start Bayesian optimization method, we compare Isudra’s 

performance with and without warm start using the same data as in the previous 

experiments. In our experiments, we group data by health event type. Isudra is used with and 
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without warm start to identify anomalies for one smart home. While original Isudra starts the 

process from scratch for a new home, warm-start Isudra jumpstarts the process using learned 

information from the first home with the same health event. Results are averaged over every 

possible ordering of homes.

As Table 6 shows, a similar performance can be achieved with 20 iterations of warm start 

optimization as opposed to 30 iterations with cold start. Continuing the search process for a 

total of 30 iterations actually yields performance that is superior to 30 iterations of cold start 

search.

7. CONCLUSIONS

Anomaly detection algorithms are valuable for alerting users to data that potentially 

represent threats to health, security, or smooth system operation. However, existing methods 

can produce an overwhelming number of irrelevant, or false positive, anomalies. In this 

paper, we introduced Isudra, an approach to anomaly detection that is based on indirect 

supervision. We explored how indirect supervision can be applied to unsupervised methods 

to detect anomalies of greater relevance for a target application. As part of a clinician-in-the-

loop smart home project, we employed our method to detect fall, nocturia, weakness, and 

depression-related behavior anomalies from ambient sensor data with clinician-supplied 

indirect supervision. Experiments using data based on smart home sensor events showed that 

indirect supervision of anomaly detection can outperform both unsupervised anomaly 

detection and supervised learning of clinically-relevant anomalies.

There are many possibilities to consider in expanding this direction of research. For the 

clinician-in-the-loop smart home, we will explore the use of indirect supervision to learn 

additional health events such as urinary tract infections. We will enhance our algorithm to 

generalize to a wider variety of similar but distinct new health event instances. An 

interesting additional future step would be to examine the interaction between multiple 

overlapping health events. For example, an individual with depression may experience a fall. 

Future versions of Isudra will consider detecting such co-occurring health events. 

Additionally, we will expand the set of features for Bayesian optimization to consider, rather 

than pre-grouping them by type. Other parameters can be optimized based on anomaly type 

as well, including the anomaly threshold value. Another possible improvement is to employ 

ensembles of anomaly detectors, including some detection algorithms that are experts in 

distinct classes of anomalies.
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Fig. 1. 
The clinician-in-the-loop smart home collects ambient sensor data in the homes of adults 

with chronic health conditions. Isudra reports times when the data contains anomalous 

behavior, based on indirect clinician supervision. The clinician can then intervene in 

response to a detected health event.
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Fig. 2. 
A smart home floor plan. Motion sensors are coupled with ambient light sensors and are 

placed on ceilings to monitor a small focused region 1 meter in diameter or are angled to 

monitor an entire room (“area” sensor). Door sensors are coupled with ambient temperature 

sensors and are placed on room doors, doors to cabinets containing medicine and other key 

items, and exterior doors.
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Fig. 3. 
Activity-labeled smart home time-series sensor data.
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Fig. 4. 
Illustration of Isudra’s indirectly-supervised algorithm for clinically-relevant anomaly 

detection.
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Fig. 5. 
Illustration of Bayesian optimization process.
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Table I.

Smart home resident demographic and chronic health condition information.

Smart Home Age Sex Health Conditions Health Events

1 89 F Hypoxia secondary to thoracic collapse from osteoporosis Depression, Weakness

2 83 M Parkinson’s disease and Sjogren’s syndrome Nocturia, Falls, Weakness

3 88 F Chronic obstructive pulmonary disease, oxygen dependent Depression

4 75 M Parkinson’s disease Falls

5 89 F Congestive heart failure, resulting in swelling of the lower legs due to water 
retention Nocturia
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Table II.

Summary statistics of data used in experiments.

Home Event type #Sensor events #Anomalous sensor events

2 nocturia 86,100 833 (0.97%)

2 nocturia 94,457 891 (0.94%)

2 nocturia 99,062 1,956 (1.97%)

2 nocturia 94,148 1,857 (1.97%)

5 nocturia 112,449 543 (0.48%)

5 nocturia 113,533 186 (0.16%)

2 fall 110,088 110 (0.01%)

2 fall 135,112 65 (0.05%)

4 fall 170,482 36 (0.02%)

4 fall 165,035 96 (0.06%)

3 Depression (event: not sleeping well) 45,311 114 (0.25%)

3 Depression (event: not sleeping well) 50,708 41 (0.08%)

3 Depression (event: less time out of home) 51,926 231 (0.44%)

3 Depression (event: less time out of home) 51,926 15,895 (30.61%)

3 Depression (event: less time out of home) 54,004 157 (0.29%)

3 Depression (event: less time out of home) 220,415 12 (0.01%)

1 Depression (event: slower walking) 63,980 394 (0.62%)

1 Depression (event: slower walking) 48,718 264 (0.54%)

1 Depression (event: more time in chair) 65,196 511 (0.78%)

1 Depression (event: more time in chair) 47,100 271 (0.58%)

1 Weakness 72,532 640 (0.88%)

1 Weakness 57,294 2001 (3.49%)

1 Weakness 52,129 761 (1.46%)

2 Weakness 80,284 7,903 (9.84%)

2 Weakness 79,222 711 (0.90%)

2 Weakness 66,648 673 (1.01%)

Total 2,287,859 373,152 (0.02%)
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Table III.

Features, grouped into categories, that are evaluated by Isudra. These features are extracted from each window 

of sensor readings.

Feature 
category Description Features

Sensor Basic sensor information, also 
used for activity recognition

Time (time of day, day of week, elapsed time since most recent sensor reading);
Sensor (most common sensor ID in window, ID of most recent sensor reading, location of 
most recent sensor reading, location of most recent motion sensor reading, reading counts 
for each sensor, elapsed time since most recent reading for each sensor);
Window (time duration of window, sequence complexity, change in activity level between 
first and second half of sequence, number of transitions between locations in window, 
number of distinct sensors in window)

Activity Information about activity 
context and frequency

Time (time of day, day of week, elapsed time since most recent sensor reading);
Activity (number of activities in window, number of readings for each activity in window)

Baseline All non-clinical features Sensor features + Activity features

Location
Clinician-indicated features 
representing prolonged 
periods of time in one location

Time (time of day, day of week, elapsed time since most recent sensor reading);
Location (most recent sensor location, time spent in each location within window)

Bathroom
usage

Clinician-indicated features 
representing bathroom use 
frequency and time of day

Time (time of day, day of week, elapsed time since most recent sensor reading);
Bathroom frequency (number of sensor readings in bathroom within window, duration of 
time in bathroom)

Social / sleep

Clinician-indicated features 
associated with slowed 
movement, disturbed sleep, 
and changes related to 
increased isolation

Time (time of day, day of week, elapsed time since most recent sensor reading);
Mobility (walking speed, overall activity level);
Sleep (amount of sleep time in window, number of sleep interruptions in window, amount 
of sleep movement in window);
Socialization (amount of time with visitor in window, amount of time out of home in 
window)
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Table IV.

Gmean scores of indirectly-supervised (Isudra), unsupervised (iForest), and one-class (SVM) anomaly 

detectors for synthetic and real data sets.

Health event Isudra iForest SVM

fall 0.0468 0.0252* 0.0176*

nocturia 0.0635 0.0291* 0.0308*

depression (not sleeping well) 0.1146 0.0695* 0.0769*

depression (less time out of home) 0.4120 0.1810* 0.4670

depression (slower walking speed) 0.0466 0.0162* 0.0344*

depression (more time in chair) 0.1840 0.0900* 0.0742*

weakness 0.0618 0.0402* 0.0493*

*
= the difference between Isudra and the alternative approach is statistically significant (p<0.05).
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Table V.

Indirectly-supervised selection of detector, window size, feature set, and hyperparameter values that obtained 

the gmean scores reported in Table IV.

Health event Detector Window size Features Hyper-parameter values

Fall KNN 65 Activity kn: 12

nocturia iForest 52 Social/sleep ne: 133
ms: 51,189

depression (not sleeping well) iForest 57 Activity ne: 91
ms: 22,429

depression (less time out of home) SVM 49 Activity k: rbf
nu: 0.690

depression (slower walking speed) SVM 59 Sensor k: polynomial
nu: 0.480

depression (more time in chair) PCA 23 Social/sleep N/A

weakness iForest 59 Sensor ne: 111
ms: 33,359

For the hyperparameters, ne = number of iForest estimators, ms = iForest maximum number of samples, k = one-class SVM kernel, nu = one-class 
SVM regularization parameter, kn = number of KNN neighbors, and ln = number of LOF neighbors. The PCA implementation did not employ 
tunable hyperparameters.
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Table VI.

Gmean performance for cold-start and warm-start Isudra. In each case, the choice of parameters is made based 

on one home and used to warm start search in a second home, then is repeated in the reverse direction.

Home pairs Health event Cold start (30 
evaluations)

Warm start (15 
evaluations)

Warm start (20 
evaluations)

Warm start (30 
evaluations)

2 & 4 fall 0.0642 0.0566 0.0717* 0.0721*

2 & 5 nocturia 0.0676 0.0664 0.0761* 0.0793*

1 & 3 depression (less time 
out of home) 0.1713 0.1501 0.1519 0.1576

1 & 3 weakness 0.0798 0.0805* 0.0760* 0.0846*

* =
the difference between the warm start approach and the cold start approach is statistically significant (p<0.05).

ACM Trans Intell Syst Technol. Author manuscript; available in PMC 2021 July 30.


	Abstract
	INTRODUCTION
	RELATED WORK
	CLINICAL HEALTH EVENTS IN SMART HOME DATA
	Smart Home Sensor Data
	Participant Chronic Health Conditions and Related Health Events

	INDIRECTLY-SUPERVISED ANOMALY DETECTION
	EXPERIMENTAL RESULTS
	Experimental Conditions
	Comparison of Unsupervised, Supervised, and Indirectly-Supervised Anomaly Detection
	Analysis of Choices Made by Indirect Supervision

	WARM STARTING INDIRECT SUPERVISION
	CONCLUSIONS
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table I.
	Table II.
	Table III.
	Table IV.
	Table V.
	Table VI.

