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ABSTRACT

Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary
osteoporosis, accounting for 20% of osteoporosis diagnoses. Using glucocorticoids
for >6 months leads to osteoporosis in 50% of patients, resulting in an increased risk of
fracture and death. Osteoblasts, osteocytes, and osteoclasts work together to maintain bone
homeostasis. When bone formation and resorption are out of balance, abnormalities in bone
structure or function may occur. Excess glucocorticoids disrupt the bone homeostasis by
promoting osteoclast formation and prolonging osteoclasts’ lifespan, leading to an increase
in bone resorption. On the other hand, glucocorticoids inhibit osteoblasts’ formation and
facilitate apoptosis of osteoblasts and osteocytes, resulting in a reduction of bone formation.
Several signaling pathways, signaling modulators, endocrines, and cytokines are involved
in the molecular etiology of GIOP. Clinically, adults >40 years of age using glucocorticoids
chronically with a high fracture risk are considered to have medical intervention. In addition
to vitamin D and calcium tablet supplementations, the major therapeutic options approved
for GIOP treatment include antiresorption drug bisphosphonates, parathyroid hormone
N-terminal fragment teriparatide, and the monoclonal antibody denosumab. The selective
estrogen receptor modulator can only be used under specific condition for postmenopausal
women who have GIOP but fail to the regular GIOP treatment or have specific therapeutic
contraindications. In this review, we focus on the molecular etiology of GIOP and the

molecular pharmacology of the therapeutic drugs used for GIOP treatment.
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INTRODUCTION

here are >49 million patients with osteoporosis in

developed countries, such as the United States, European
Union, Australia, and Japan [1]. Patients with osteoporosis
tend to develop vertebrae and hip fractures. Vertebrae fractures
and fragility fractures at other sites of the body have increased
by millions with the population of osteoporosis [2-5], which
causes a heavy financial burden on the country [2,6]. Moreover,
complications may arise in addition to pain and limited
mobility, which increases the risk of death in fracture patients
and imposes financial burdens on the family and society [7,8].
Therefore, several countries recognize osteoporosis as a
major public health issue, and the World Health Organization
has ranked osteoporosis as the second most crucial health
care issue worldwide. Osteoporosis can be divided into (1)
primary osteoporosis (including postmenopausal osteoporosis
and senile osteoporosis) and (2) secondary osteoporosis.
Primary osteoporosis is most common in postmenopausal
women [9-11] and elderly persons [12]. Secondary
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osteoporosis has been associated with various congenital
diseases and endocrine disharmony, as well as nutritional
status and some medications [13]. The most common
form of secondary osteoporosis is glucocorticoid-induced
osteoporosis (GIOP) [14], accounting for 20% of all forms
of osteoporosis [15]. The majority of these patients have
autoimmune diseases (e.g., rheumatoid arthritis and lupus
erythematosus), allergic diseases (e.g., asthma and atopic
dermatitis), or have undergone organ transplantation. GIOP
occurs in two phases: an early phase in which bone mineral
density (BMD) declines due to rapid bone resorption and a
slow and progressive phase in which BMD declines due to the
impaired bone formation [16]. The underlying mechanism of
GIOP could be complicated and multifactorial. In this review,
we provide an overview of the molecular etiology, assessment,
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and treatment options in the aspect of molecular pharmacology
for GIOP.

ENDOGENOUS GLUCOCORTICOID IS REQUIRED
FOR BONE HOMEOSTASIS

Bone remodeling is a normal physiological process that
involves bone resorption and bone synthesis. Under normal
physiological conditions, bone resorption and bone formation
are in balance, and many cytokines, hormones, and signaling
pathways are involved [17] [Figure 1]. The bone remodeling
process undergoes continuously during which osteoclasts
absorb aged or damaged bones, whereas osteoblasts and
osteocytes are responsible for new bone formation. However,
if an imbalance arises, abnormalities in the bone structure or
function may occur, resulting in osteometabolic disorders,
such as osteopetrosis or osteoporosis [18]. Osteoblasts,
osteocytes, and osteoclasts interplay with each other to
maintain bone microstructure and homeostasis. Osteoblasts
and osteocytes secrete receptor activator of NF-xB
ligand (RANKL) and osteoprotegerin (OPG) to regulate
osteoclasts proliferation and differentiation [16]. On the other
way, the activated transforming growth factor-beta (TGF-f3)
and bone morphogenetic protein (BMP) released from the
bone matrix after bone resorption also regulate osteoblasts
formation [19,20]. Moreover, osteoblasts and osteocytes
negatively feedback the differentiation of osteoblasts by
inhibiting Wingless-related integration site (WNT) signaling
through the secretion of WNT antagonists, Sclerostin (SOST),
and Dickkopf 1 (DKK1) [21].

Endogenous glucocorticoid at physiologic
concentrations is necessary for osteoblasts to maintain
bone homeostasis [22,23]. The physiological activity of
glucocorticoids is regulated by two enzymes, namely
11B-hydroxysteroid dehydrogenase type 1 (11p-HSDI1)
and type 2 (11B-HSD2), among which 11B-HSDI
activates glucocorticoid, whereas 113-HSD2 inactivates
glucocorticoid [24]. Studies using mouse models elucidate
the significance of endogenous glucocorticoids in bone
homeostasis. The decrease of glucocorticoid sensitivity
in osteoblasts by transgenic expressing of glucocorticoid
inactivating enzyme 11B-HSD2 causes a reduction of the
bone mass[25,26]. Mice with conditional knockout of the
glucocorticoid receptor in osteoblast lineage also reveal a
significant reduction of vertebral bone density and osteoblast
activity [27]. These results suggest that endogenous
glucocorticoid is necessary for osteoblast activity and bone
mineralization. In another way, human diseases causing
an imbalance of endogenous glucocorticoid secretion also
impair bone metabolism. Cushing’s disease, causing an
elevation of serum level of endogenous glucocorticoids, is
correlated with osteoporosis [28-30]. Patients with Addison’s
disease who have a reduced serum level of endogenous
glucocorticoids are also associated with a higher risk of hip
fracture [31]. In conclusion, evidence from animal models
and clinical observations suggests an essential role of
endogenous glucocorticoid in maintaining bone remodeling.
While the proper regulation of glucocorticoids’ physiological
concentration is essential for bone homeostasis, excessive
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Figure 1: Schematic representation of signaling pathways involved in bone remodeling and the formation of osteoblast and osteoclast. WNT, transforming growth factor-beta,
bone morphogenetic protein, parathyroid hormone, and estrogen (e) are essential modulators of osteoblast and osteoclast formation. WNT and bone morphogenetic protein
enhance the differentiation of osteoblasts. Bone morphogenetic protein, estrogen, and parathyroid hormone could indirectly regulate WNT activity by controlling the
expression of Sost, and DkkI from osteoblasts and osteocytes. Transforming growth factor-beta enhances bone formation by suppressing the apoptosis of osteoblasts and
osteocytes and enhancing the apoptosis of osteoclasts. Moreover, estrogen and WNT also suppress the apoptosis of osteoblasts and osteocytes. Blue lines indicate the
effects of signaling molecules or the secreted proteins on the regulation of bone remodeling. Ligands are marked as yellow ovals. Signal modulators or the extracellular

matrix proteins are marked as pink ovals. Endocrines are marked as green ovals
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glucocorticoids cause bone loss through the dysregulation of
osteoblastogenesis and osteoclastogenesis [Figure 2].

THE NEGATIVE IMPACT OF EXCESSIVE
GLUCOCORTICOIDS ON OSTEOBLAST AND
OSTEOCYTE

The therapeutic concentration of glucocorticoids reduces
the formation and survival of osteoblast and osteocyte.
Osteoblasts are differentiated from mesenchymal stem
cells (MSCs) which travel through the blood vessel to
reach the bone surface [32]. At the bone surface, the WNT
signaling promotes the differentiation of MSC into osteoblast
progenitor cell [33] and inhibits the differentiation of MSC
into chondrocyte or adipocyte [34,35]. In the modulation of
osteogenesis, glucocorticoids facilitate the differentiation
of MSCs into adipocytes instead of osteoblast progenitor
cells [36-38].

The differentiation of osteoblast progenitor cells into
preosteoblasts and then osteoblasts requires the action of
WNT and BMP signaling [39-41] by which activate the
expression of Runt-related transcription factor 2 (Runx2)
and Osterix (SP7) transcription factors [42,43]. Accordingly,
excess glucocorticoids exposure suppresses WNT signaling
by decreasing Wnt expression [44], bolstering the expression
of WNT antagonists, such as DkkI [22,45-47], Sost [46,48],
and Secreted frizzled-related protein-1 (sFRP-1) [22,49], and
increasing the expression of negative WNT signaling regulator

Axin-2 [49]. Tt is to be noted that the serum concentration
of SOST is reduced in humans, which might reflect a
compensatory mechanism that remains elucidated [50,51].
Glucocorticoids also suppress the BMP signaling by inhibiting
BMP-2 expression [46,52] and enhancing the expression
of BMP antagonists — Follistatin and Dan [49]. Besides,
glucocorticoids suppress both the expression of Runx2 and
RUNX2 activity and thus inhibit osteoblast maturation [53,54].

In addition to WNT and BMP, TGF-f is also involved in
regulating osteoblast formation. TGF-f could promote the
differentiation of osteoblast progenitor cells from MSCs [55]
by enhancing the WNT signaling [56]. On the other hand,
TGF-f inhibits osteoblasts and osteocytes’ differentiation by
decreasing the expression of Runx2 [57-62]. However, the
essentiality of TGF-f in the regulation of osteoblastogenesis
can be evident by the study showing that Tgfb/-null mice
exhibit a significant loss of trabecular bone density and the
reduction of osteoblasts [63]. Even limited literature addresses
glucocorticoids’ effect on TGF-f signaling; it has been
reported that glucocorticoid treatment decreases the mRNA
level of TGF-f [64].

Excess glucocorticoids also lead to apoptosis of osteoblasts
and osteocytes. The undifferentiated osteoblast usually goes
through apoptosis a few months after its formation. WNT [65],
TGF-B [66,67], interleukin-6 (IL-6) [67], and estrogen [68-70]
are reported to suppress the apoptosis of osteoblast. By
contrast to osteoblasts’ 3-month lifespan, osteocytes are
long-lived bone cells that can survive for more than
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Figure 2: Schematic representation of the molecular etiology of glucocorticoid-induced osteoporosis and the effect of anti-osteoporotic drugs. Glucocorticoids (red) induce
osteoporosis by inhibiting the differentiation of osteoblasts from mesenchymal stem cell, inducing apoptosis of osteoblasts and osteocytes, increasing the formation of
osteoclasts, and prolonging the lifespan of osteoclasts. The effects of anti-osteoporotic drugs (green lines) such as bisphosphonates, teriparatide, denosumab, and raloxifene
are indicated. Bisphosphonates inhibit the activity of osteoclast and induce its apoptosis. Bisphosphonates and the intermittent administration of teriparatide decrease
the apoptosis of osteoblasts and osteocytes. Raloxifene, only used for postmenopausal women with glucocorticoid-induced osteoporosis, promotes bone formation by
stimulating osteogenesis and suppressing osteoblast apoptosis and indirectly inhibits osteoclastogenesis by decreasing the expression of receptor activator of NF-«B ligand
and increasing the expression of receptor activator of NF-kB ligand inhibitor osteoprotegerin. Denosumab inhibits osteoclastogenesis by neutralizing receptor activator

of NF-«B ligand. Blue lines indicate the signaling affecting osteoclastogenesis
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decades [71,72]. Osteocytes are mechanosensory cells that can
sense the microdamage on the bone through their dendritic
processes [73] and trigger their apoptosis [73-75]. While
osteocytes undergo apoptosis, the neighboring nonapoptotic
osteocytes attract osteoclast precursor cells to the microdamage
site by releasing IL-6 and soluble IL-6 receptor [76] and
secret RANKL to stimulate the osteoclastogenesis [77]. In the
regulation of lifespan of cultured osteoblasts and osteocytes,
excess glucocorticoids (>10° M) induced apoptosis [78-80].
This observation is consistent with the in vivo experiment
showing that excess glucocorticoids increase the apoptosis
of osteoblasts and osteocytes [81]. Mechanistically,
glucocorticoids could induce the apoptosis of osteoblasts by
inhibiting the WNT, TGF-f, and IL-6 signaling [64,65,82].

THE EXCESSIVE GLUCOCORTICOIDS PROMOTE
THE DIFFERENTIATION AND SURVIVAL OF
OSTEOCLAST

The excessive amount of glucocorticoids promote the
proliferation and survival of osteoclast precursor cells.
Osteoclasts are originated from hematopoietic stem cells
which differentiate into osteoclast precursor cells and
then fuse to form multinucleated osteoclasts [83]. During
osteoclastogenesis, both macrophage colony-stimulating
factor (M-CSF) and RANKL play vital roles [84]. M-CSF
is required for the cell survival and proliferation of
osteoclast precursor cells, whereas RANK is required for
the differentiation of osteoclast precursor cells [85-87].
When M-CSF binds to its receptor, colony-stimulating factor
1 receptor (c-Fms), on osteoclast precursor cells, the cell
survival and proliferation of osteoclast precursor cells are
promoted through the extracellular signal-regulated kinases
and Serine/threonine kinase (Akt) signaling pathways [88].
Evidence has shown that glucocorticoids promote the
proliferation and survival of osteoclast precursor cells by
increasing the expression and half-life of M-CSF produced by
osteoblast [89,90].

Glucocorticoids also promote osteoclast differentiation.
RANKL secreted by both osteocytes and osteoblasts
binds to the RANK receptor on osteoclast precursor cells
and subsequently activates the mitogen-activated protein
kinase, Akt, and nuclear factor of activated T-cells,
cytoplasmic 1 signaling, which stimulate the differentiation
and fusion of osteoclast precursor cells into multinuclear
osteoclasts [91-93]. The activity of RANKL can be
neutralized by its decoy receptor OPG secreted by both
osteoblasts and osteocytes [94-96]. When Opg is expressed
in large amounts, it hinders the formation of osteoclasts,
resulting in osteopetrosis [94]; conversely, osteoporosis
can be observed in Opg knockout mice [97,98]. Therefore,
the ratio of RANKL/OPG is recognized as an indicator for
the trend of osteoclast differentiation. For example, IL-6
enhances osteoclastogenesis by increasing the Rankl/Opg
ratio [99]. Glucocorticoids promote the differentiation of
osteoclast precursor cells toward osteoclast by enhancing
the expression of Rankl from osteoclasts [100,101]. In the
other way, glucocorticoids indirectly increase the RANKL

activity by reducing the expression of its decoy receptor Opg.
Glucocorticoids reduce the expression of Opg by directly
regulating its expression in osteoblasts [100] or indirectly
reduce the expression of Opg through the suppression of
WNT signaling, which promotes the secretion of OPG from
osteoblasts and osteocytes [102]. It has also been reported
that glucocorticoids stimulate osteoclast formation through the
activation of IL-6 signaling in osteoblasts [103], although the
detailed mechanism is unclear.

The average lifespan of osteoclasts is around 2 weeks in
humans [104]. Glucocorticoids act directly on osteoclasts
to suppress their apoptosis and thus prolong the lifespan of
osteoclasts [105,106]. On the other hand, glucocorticoids also
suppress apoptosis of osteoclast precursor cells by decreasing
the expression of Opg [107] and increasing the expression of
Rankl [108]. Although glucocorticoids prolonged osteoclasts’
lifespan, it was reported that glucocorticoids reduce osteoclast
activity by disrupting M-CSF-stimulated cytoskeletal
organization in vitro [109].

THE IMPACT OF THERAPEUTIC GLUCOCORTICOIDS
ON BONE MATRIX

During the process of bone formation, osteoblasts secrete
osteoid, the premineralized bone matrix, to prompt bone
formation [110] and differentiate into osteocytes embedded in
the bone matrix [111]. In osteoid, hydroxyapatite, a complex
of calcium and phosphate, is formed within the matrix vesicles
that bud from the plasma membrane of osteoblasts [112].
The hydroxyapatite further deposits into the extracellular
matrix (ECM) of the bone and interacts with the main fibrous
protein, type I Collagen, to form the mineralized collagen
essential for maintaining the bone strength [113]. In GIOP
patients, glucocorticoids lessen bone mineralization by
inhibiting the expression of type I Collagen and increasing the
expression of interstitial Collagenase [114-116].

Osteoblasts  also  secrete  noncollagenous  proteins,
such as tissue nonspecific alkaline phosphatase (TNAP),
osteocalcin (OCN), and osteonectin (ON)/secreted protein
acidic and rich in cysteine [117]. These noncollagenous
proteins play crucial roles in the bone matrix’s mineralization
and could be affected by glucocorticoids. TNAP is a
membrane-bound enzyme that is localized on the plasma
membrane of osteoblasts and the matrix vesicles [118,119].
TNAP can hydrolyze inorganic pyrophosphate (PPi) to
phosphate (Pi) for the formation of hydroxyapatite [120]. OCN
is a y-carboxy glutamic acid-containing protein and has a dual
function on bone development. In one way, OCN functions
as an inhibitor of bone mineralization by binding to calcium,
mediating its association with hydroxyapatite; in the other
way, OCN and osteopontin enhance the mechanical properties
of the bone [121]. Besides, exogenous supplementation of
OCN enhances the differentiation of osteoblasts and increases
extracellular calcium levels and TNAP activity [122]. As
a calcium-binding matricellular protein, ON triggers the
release of the calcium ion by binding to both collagen and
hydroxyapatite [123], thereby promoting mineralization
of the collagen matrix during bone formation. In addition,
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ON-null mice have fewer osteoblasts and osteoclasts,
leading to a decrease in bone remodeling [124]. As for
osteoclast, it also secrets proteolytic enzymes, such as matrix
metalloproteinases (MMP) [125] and cathepsins [126,127], for
the degradation of the matrix protein of the ECM during bone
resorption. The treatment of glucocorticoids negatively impacts
the mineralization of bone matrix by reducing the TNAP
activity [128], expression of Ocn [129-131], and expression of
On [132] in osteoblasts. Moreover, glucocorticoids increase the
expression of Mmp9, Mmp13, and Cathepsin K by osteoclasts
and thus promote the bone reabsorption [78,132,133].

FRACTURE RISK ASSESSMENT FOR
GLUCOCORTICOID-INDUCED OSTEOPOROSIS

For adults >40 years of age using glucocorticoids
chronically, the fracture risk can be assessed based on
BMD and the fragility fracture history. As defined by the
World Health Organization in 2008, a BMD T score of
<-2.5 standard deviation is considered as osteoporosis. In
addition to BMD, the 2017 American College Rheumatology
Guideline for the Prevention and Treatment of GIOP
recommends using Fracture Risk Assessment Tool (FRAX®,
https://www.sheffield.ac.uk/FRAX/)  for  fracture  risk
assessment, which is a tool that integrates the information
derived from both clinical risk factors and BMD. In the
guideline, adults with low FRAX® fracture probability
are recommended to take only calcium and Vitamin D,
whereas adults with moderate-to-high FRAX® fracture
probability (10-year probability of major osteoporotic
fracture >10%) are suggested to be treated with additional
anti-osteoporosis medication. However, the International
Osteoporosis Foundation and the European Calcified
Tissue Society suggested that an intervention threshold,
instead of the categorization of FRAX® fracture probability,
should be determined for clinical practice [134]. Besides,
FRAX® fracture probability does not consider the dose of
glucocorticoids; therefore, it needs to be adjusted according to
the condition of glucocorticoid usage. For example, FRAX®
calculations for the 10-year probability of major osteoporotic
fracture and hip fracture should be uplifted by 15% and
20%, respectively, when patients take glucocorticoids at
doses >7.5 mg/day [135]. In Taiwan, although there is
no specific intervention threshold set for GIOP, the 2019
Taiwanese Consensus and Guidelines for the Prevention and
Treatment of Adult Osteoporosis suggests using a presumed
individual intervention threshold [136]. The presumed
individual intervention threshold is defined as the 10-year
probability of FRAX®-derived fracture risks for an individual
who does not have rheumatoid arthritis, glucocorticoid usage,
and other osteoporotic risk factors but has a previous fracture
history [136,137]. By comparing it with the adjusted-FRAX®
10-year probability according to the glucocorticoid dosages,
the timing of medical interventions could be determined.
Besides, a novel hybrid intervention threshold was established
to identify high-risk populations of fragility fractures in
Taiwan by considering the FRAX®-derived fracture risks
probability, BMD, and presumed individual intervention
threshold [138]. However, the intervention threshold for
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GIOP could vary from country to country, depending on the
health policy, economic status, and reimbursement issues.

It is to be noted that the FRAX® calculation is not
applicable to determine the fracture risk probability for
patients <40 years of age. Although young patients quickly
regain bone mass when glucocorticoids are discontinued, the
use of glucocorticoids at a dose of >7.5 mg/day for 6 months
could still lead to a rapid decrease in bone density in hip or
vertebrae (a decrease of >10% in one year) [139]. Therefore,
both BMD and prior osteoporotic fracture history should be
considered when physicians judge medical intervention for
individuals <40 years of age.

TREATMENT OPTIONS FOR GLUCOCORTICOID-INDUCED
OSTEOPOROSIS
Calcium and Vitamin D supplements

The evaluation indicators of drug therapy include the
dosage and duration of glucocorticoid usage, fragility
fracture history, BMD, age, and whether the patient is a
postmenopausal woman [140]. In general, prophylaxis and
treatment should be initiated in patients using glucocorticoids
at a daily dose of 5-7.5 mg for >3 months [139]. Patients
treated with glucocorticoids have faced systematic calcium loss
caused by reduced gastrointestinal absorption and renal tubular
reabsorption [141,142]. Therefore, it is suggested that adult
patients should take adequate calcium (1000-1200 mg/day)
and Vitamin D (600-800 IU/day) supplements to reduce
calcium loss from bone and increase calcium absorption in the
gastrointestinal tract [139]; for adults >50 years of age, a daily
intake of 1200 mg calcium with 800—1000 IU Vitamin D is
suggested [136].

Bisphosphonates

Bisphosphonates  have a  nonhydrolyzable = P-C-P
structure and are analogs of pyrophosphate. Structurally, the
bisphosphonates with a nitrogen-containing side chain on the
central carbon exhibit substantial therapeutic effects (e.g.,
alendronate, risedronate, and zoledronate). Bisphosphonates
have a high affinity to hydroxyapatite, and thus they could
accumulate on surfaces undergoing active resorption. Upon
entry into osteoclasts through endocytosis, nitrogen-containing
bisphosphonates inhibit the mevalonate pathway’s farnesyl
pyrophosphate synthase, thereby blocking protein prenylation,
inhibiting the function of osteoclasts [143,144], and inducing
osteoclast apoptosis [145,146]. Apart from the major
therapeutic effect of bisphosphonates on inhibiting osteoclasts,
bisphosphonates can also increase the lifespan of osteoblasts
and osteocytes by inhibiting their apoptosis [147]. In the other
way, bisphosphonates decrease the expression of the BMP
antagonists Follistatin and Dan, the WNT signaling inhibitors
SFRP-1 and axin-2 [49], thus facilitating WNT and BMP
signaling and eventually increasing osteoblast formation.

Side effects of bisphosphonates may comprise erosive
esophagitis, ulcer bleeding, hypocalcemia, renal function
decline, osteonecrosis of the jaw, and atypical femoral
fracture [148]. The failure of oral bisphosphonate treatment
can be defined as GIOP patients who have new fractures
after >18 months of oral bisphosphonates or experienced a
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significant decrease in BMD (>10% per year) after 1 year of
treatment. In such a scenario, follow-up treatment with other
osteoporotic drugs, such as denosumab or teriparatide, is
suggested [139]. If the failure of oral bisphosphonate treatment
is due to poor medical compliance or drug absorption
issue caused by gastrointestinal side effects, intravenous
bisphosphonates can be considered because of its long dosing
interval and infrequent gastrointestinal side effects [149].
Accordingly, a decrease in BMD, new fractures, and other
rare side effects, such as osteonecrosis of the jaw and
atypical femoral fractures, should be carefully evaluated. For
patients who stop using glucocorticoids and have a low risk
of fracture, bisphosphonates can be discontinued; however,
this is not recommended in patients who have discontinued
glucocorticoids but remain at high risk of fracture [139]. It
is to be noted that bisphosphonates have a relatively long
half-life and tend to be trapped in bones, potentially affecting
fetal bones; therefore, they are not recommended for pregnant
women [150].

Therapeutic monoclonal antibody

Another commonly used drug in clinical practice is RANKL
inhibitor (Denosumab). It is a human monoclonal antibody
that binds and neutralizes RANKL, limiting the formation
of osteoclasts, thereby inhibiting bone resorption [151]. The
clinical trial indicates that GIOP patients take denosumab
(60 mg subcutaneously once every six months) has a better
therapeutic effect than those take risedronate (5 mg oral per
day) in terms of BMD increases in spine and hip after one
year of the treatment [152]. The side effects for patients taking
denosumab include hypocalcemia, osteonecrosis of the jaw, and
a high risk of infection [153,154]. In addition, the incidence
of vertebrae compression fracture also increases rapidly after
discontinuation of denosumab [155]. Moreover, there may be a
risk of fetal teratogenesis when used in pregnant women [156].
An advantage of denosumab is that no dose adjustment is
necessary for patients with renal impairment; however, patients
with creatinine clearance <30 mL/min or receiving dialysis
are at risk for hypocalcemia. A clinical study has shown that
denosumab therapy is well tolerated and improves BMD for
patients with solid organ transplant, especially in those with
renal function impairment or bisphosphonate intolerance [157].
However, a significant decrease of BMD at the lumbar spine
and hip was reported when denosumab was discontinued in
renal transplant recipients [158]. Therefore, if denosumab
treatment is to be discontinued, an alternative anti-osteoporotic
therapy should be considered.

Parathyroid hormone N-terminal active fragment
Teriparatide is an active form of parathyroid
hormone (PTH) consisting of the N-terminal 34 amino acids.
In the clinical survey, teriparatide significantly increases
the expression of bone formation markers and bone mass
density of GIOP patients [159-161]. Intermittent use of
teriparatide facilitates osteoblast production, increases TNAP
activity [162], and promotes WNT signaling by reducing
WNT signaling inhibitors, such as Sost, Dkkl, sFRP-1, and
axin-2 [49,163-165]. Intermittent administration of teriparatide
also inhibits apoptosis of osteoblasts and osteocytes [166,167],

thereby promoting bone formation and increasing bone mass.
In addition, teriparatide and WNT can synergistically increase
the nuclear translocation of [-catenin by PKA-mediated
phosphorylation, thus facilitating WNT signaling [165]. In
the absence of WNT binding, PTH-PTHIR complex can also
bind to WNT coreceptor LRP6 and trigger WNT signaling in
osteoblasts [168]. Teriparatide also decreases the expression
of BMP antagonists Follistatin and Dan to facilitate BMP
signaling [49]. Besides, PTH exerts an insulin-like growth
factor I-mediated anabolic effect on bone formation [169,170].

However, long-term use of teriparatide may increase Rank/
expression and inhibit Opg expression, causing osteoclast
differentiation and increasing the number of osteoclasts,
leading to bone resorption and bone loss [171,172].
Furthermore, bone loss and fractures may rapidly occur
after teriparatide is discontinued [173]. Accordingly, after
teriparatide discontinuation, other osteoporotic drugs should
be used. After long-term use of teriparatide, the side effects
include a possible cause of osteosarcoma, hypercalcemia,
nausea, leg cramps, and dizziness [174].

Selective estrogen receptor modulator

The selective estrogen receptor modulator (SERM), such
as raloxifene, lasofoxifene, and bazedoxifene, acts as a
tissue-specific agonist and antagonist as it activates estrogen
receptors in bone and inhibits estrogen receptors in the uterus
and breast [175]. Estrogen facilitates the differentiation of
MSCs into osteoblastic lineage [176]. Correspondingly,
raloxifene stimulates Runx2 expression to promote the
differentiation and proliferation of osteoblasts and suppresses
the production of osteoclasts by inhibiting the expression
of IL-6 [177]. Estrogen inhibits the expression of Sost by
osteocytes and bolsters WNT signaling, leading to increased
osteoblast formation [178,179]. Raloxifene also attenuates
the expression of Sost and DkkI in mice [180]. In the other
way, estrogen could suppress the differentiation of osteoclast
precursor cells by decreasing Rankl expression and increasing
Opg expression in osteoblasts and osteocytes [181,182].
Similarly, raloxifene increased the expression of Opg and
decreased the expression of Rankl and IL-6 in human
osteoblastic MG-63 cells [183]. However, different from the
effect of estrogen on the regulation of apoptosis [38,69,184],
clinical and cell culture studies indicate that raloxifene neither
enhances the osteoclast apoptosis [185] nor suppress osteocyte
apoptosis [186], except that raloxifene could protect osteoblast
from apoptosis induced by sodium nitroprusside [187].

Clinical trials with postmenopausal osteoporotic women
indicate that raloxifene [188], lasofoxifene [189], and
bazedoxifene [190] are effective for reducing the incidence
of vertebral fractures, but not nonvertebral fractures. Among
SERMs for the osteoporosis treatment in postmenopausal
women, raloxifene is the only SERM approved by the United
States Food and Drug Administration (US FDA); the Taiwan
FDA approves raloxifene and bazedoxifene. Although the US
FDA does not approve the use of raloxifene for GIOP patients,
the 2017 American College Rheumatology Guideline for the
Prevention and Treatment of GIOP suggests that raloxifene
could be used to treat postmenopausal women who have
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GIOP but fail to respond to regular GIOP treatment or have
specific therapeutic contraindications [139]. It is to be noted
that women receiving raloxifene might have an increased risk
of venous thromboembolism [191].

TREATMENT OF GLUCOCORTICOID-INDUCED
OSTEOPOROSIS IN PREGNANT WOMEN AND
CHILDREN

Because of the lack of comprehensive medication
safety assessments for osteoporotic drugs used in pregnant
women, there is no treatment recommendation for pregnant
GIOP patients. According to the 2017 American College
Rheumatology  guidelines, oral  bisphosphonates  are
recommended only when female GIOP patients are not
planning to become pregnant and have moderate to high
risk of fracture; otherwise, only calcium tablets and vitamin
D should be used. However, when the female GIOP patients
experience side effects from oral bisphosphonates, teriparatide
is recommended. Because of safety concerns, denosumab and
intravenous injection of high-potency bisphosphonates are only
applicable to the female GIOP patients having a high risk of
fracture and avoiding pregnancy when other anti-osteoporotic
drugs are not applicable [139].

Glucocorticoids are  extensively wused in children
with various indications because of their significant
anti-inflammatory and immunomodulatory activity. A study
conducted in the United Kingdom found that 1.2% of children
received at least one kind of oral glucocorticoid within a year
to treat asthma attacks. Asthma is a chronic, obstructive, and
inflammatory lung disease requiring long-term treatment with
glucocorticoids adjusted according to each child’s response
to treatment [192]. Other chronic inflammatory diseases in
children requiring long-term treatment with glucocorticoid
for >3 months include juvenile idiopathic arthritis, systemic
lupus erythematosus, juvenile dermatomyositis, Crohn’s
disease, and nephrotic syndrome. The glucocorticoids used to
control these inflammatory diseases have an additive effect on
reducing bone formation and severely compromising children’s
bone health [193].

An epidemiologic study conducted on the British
population (including those aged 4-17 years) showed
that oral glucocorticoids used for >4 cycles per year
significantly increased fracture risk, with humerus fracture
being the most common [194]. Therefore, the treatment of
osteoporosis in children (between 4 and 17 years of age)
who use glucocorticoids chronically requires a multifaceted
approach: (1) Nutritional intake should be actively
tracked to prevent obesity and ensure adequate intake of
calcium (1000 mg/day), Vitamin D (at least 600 IU/day
and exposure to sunlight for approximately 20 min/day),
and protein. Furthermore, track the serum concentration of
1, 25-dihydroxyvitamin D every 3-6 months to determine
whether the intake dose needs to be adjusted. (2) Regularly
perform supervised physical exercises. In addition to
controlling ideal body weight, it is also beneficial to
maintaining bone and muscle strength. (3) For spontaneous
fractures, especially vertebrac fractures (confirmed by
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pain or height loss), regular radiological examinations are
required to rule out the possibility of occult fractures. For
patients who have suffered GIOP fractures and continue to
use glucocorticoids for >3 months (0.1 mg/kg/day), medical
intervention is required [139].

CONCLUSION

GIOP is the most common type of secondary osteoporosis.
It often occurs in patients who used glucocorticoids for
a long time, such as those with autoimmune diseases,
allergic diseases (e.g., asthma and atopic dermatitis), or
organ transplantation. It is an iatrogenic disease in which
osteogenesis and osteoclastogenesis are out of balance. Excess
glucocorticoids cause rapid bone loss by downregulating
bone formation and upregulating bone resorption during
the 1% year of glucocorticoid treatment. In addition to direct
effects on bone cells, such as osteoblasts, osteoclasts, and
osteocytes, glucocorticoids also indirectly cause calcium loss,
hypocalcemia, and secondary hyperparathyroidism. Therefore,
the dosage and duration of treatment with glucocorticoids
should be minimized. Moreover, nonpharmacological
treatments, such as appropriate nutrition and exercise, should
be combined with pharmacological treatments. For GIOP
patients at high risk of fracture, medical intervention is
recommended. In the future, more definitive safety studies
have to be conducted for the medication of pregnant women
and children with GIOP. Due to the limited choices and side
effects of the drugs used for GIOP, it is eager to invent more
effective and safer therapeutic drugs to meet the best interest
of GIOP patients and society.
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