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Abstract

Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches 

for supervised learning have performed well, they assume that training and testing data are drawn 

from the same distribution, which may not always be the case. As a complement to this challenge, 

single-source unsupervised domain adaptation can handle situations where a network is trained on 

labeled data from a source domain and unlabeled data from a related but different target domain 

with the goal of performing well at test-time on the target domain. Many single-source and 

typically homogeneous unsupervised deep domain adaptation approaches have thus been 

developed, combining the powerful, hierarchical representations from deep learning with domain 

adaptation to reduce reliance on potentially-costly target data labels. This survey will compare 

these approaches by examining alternative methods, the unique and common elements, results, and 

theoretical insights. We follow this with a look at application areas and open research directions.

1 INTRODUCTION

Supervised learning is arguably the most prevalent type of machine learning and has enjoyed 

much success across diverse application areas. However, many supervised learning methods 

make a common assumption: the training and testing data are drawn from the same 

distribution. When this constraint is violated, a classifier trained on the source domain will 

likely experience a drop in performance when tested on the target domain due to the 

differences between domains [182]. Single-source domain adaptation refers to the goal of 

learning a concept from labeled data in a source domain that performs well on a different but 

related target domain [73, 80, 180]. Unsupervised domain adaptation specifically addresses 

the situation where there are labeled source data and only unlabeled target data available for 

use during training [73, 147].

Because of its ability to adapt labeled data for use in a new application, domain adaptation 

can reduce the need for costly labeled data in the target domain. As an example, consider the 

problem of semantically segmenting images. Each real image in the Cityscapes dataset 

required approximately 1.5 hours to annotate for semantic segmentation [46]. In this case, 

human annotation time could be spared by training an image semantic segmentation model 

on synthetic street view images (the source domain) since these can be cheaply generated, 
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then adapting and testing for real street view images (the target domain, here the Cityscapes 

dataset).

An undeniable trend in machine learning is the increased usage of deep neural networks. 

Deep networks have produced many state-of-the-art results for a variety of machine learning 

tasks [73, 80] such as image classification, speech recognition, machine translation, and 

image generation [79, 80]. When trained on large amounts of data, these many-layer neural 

networks can learn powerful, hierarchical representations [80, 147, 182, 226] and can be 

highly scalable [76]. At the same time, these networks can also experience performance 

drops due to domain shifts [72, 226]. Thus, much research has gone into adapting such 

networks from large labeled datasets to domains where little (or possibly no) labeled training 

data are available (for a list, see [257]). These single-source and typically homogeneous 

unsupervised deep domain adaptation approaches, which combine the benefit of deep 

learning with the very practical use of domain adaptation to remove the reliance on 

potentially costly target data labels, will be the focus of this survey.

A number of surveys have been created on the topic of domain adaptation [12, 24, 42, 48, 

49, 121, 122, 162, 182, 227, 246, 285] and more generally transfer learning [45, 128, 152, 

180, 216, 232, 235, 252, 273], of which domain adaptation can be viewed as a special case 

[182]. Previous domain adaptation surveys lack depth of coverage and comparison of 

unsupervised deep domain adaptation approaches. In some cases, prior surveys do not 

discuss domain mapping [48, 49, 121], normalization statistic-based [48, 49, 121, 285], or 

ensemble-based [48, 49, 121, 246, 285] methods. In other cases, they do not survey deep 

learning approaches [12, 122, 162, 182]. Still others are application-centric, focusing on a 

single use case such as machine translation [24, 42]. One earlier survey focuses on the multi-

source scenario [227], while we focus on the more prevalent single-source scenario. Transfer 

learning is a broader topic to cover, thus surveys provide minimal coverage and comparison 

of the deep learning methods that have been designed for unsupervised domain adaptation 

[152, 180, 216, 232, 252, 273], or they focus on tasks such as activity recognition [45] or 

reinforcement learning [128, 235]. The goal of this survey is to discuss, highlight unique 

components, and compare approaches to single-source homogeneous unsupervised deep 

domain adaptation.

We first provide background on where domain adaptation fits into the more general problem 

of transfer learning. We follow this with an overview of generative adversarial networks 

(GANs) to provide background for the increasingly widespread use of adversarial techniques 

in domain adaptation. Next, we investigate the various domain adaptation methods, the 

components of those methods, and the results. Then, we overview domain adaptation theory 

and discuss what we can learn from the theoretical results. Finally, we look at application 

areas and identify future research directions for domain adaptation.

2 BACKGROUND

2.1 Transfer Learning

The focus of this survey is domain adaptation. Because domain adaptation can be viewed as 

a special case of transfer learning [182], we first review transfer learning to highlight the role 
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of domain adaptation within this topic. Transfer learning is defined as the learning scenario 

where a model is trained on a source domain or task and evaluated on a different but related 

target domain or task, where either the tasks or domains (or both) differ [61, 80, 180, 252]. 

For instance, we may wish to learn a model on a handwritten digit dataset (e.g., MNIST 

[130]) with the goal of using it to recognize house numbers (e.g., SVHN [175]). Or, we may 

wish to learn a model on a synthetic, cheap-to-generate traffic sign dataset [168] with the 

goal of using it to classify real traffic signs (e.g., GTSRB [224]). In these examples, the 

source dataset used to train the model is related but different from the target dataset used to 

test the model – both are digits and signs respectively, but each dataset looks significantly 

different. When the source and target differ but are related, then transfer learning can be 

applied to obtain higher accuracy on the target data.

2.1.1 Categorizing Methods.—In a transfer learning survey paper, Pan et al. [180] 

defined two terms to help classify various transfer learning techniques: “domain” and “task.” 

A domain consists of a feature space and a marginal probability distribution (i.e., the 

features of the data and the distribution of those features in the dataset). A task consists of a 

label space and an objective predictive function (i.e., the set of labels and a predictive 

function that is learned from the training data). Thus, a transfer learning problem might be 

either transferring knowledge from a source domain to a different target domain or 

transferring knowledge from a source task to a different target task (or a combination of the 

two) [61, 180, 252].

By this definition, a change in domain may result from either a change in feature space or a 

change in the marginal probability distribution. When classifying documents using text 

mining, a change in the feature space may result from a change in language (e.g., English to 

Spanish), whereas a change in the marginal probability distribution may result from a 

change in document topics (e.g., computer science to English literature) [180]. Similarly, a 

change in task may result from either a change in the label space or a change in the objective 

predictive function. In the case of document classification, a change in the label space may 

result from a change in the number of classes (e.g., from a set of 10 topic labels to a set of 

100 topic labels). Similarly, a change in the objective predictive function may result from a 

substantial change in the distribution of the labels (e.g., the source domain has 100 instances 

of class A and 10,000 of class B, whereas the target has 10,000 instances of A and 100 of B) 

[180].

To classify transfer learning algorithms based on whether the task or domain differs between 

source and target, Pan et al. [180] introduced three terms: “inductive”, “transductive”, and 

“unsupervised” transfer learning. In inductive transfer learning, the target and source tasks 

are different, the domains may or may not differ, and some labeled target data are required. 

In transductive transfer learning, the tasks remain the same while the domains are different, 

and both labeled source data and unlabeled target data are required. Finally, in unsupervised 

transfer learning, the tasks differ as in the inductive case, but there is no requirement of 

labeled data in either the source domain or the target domain.

2.1.2 Domain Adaptation.—One popular type of transfer learning is domain 
adaptation, which will be the focus of our survey. Domain adaptation is a type of 
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transductive transfer learning. Here, the target task remains the same as the source, but the 

domain differs [55, 180, 182]. Homogeneous domain adaptation is the case where the 

domain feature space also remains the same, and heterogeneous domain adaptation is the 

case where the feature spaces differ [182].

In addition to the previous terminology, machine learning techniques are often categorized 

based on whether or not labeled training data are available. Supervised learning assumes 

labeled data are available, semi-supervised learning uses both labeled data and unlabeled 

data, and unsupervised learning uses only unlabeled data. However, domain adaptation 

assumes data comes from both a source domain and a target domain. Thus, prepending one 

of these three terms to “domain adaptation” is ambiguous since it may refer to labeled data 

being available in the source or target domains.

Authors apply these terms in various ways to domain adaptation [54, 111, 180, 204, 252]. In 

this paper, we will refer to “unsupervised” domain adaptation as the case in which both 

labeled source data and unlabeled target data are available, “semi-supervised” domain 

adaptation as the case in which labeled source data in addition to some labeled target data 

are available, and “supervised” domain adaptation as the case in which both labeled source 

and target data are available [12]. The distinction between these categories describes the 

target domain, but only describe situations in which labeled data are available for the source 

domain. These definitions are commonly used in the methods surveyed in this paper as well 

as others [27, 73, 76, 147, 204, 226].

2.1.3 Related Problems.—Multi-domain learning [61, 113] and multi-task learning 

[29] are related to transfer learning and domain adaptation. In contrast to transfer learning, 

the goal of these learning approaches is obtaining high performance on all specified domains 

(or tasks) rather than just on a single target domain (or task) [180, 261]. For example, often 

it is assumed that the training data are drawn in an independent and identically distributed 

(i.i.d.) fashion, which may not be the case [113]. One such example is the task of developing 

a spam filter for users who disagree on what is considered spam. If all the users’ data are 

combined, the training data will be drawn from multiple domains. While each individual 

domain may be i.i.d., the aggregated dataset may not be. If the data are split by user, then 

there may be too little data to learn a model for each user. Multi-domain learning can take 

advantage of the entire dataset to learn individual user preferences [61, 113]. Some 

researchers have developed adversarial strategies to tackle this multi-domain learning 

challenge [89, 213].

When working with multiple tasks, instead of training models separately for different tasks 

(e.g., one model for detecting shapes in an image and one model for detecting text in an 

image), multi-task learning will learn these separate but related tasks simultaneously so that 

they can mutually benefit from the training data of other tasks through a (partially) shared 

representation [29]. If there are both multiple tasks and domains, then these approaches can 

be combined into multi-domain multi-task learning, as is described by Yang et al. [261].

Another related problem is domain generalization, in which a model is trained on multiple 

source domains with labeled data and then tested on a separate target domain that was not 
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seen during training [173]. This contrasts with domain adaptation where target examples 

(possibly unlabeled) are available during training. Some approaches related to those 

surveyed in this paper have been designed to address this situation. Examples include an 

adversarial method introduced by Zhao et al. [284] and an autoencoder approach by Ghifary 

et al. [75] discussed in Section 7.4.

2.2 Generative Adversarial Networks

Many deep domain adaptation methods that we will discuss in the next section incorporate 

adversarial training. We use the term adversarial training broadly to refer to any method that 

utilizes an adversary or an adversarial process during training. Before other adversarial 

methods were developed, the term was narrowly applied to training designed to improve the 

robustness of a model by utilizing adversarial examples, e.g. image inputs with small worst-

case perturbations that lead to misclassification [82, 230]. Subsequently, other techniques 

have arisen that also utilize an adversary during training, including generative-adversarial 

training of generative adversarial networks (GANs) [81] and domain-adversarial training of 

domain adversarial neural networks (DANN) [73], both of which have been used for domain 

adaptation. To provide background for the domain adaptation methods utilizing these 

techniques, we will first discuss GANs and later when discussing DANN note the 

differences.

In recent years there has been a large and growing interest in GANs. Pitting two well-

matched neural networks against each other (hence “adversarial”), playing the roles of a data 

discriminator and a data generator, the pair is able to refine each player’s abilities in order to 

perform functions such as synthetic data generation. Goodfellow et al. [81] proposed this 

technique in 2014. Since that time, hundreds of papers have been published on the topic [91, 

271]. GANs have traditionally been applied to synthetic image generation, but recently 

researchers have been exploring other novel use cases such as domain adaptation.

GANs are a type of deep generative model [81]. For synthetic image generation, a training 

dataset of images must be available. Popular datasets include human faces (CelebA [146]), 

handwritten digits (MNIST [130]), bedrooms (LSUN [268]), and sets of other objects 

(CIFAR-10 [123] and ImageNet [56, 200]). After training, the generative model will be able 

to generate synthetic images that resemble those in the training data. For example, a 

generator trained with CelebA will generate images of human faces that look realistic but are 

not images of real people, as shown in Figure 1. To learn to do this, GANs utilize two neural 

networks competing against each other [81]. One network represents a generator. The 

generator accepts a noise vector as input, which contains random values drawn from some 

distribution such as normal or uniform. The goal of the generator network is to output a 

vector that is indistinguishable from the real training data. The other network represents a 

discriminator, which accepts as input either a real sample from the training data or a fake 

sample from the generator. The goal of the discriminator is to determine the probability that 

the input sample is real. During training, these two networks play a minimax game, where 

the generator tries to fool the discriminator and the discriminator attempts to not be fooled.

Using the notation from Goodfellow et al. [81], we define a value function V (G, D) 

employed by the minimax game between the two networks:
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min
G

 max
D

 V (D, G) = Ex pdata(x)[log D(x)] + Ez pz(z)[log(1 − D(G(z)))] (1)

Here, x ~ pdata(x) draws a sample from the real data distribution, z ~ pz (z) draws a sample 

from the input noise, D(x; θd) is the discriminator, and G(z; θg) is the generator. As shown 

in the equation, the goal is to find the parameters θd that maximize the log probability of 

correctly discriminating between real (x) and fake (G(z)) samples while at the same time 

finding the parameters θg that minimize the log probability of 1 − D(G(z)). The term 

D(G(z)) represents the probability that generated data G(z) is real. If the discriminator 

correctly classifies a fake input then D(G(z)) = 0. Equation 1 minimizes the quantity 1 − 

D(G(z)). This occurs when D(G(z)) = 1, or when the discriminator misclassifies the 

generator’s output as a real sample. Thus the discriminator’s mission is to learn to correctly 

classify the input as real or fake while the generator tries to fool the discriminator into 

thinking that its generated output is real. This process is illustrated in Figure 2.

2.2.1 Training.—In recent years there have been impressive results from GANs. At the 

same time, this research faces some challenges since training a GAN can encounter 

problems such as difficulty converging [6, 79], mode collapse where the generator only 

learns to generate realistic samples for a few specialized modes of the data distribution [79], 

and vanishing gradients [81]. Many methods have been proposed to resolve these training 

challenges using a variety of tricks [81, 90, 179, 207, 219, 229], network architecture 

choices [116, 190, 207], objective modifications [5, 15, 66, 87, 112, 120, 161, 163, 165, 

176–178, 283], mixtures or ensembles [6, 63, 78, 93, 117, 170, 181, 237, 270], maximum 

mean discrepancy (MMD) [16, 64, 135, 139, 228], making a connection to reinforcement 

learning [67, 186], or a combination of these modifications [90, 166, 269]. For an in-depth 

discussion of these techniques, there are a number of survey papers directed at GAN variants 

that include a discussion of training challenges and work [92, 99, 158]. These techniques can 

be employed in the domain adaptation methods that utilize GANs [20, 21, 41, 96, 143, 160, 

208, 219, 245, 250]. While these training stability methods could similarly be applied to 

other adversarial domain adaptation approaches, they are not typically needed for the non-

GAN methods surveyed here.

2.2.2 Evaluation.—Once successfully trained, a GAN model can be difficult to evaluate 

and compare with other models. Multiple approaches and measures have been introduced to 

evaluate GAN performance. Often researchers have evaluated their models through visual 

inspection [210] such as performing user studies where participants mark which images they 

think look more realistic [207]. However, ideally a more automated metric could be found. 

Past generative models were evaluated by computing log-likelihood [236], but this is not 

necessarily tractable in GANs [79]. A proxy for log-likelihood is a Parzen window estimate, 

which was used for early GAN evaluation [81, 156, 177, 236], but in high dimensions (such 

as images), this could be far from the actual log-likelihood and not even rank models 

correctly [85, 236]. Thus, there has been much work proposing various evaluation methods 

for GANs: methods for detecting memorization [15, 60, 81, 156, 190, 236], determining 

diversity [7, 90, 179, 210], measuring realism [16, 90, 145, 207], and approximating log-
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likelihood [253]. Xu et al. [258] and Borji [19] survey and compare many of these GAN 

evaluation methods.

These techniques can be used for evaluating domain adaptation methods used for image 

translation (a form of image generation but conditioned on an input image) from one domain 

to another [14, 41, 197, 264, 265, 290]. However, many domain adaptation methods (even 

those that are adversarial such as those using GANs) are not used for generation but rather 

for tasks with more easily-defined loss functions, making these techniques largely not 

needed for adversarial domain adaptation methods. For example, accuracy [14, 21, 22, 41, 

69, 73, 96, 143, 241] or AUC scores [189] can be used to evaluate classification, intersection 

over union or pixel accuracy can be used to evaluate image segmentation [14, 69, 96, 138, 

185], and absolute difference can be used to evaluate regression [219].

3 METHODS

In recent years, numerous new unsupervised domain adaptation methods have been 

proposed, with a growing emphasis on neural network-based approaches. Distinct lines of 

research have emerged. These include aligning the source domain and target domain 

distributions, mapping between domains, separating normalization statistics, designing 

ensemble-based methods, or focusing on making the model target discriminative by moving 

the decision boundary into regions of lower data density. In addition, others have explored 

combinations of these approaches. We will describe each of these categories together with 

recent methods that fall into these categories.

In this survey, we will focus on homogeneous domain adaptation consisting of one source 

and one target domain, as is most commonly studied. Another case is multi-source domain 

adaptation, where there are multiple source domains but still only one target domain. Sun et 

al. [227] survey multi-source domain adaptation, and since then a number of other methods 

[28, 88, 95, 157, 184, 192, 256, 259, 281] have been developed for this case. It is also 

possible to perform multi-target domain adaptation [77], though this case is even more rarely 

studied. Similarly, we focus on homogeneous domain adaptation due to its prevalence, 

though some heterogeneous methods have been developed [62, 105, 137, 244, 263, 289].

3.1 Domain-Invariant Feature Learning

Most recent domain adaptation methods align source and target domains by creating a 

domain-invariant feature representation, typically in the form of a feature extractor neural 

network. A feature representation is domain-invariant if the features follow the same 

distribution regardless of whether the input data are from the source or target domain [280]. 

If a classifier can be trained to perform well on the source data using domain-invariant 

features, then the classifier may generalize well to the target domain since the features of the 

target data match those on which the classifier was trained. However, these methods assume 

that such a feature representation exists and the marginal label distributions do not differ 

significantly (Section 6).

The general training and testing setup of these methods is illustrated in Figure 3. Methods 

differ in how they align the domains (the Alignment Component in the figure). Some 
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minimize divergence, some perform reconstruction, and some employ adversarial training. 

In addition, they differ in weight sharing choices, which will be discussed in Section 4.3. We 

discuss the various alignment methods below.

3.1.1 Divergence.—One method of aligning distributions is through minimizing a 

divergence that measures the distance between the distributions. Choices for the divergence 

measure include maximum mean discrepancy, correlation alignment, contrastive domain 

discrepancy, the Wasserstein metric, and a graph matching loss.

Maximum mean discrepancy (MMD) [83, 84] is a two-sample statistical test of the 

hypothesis that two distributions are equal based on observed samples from the two 

distributions. The test is computed from the difference between the mean values of a smooth 

function on the two domains’ samples. If the means are different, then the samples are likely 

not from the same distribution. The smooth functions chosen for MMD are unit balls in 

characteristic reproducing kernel Hilbert spaces (RKHS) since it can be proven that the 

population MMD is zero if and only if the two distributions are equal [84].

To use MMD for domain adaptation, the alignment component can be another classifier 

similar to the task classifier. MMD can then be computed and minimized between the 

outputs of these classifiers’ corresponding layers (a slightly different setup than that in 

Figure 3). Rozantsev et al. [199] employ MMD, Long et al. [147] investigate a multiple 

kernel variant of MMD (MK-MMD), and later Long et al. [147] develop a joint MMD 

(JMMD) method [151]. Bousmalis et al. [22] also tried MMD but found using an adversarial 

objective performed better in their experiments.

Correlation alignment (CORAL) [225] is similar to MMD with a polynomial kernel, 

computed from the distance between second-order statistics (covariances) of the source and 

target features. For domain adaptation, the alignment component consists of computing the 

CORAL loss between the two feature extractors’ outputs (in order to minimize the distance). 

A variety of distances have been used: Sun et al. [226] use a squared matrix Frobenius norm 

in Deep CORAL, Zhang et al. [278] use a Euclidean distance in mapped correlation 

alignment (MCA), others have used log-Euclidean distances in LogCORAL [249] and Log 

D-CORAL[172], and Morerio et al. [171] use geodesic distances. Zhang et al. [279] 

generalize correlation alignment to possibly infinite-dimensional covariance matrices in 

RKHS. Chen et al. [34] align statistics beyond the first and second orders.

Contrastive domain discrepancy (CCD) [114] is based on MMD but looks at the conditional 

distributions in order to incorporate label information (unlike CORAL or ordinary MMD). 

When minimizing CCD, intra-class discrepancy is minimized while inter-class margin is 

maximized. This has the problem of requiring target labels though, so Kang et al. [114] 

propose contrastive adaptation networks (CAN) that minimize cross-entropy loss on the 

labeled target data while alternating between estimating labels for target samples (via 

clustering) with adapting the feature extractor with the now-computable CCD (using the 

clusters). This approach outperforms the other methods on the Office dataset as shown in 

Table 3.
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A problem known as “optimal transport” was originally proposed for studying resource 

allocation such as finding an optimal way to move material from mines to factories [169, 

193], but it can also be used to measure the distances between distributions. If the cost of 

moving each point is a norm (e.g., Euclidean), then the solution to a discrete optimal 

transport problem can be viewed as a distance: the Wasserstein distance [50] (also known as 

the earth mover’s distance). To align feature and label distributions with this distance, 

Courty et al. [47] propose joint distribution optimal transport (JDOT). To incorporate this 

into a neural network, Damodaran et al. [50] propose DeepJDOT.

Another divergence measure arises from graph matching: the problem of finding an optimal 

correspondence between graphs [260]. A feature extractor’s output on a batch of samples 

can be viewed as an undirected graph (in the form of an adjacency matrix), where similar 

samples in the batch are connected. Given the graph from a batch of source data fed through 

the feature extractor and similarly a graph from a batch of target data, then the cost of 

aligning these graphs can be used as a divergence, as proposed by Das et al. [51–53].

3.1.2 Reconstruction.—Rather than minimizing a divergence, Ghifary et al. [76] and 

Bousmalis et al. [22] hypothesize that alignment can be accomplished by learning a 

representation that both classifies the labeled source domain data well and can be used to 

reconstruct either the target domain data (Ghifary et al.) or both the source and target 

domain data (Bousmalis et al.). The alignment component in these setups is a reconstruction 

network – the opposite of the feature extractor network – that takes the feature extractor 

output and recreates the feature extractor’s input (in this case, an image). Ghifary et al. [76] 

propose deep reconstruction-classification networks (DRCN), using a pair-wise squared 

reconstruction loss. Bousmalis et al. [22] propose domain separation networks (DSN), using 

a scale-invariant mean squared error reconstruction loss.

3.1.3 Adversarial.—Several varieties of feature-level adversarial domain adaptation 

methods have been introduced in the literature. In most the alignment component consists of 

a domain classifier. In one paper this component is instead represented by a network 

learning an approximate Wasserstein distance, and in another paper the component is a 

GAN.

A domain classifier is a classifier that outputs whether the feature representation was 

generated from source or target data. Recall that GANs include a discriminator that tries to 

accurately predict whether a sample is from the real data distribution or from the generator. 

In other words, the discriminator differentiates between two distributions, one real and one 

fake. A discriminator could similarly be designed to differentiate two distributions which 

instead represent a source distribution and a target distribution, as is done with a domain 

classifier. Note though that an adversarial domain classifier is used for adaptation, whereas a 

GAN is used for data generation. The domain classifier is trained to correctly classify the 

domain (source or target). In this scenario, the feature extractor is trained such that the 

domain classifier is unable to classify from which domain the feature representation 

originated. This is a type of zero-sum two-player game [280] as in a GAN (Section 2.2). 

Typically, these networks are adversarially trained by alternating between these two steps. 

The feature extractor can be trained to make the domain classifier perform poorly by 

WILSON and COOK Page 9

ACM Trans Intell Syst Technol. Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



negating the gradient from the domain classifier with a gradient reversal layer [72] when 

performing back propagation to update the feature extractor weights (e.g., in DANN [1, 72, 

73] and VRADA [189]), maximally confusing the domain classifier (when it outputs a 

uniform distribution over binary labels [240]), or inverting the labels (in ADDA [241]). 

Because data distributions are often multi-modal, results may be improved by conditioning 

the domain classifier on a multilinear map of the feature representation and the task 

classifier predictions, which takes into account the multi-modal nature of the distributions 

[148].

Shen et al. [217] created WDGRL, a modification of DANN, by replacing the domain 

classifier with a network that learns an approximate Wasserstein distance. This distance is 

then minimized between source and target domains, which they found to yield an 

improvement. This method is similar to the divergence methods except here the divergence 

is learned with a network rather than computed based on statistics (e.g., using mean in 

MMD or covariance in CORAL). This method outperforms the other methods on the 

Amazon review dataset as shown in Table 4.

Sankaranarayanan et al. [208] propose Generate to Adapt that uses a GAN as the alignment 

component. The feature extractor output is both fed to a classifier trained to predict the label 

(if the input is from the source domain) and also to a GAN trained to generate source-like 

images (regardless of if the input is source or target). For training stability, they use an AC-

GAN [179]. They note one downside of using a GAN for adaptation is that it requires a large 

training dataset, but a common strategy is to use a pretrained network on a large dataset such 

as ImageNet. Using this pretraining, even on small datasets (e.g., Office) where the 

generated images are poor, the network still learns adaptation satisfactorily. 

Sankaranarayanan et al. [209] similarly develop a similar approach for semantic 

segmentation.

3.2 Domain Mapping

An alternative to creating a domain-invariant feature representation is mapping from one 

domain to another. The mapping is typically created adversarially and at the pixel level (i.e., 

pixel-level adversarial domain adaptation), but not always, as discussed at the end of this 

section. This mapping can be accomplished with a conditional GAN. The generator 

performs adaptation at the pixel level by translating a source input image to an image that 

closely resembles the target distribution. For example, the GAN could change from a 

synthetic vehicle driving image to one that looks realistic as shown in Figure 4 [41, 96, 197, 

265, 290]. A classifier can then be trained on the source data mapped to the target domain 

using the known source labels [219] or jointly trained with the GAN [21, 96]. We will first 

discuss how a conditional GAN works followed by the ways it can be employed for domain 

adaptation.

3.2.1 Conditional GAN for Image-to-Image Translation.—The original 

formulation of a GAN was unconditional, where a GAN only accepted a noise vector as 

input. Conditional GANs, on the other hand, accept as input other information such as a 

class label, image, or other data [59, 74, 81, 164]. In the case of image generation, this 
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means that a particular type of image to generate can be specified. One such example is to 

generate an image of a particular class within an image dataset such as “cat” rather than a 

random object from the dataset. Another example is conditioning on an input image such as 

in Figure 4, mapping an input driving image from one domain (synthetic) to an output image 

in another domain (realistic). Other uses include: transferring style (e.g., make a photo look 

like a Van Gogh painting) [118, 264, 290], colorizing images [109], generating satellite 

images from Google Maps data (or vice versa) [109, 264, 290], generating images of 

clothing from images of people wearing the clothing [265], generating cartoon faces from 

real faces [197, 231], converting labels to photos (e.g., semantic segmentation output to a 

photo) [109, 264, 290], learning disentangled representations [37], improving GAN training 

stability [179], and domain adaptation, which will be discussed in Section 3.2.2.

GANs conditioned on an input image can be used to perform image-to-image translation. 

These networks can be trained with varying levels of supervision: the dataset may contain 

corresponding images in the domains (supervised [109, 265]), only a few corresponding 

images (semi-supervised [71]), or no corresponding images (unsupervised [118, 264, 290]). 

A popular and general-purpose supervised method is pix2pix, developed by Isola et al. 

[109]. A commonly used unsupervised method is CycleGAN [290], which is based on 

pix2pix, or methods similar to CycleGAN including DualGAN [264] and DiscoGAN [118].

Numerous modifications to these approaches have been proposed: one that is multi-modal is 

MUNIT, a multi-modal unsupervised image-to-image translator [104]. By assuming a 

decomposition into style (domain-specific) and content (domain-invariant) codes, MUNIT 

can generate diverse outputs for a given input image (e.g., multiple possible output images 

corresponding to the same input image). A modification to CycleGAN explored by Li et al. 

[136] uses separate batch normalization for each domain (an idea similar to AdaBN 

discussed in Section 3.3). Mejjati et al. [3] and Chen et al. [38] improve results with 

attention, learning which areas of the images on which to focus. Shang et al. [215] improve 

results by feeding the mapped images into a denoising autoencoder. While CycleGAN and 

similar approaches use two generators, one for each mapping direction, Benaim et al. [14] 

developed a method for one-sided mapping that maintains distances between pairs of 

samples when mapped from the source to the target domain rather than (or in addition to) 

using a cycle consistency loss, and Fu et al. [69] developed an alternative one-sided mapping 

using a geometric constraint (e.g., vertical flipping or 90 degree rotation). Royer et al. [197] 

propose XGAN, a dual adversarial autoencoder capable of handling large domain shifts, 

where possibly an image in the source domain may correspond to multiple images in the 

target domain or vice versa. They tested mapping human faces to cartoon faces, which was a 

shift larger than CycleGAN could adequately handle. Choi et al. [41] propose StarGAN, a 

method for handling multiple domains with a single GAN. Approaches like CycleGAN need 

a separate generator (or two, one for each direction) for each pair of domains, which is not a 

scalable solution to many domains. StarGAN, on the other hand, only needs a single 

generator. This has the added benefit of allowing the generator to learn using all the 

available data rather than only the data in a specific pair of domains. During training they 

randomly pick a target domain at each iteration so the generator learns to generate images in 

all the domains. Anoosheh et al. [4] propose an approach designed for the same purpose as 

StarGAN but using one generator per domain.
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3.2.2 Image-to-Image Translation for Domain Adaptation.—While the above 

approaches map images from one domain to another without the explicit purpose of 

performing domain adaptation, they can also be used for domain adaptation. For example, 

the original CycleGAN paper was application agnostic, but others have experimented with 

applying CycleGAN to domain adaptation [14, 69, 96]. It is important to note though that 

these image-to-image translation approaches assume that the domain differences are 

primarily low-level [20, 21, 241].

If unsupervised domain adaptation is performed for classification, adaptation can be 

accomplished by training an image-to-image translation GAN to map data from source to 

target, training a classifier on the mapped source images with known labels, and then 

subsequently testing by feeding unlabeled target through this target-domain classifier [20, 

138, 219], as done in SimGAN [219] and illustrated in Figure 5a. Alternatively, rather than 

learning a mapping from source to target, the opposite could be done: learn a mapping from 

target to source, train a classifier on the source images with known labels, and test by 

feeding target images to the image-to-image translation model (to make them look like 

source images) followed by the source-domain classifier [32], as illustrated in Figure 5b.

In either of these approaches, if the mapping and the classification models are learned 

independently, the class assignments may not be preserved. For instance, class 1 may end up 

being “renamed” to class 2 after the mapping since the mapping was learned ignoring the 

class labels. This issue can be resolved by incorporating a semantic consistency loss (see 

Section 4.1) and training the mapping and classification models jointly [22, 96], as done in 

PixelDA [21].

If there is a way to perform hyperparameter tuning, a third option is possible (combination 

of Figure 5a and 5b): train a target-domain classifier on the source-to-target GAN (for which 

the GAN is not used during testing) and a source-domain classifier on the target-to-source 

GAN (for which the GAN is used during testing). The algorithm may then output a linear 

combination of the prediction results from the two classifiers [201]. While this approach 

does improve results, it requires a method of hyperparameter training (see Section 4.7).

All of the above approaches perform pixel-level mapping. An alternative approach is to 

perform feature-level mapping. Hong et al. [98] use a conditional GAN to learn to make the 

source features look more like the target features (a distinctly different idea than making the 

features domain invariant, which was discussed in Section 3.1). They found this particularly 

helpful for structured domain adaptation (e.g., semantic segmentation, in their case).

Up to this point, these domain mapping methods have used image-to-image translation to 

map images (or in one case features) from one domain to another and thereby improve 

domain adaptation performance. Another line of research using pixel-level image generation 

for domain adaptation is to use a GAN to generate corresponding images in multiple 

domains and then employ all but the last layer of the discriminator as a feature extractor for 

a classifier [143, 160]. Liu et al. [143] train a pair of GANs called CoGAN on two domains 

of images. Mao et al. [160] propose RegCGAN using only one generator and discriminator 

but including a domain label prepended to the input noise vector.
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3.3 Normalization Statistics

Normalization layers such as batch norm [107] are used in most neural networks [211]. 

These have benefits including allowing for higher learning rates and thus faster training 

[107], reducing initialization sensitivity [107], smoothing the optimization landscape and 

making the gradients more Lipschitz [211], and allowing for deeper networks to converge 

[80, 254]. Each batch norm layer normalizes its input to have zero mean and unit variance. 

At test time, running averages of the batch norm parameters can be used. Alternatives have 

been developed including instance norm allowing use in recurrent neural networks [10] and 

group norm removing the dependence on batch size [254]. However, none of these 

normalization techniques were developed with domain adaptation in mind. In the case of 

domain adaptation, the normalization statistics for each domain likely differ. Another line of 

domain adaptation research involves using per-domain batch normalization statistics.

Li et al. [141] assume that the neural net layer weights learn task knowledge and the batch 

norm statistics learn domain knowledge. If this is the case, then domain adaptation can be 

performed by modulating all the batch norm layers’ statistics from the source to target 

domain, a technique they call AdaBN. This has the benefit of being simple, parameter free, 

and complementary to other adaptation methods.

Carlucci et al. [27] propose AutoDIAL, a generalization of AdaBN. In AdaBN, the target 

data are not used to learn the network weights but only for adjusting the batch norm 

statistics. AutoDIAL can utilize the target data for learning the network weights by coupling 

network parameters between source and target domains. They do this through adding 

domain alignment layers (DA-layers) that differ for source and target input data before each 

of the batch norm layers. Generally, batch norm computes a moving average of the statistics 

on a batch of the layer’s input data. However, in AutoDIAL, source and target input data to 

DA-layers are mixed by a learnable amount before feeding this to batch norm (meaning that 

the batch norm statistics are now computed over some source and some target data rather 

than just source data or just target data). This allows the network to automatically learn how 

much alignment is needed at various points in the network.

3.4 Ensemble Methods

Given a base model such as a neural network or decision tree, an ensemble consisting of 

multiple models can often outperform a single model by averaging together the models’ 

outputs (e.g., regression) or taking a vote (e.g., classification) [65, 80]. This is because if the 

models are diverse then each individual model will likely make different mistakes [80]. 

However, this performance gain corresponds with an increase in computation cost due to the 

large number of models to evaluate for each ensemble prediction, making ensembles 

common for some use cases such as competitions but uncommon when comparing models 

[80]. Despite the incurred cost, several ensemble-based methods have been developed for 

domain adaptation either using the ensemble predictions to guide learning or using the 

ensemble to measure prediction confidence for pseudo-labeling target data.

3.4.1 Self-Ensembling.—An alternative to using multiple instances of a base model as 

the ensemble is using only a single model but “evaluating” (via a history or average) the 
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models in the ensemble at multiple points in time during training – a technique called self-
ensembling. This can be done by averaging over past predictions for each example (by 

recording previous predictions) [126] or past network weights (by maintaining a running 

average) [234]. Since an ensemble requires diverse models, these self-ensembling 

approaches require high stochasticity in the networks, which is provided by extensive data 

augmentation, varying the augmentation parameters, and including dropout. These methods 

were originally developed for semi-supervised learning.

French et al. [68] modify and extend these prior self-ensembling methods for unsupervised 

domain adaptation. They use two networks: a student network and a teacher network. Input 

images are fed first to stochastic data augmentation (Gaussian noise, translations, horizontal 

flips, affine transforms, etc.) before being input to both networks. Because the method is 

stochastic, the augmented images fed to the networks will differ. The student network is 

trained with gradient descent while the teacher network weights are an exponential moving 

average (EMA) of the student network’s weights. This method outperforms the other 

methods on the datasets in Table 2. Athiwaratkun et al. [9] show that in at least one 

experiment stochastic weight averaging [110] can further improve these results.

3.4.2 Pseudo-Labeling.—Rather than voting or averaging the outputs of the models in 

an ensemble, the individual model predictions could be compared to determine the 

ensemble’s confidence in that prediction. The more models in the ensemble that agree, the 

higher the ensemble’s confidence in that prediction. In addition, if performing classification 

on a particular example, an individual model’s confidence can be determined by looking at 

the last layer’s softmax distribution: uniform indicates uncertainty whereas one class’s 

probability much higher than the rest indicates higher confidence. Applying this to domain 

adaptation, a diverse ensemble trained on source data may be used to label target data. Then, 

if the ensemble is highly confident, those now-labeled target examples can be used to train a 

classifier for target data.

This is the method Saito et al. [204] developed called asymmetric tri-training (ATT). Two 

networks sharing a feature extractor are trained on the labeled source data (i.e., the ensemble 

in this case is of size two). Those two networks then predict the labels for the unlabeled 

target data, and if the two agree on the label and have high enough confidence on a particular 

instance, then the predicted label for that example is assumed to be the true label. After the 

target data are labeled by the first two networks, the third network (also sharing the same 

feature extractor) can be trained using the assumed-true labels (pseudo-labels). Diversity in 

the ensemble is handled with an additional loss (see Section 4.1).

Instead of using an ensemble, Zou et al. [291] rely on just the softmax distribution for the 

confidence measure. When working with semantic segmentation, they found relying on the 

prediction confidence for pseudo-labeling results in transferring primarily easy classes while 

ignoring harder classes. Thus, they additionally propose adding a class-wise weighting term 

when pseudo-labeling to normalize the class-wise confidence levels and thus balance out the 

class distribution.
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3.5 Target Discriminative Methods

One assumption that has led to successes in semi-supervised learning algorithms is the 

cluster assumption [30]: that data points are distributed in separate clusters and the samples 

in each cluster have a common label [220]. If this is the case, then decision boundaries 

should lie in low density regions (i.e., should not pass through regions where there are many 

data points) [30]. A variety of domain adaptation methods have been explored to move 

decision boundaries into density regions of lower density. These have typically been trained 

adversarially.

Shu et al. [220] in virtual adversarial domain adaptation (VADA) and Kumar et al. [124] in 

co-regularized alignment (Co-DA) both use a combination of variational adversarial training 

(VAT) developed by Miyato et al. [167] and conditional entropy loss. They are used in 

combination because VAT without the entropy loss may result in overfitting to the unlabeled 

data points [124] and the entropy loss without VAT may result in the network not being 

locally-Lipschitz and thus not resulting in moving the decision boundary away from the data 

points [220]. Shu et al. [220] additionally propose a decision-boundary iterative refinement 

step with a teacher (DIRT-T) for use after training to further refine the decision boundaries 

on the target data, allowing for a slight improvement over VADA. An entropy loss was also 

used in AutoDIAL [27] but without VAT.

In generative adversarial guided learning (GAGL), Wei et al. [250] propose to let a GAN 

move decision boundaries into lower-density regions. Using domain alignment methods that 

learn domain-invariant features like DANN (Section 3.1), typically the data fed to the feature 

extractor is either source or target data. However, Wei et al. propose to alternate this with 

feeding generated (fake) images and appending a “fake” label to the task classifier, thus 

repurposing the task classifier as a GAN discriminator. They found this to have the effect of 

moving the decision boundaries in the target domain into areas of lower density with a 

GAN, promoting target-discriminative features as a result.

Saito et al. [205] propose adversarial dropout regularization. Since dropout is stochastic, 

when they create two instances of the task classifier containing dropout, the resulting 

networks may produce different predictions. The difference between these predictions can 

be viewed as a discriminator. Using this discriminator to adversarially train the feature 

extractor has the effect of producing target discriminative features. Lee et al. [134] alter 

adversarial dropout to better handle convolutional layers by dropping channel-wise rather 

than element-wise.

3.6 Combinations

In recent work, researchers have proposed various combinations of the above methods. 

Domain mapping has been combined with domain-invariant feature learning methods either 

trained separately (in GraspGAN [20]) or jointly (in CyCADA [96]). Following AdaBN, 

many researchers started employing domain-specific batch normalization [20, 68, 114, 124, 

136]. Kumar et al. [124] propose co-regularized alignment (Co-DA), an approach in which 

two separate adversarial domain-invariant feature networks are learned with different feature 

spaces, drawing on ensemble-based methods. Kang et al. [115] combine domain mapping 
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with aligning the models’ attention by minimizing an attention-based discrepancy. Deng et 

al. [58] combine target discriminative methods with self-ensembling. Lee et al. [132] 

combine target discriminative methods and domain-invariant feature learning with a sliced 

Wasserstein metric.

Multi-adversarial domain adaptation (MADA) [183] combines adversarial domain-invariant 

feature learning with ensemble methods for the purpose of better handling multi-modal data. 

This is accomplished by incorporating a separate discriminator for each class and using the 

task classifier’s softmax probability to weight the loss from each discriminator for unlabeled 

target samples.

Saito et al. [206] combine elements of adversarial domain-invariant feature learning, 

ensemble methods, and target discriminative features in their maximum classifier 

discrepancy (MCD) method. They propose using a shared feature extractor followed by an 

ensemble (of size two) of task-specific classifiers, where the discrepancy between 

predictions measures how far outside the support of the source domain the target samples lie. 

The discriminator in this setup is the combination of the two classifiers. The feature 

extractor is trained to minimize the discrepancy (i.e., fool the classifiers that the samples are 

from the source domain) while the classifiers are trained to maximize the discrepancy on the 

target samples.

4 COMPONENTS

Table 1 summarizes the neural network-based domain adaptation methods we discuss 

showing components each method uses including what type of adaptation, which loss 

functions, whether the method uses a generator, and which weights are shared. Below we 

discuss each of these aspects followed by how the networks are trained, what types of 

networks can be used, multi-level adaptation techniques, and how to tune the 

hyperparameters of these methods.

4.1 Losses

4.1.1 Distance.—Distance functions play a variety of roles in domain adaptation losses. 

A distance loss can be used to align two distributions by minimizing a distance function 

(e.g., MMD) as explained in Section 3.1. If using an ensemble, minimizing a distance 

function can align the outputs of the ensemble’s models: an L1 loss of the difference in 

predicted target class probabilities from two networks in Co-DA [124] or a squared 

difference between the predictions of the student and teacher networks in self-ensembling 

[68]. (Note the squared difference loss is confidence thresholded, i.e., if the max predicted 

output is below a certain threshold then the squared difference loss is set to zero.)

Some of the described methods have been altered replacing the task loss with one of 

similarity. Laradji et al. [127] propose M-ADDA, a metric-learning modification to ADDA 

but with the goal of maximizing the margin between clusters of data points’ embeddings. 

Based on DANN, Pinheiro [187] proposes SimNet, classifying based on how close an 

embedding is to the embeddings of a random subset of source images for each class. Hsu et 
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al. [101] propose CCN++ incorporating a pairwise similarity network (trained with the same 

class is similar and different classes are dissimilar).

4.1.2 Promote Differences.—Methods that rely on multiple networks learning 

different features (such as to make an ensemble diverse) do so by promoting differences 

between the networks. Saito et al. [204] train the two classifiers labeling unlabeled data to 

use different features by adding a norm of the product of the two classifiers’ weights. 

Bousmalis et al. [22] promote different features between two private feature extractors with 

a soft subspace orthogonality constraint, which is similarly used by Liu et al. [144] for text 

classification. Kumar et al. [124] train the feature extractors to be different by pushing 

minibatch means apart. Saito et al. [206] maximize the discrepancy between two classifiers 

using a fixed, shared feature extractor to promote using different features.

4.1.3 Cycle Consistency / Reconstruction.—A cycle consistency loss or 

reconstruction loss is commonly used in domain mapping methods to avoid requiring a 

dataset of corresponding images to be available in both domains. This is how CycleGAN 

[290], DualGAN [264], and DiscoGAN [118] can be unsupervised. This means that after 

translating an image from one domain (e.g., horses) to another (e.g., zebras), the new image 

can be translated back to reconstruct the original image, as illustrated in Figure 6a. Some 

variants of this have been proposed such as an L1 loss with a transformation function (e.g., 

identity, image derivatives, mean of color channels) [219], a feature-level cycle-consistency 

loss (mapping from source to embedding to target then back to embedding resulting in the 

same embeddings) [197], or using the loss in one [41] or both directions [96, 197]. Sener et 

al. [214] enforce cycle consistency in their k-nearest neighbors (k-NN) approach by 

requiring the distance between any source and target point labeled the same to be less than 

the distance between any source and target point labeled differently and derive a rule they 

can solve with stochastic gradient descent.

4.1.4 Semantic Consistency.—A semantic consistency loss can be used to preserve 

class assignments as illustrated in Figure 6b (a segmentation example). The semantic 

consistency loss requires that a classifier output (or semantic segmentation labeling) from 

the original source image is the same as the same classifier’s output on the pixel-level 

mapped target output.

4.1.5 Task.—Nearly all of the domain adaptation methods include some form of task loss 

that helps the network learn to perform the desired task. For example, for classification, the 

goal is to output the ground truth source label, or for semantic segmentation, to label each 

pixel with the correct ground truth source label. The task loss used is generally a cross-

entropy loss, or more specifically the negative log likelihood of a softmax distribution [80] 

when using a softmax output layer. The exceptions not including a task loss are SimNet 

[187] that classify based on distance to prototypes of each class, the work by Sener et al. 

[214] that uses k nearest neighbors, and AdaBN [141] that only adjusts the batch norm 

layers to the target domain. In addition, the image-to-image translation methods are 

application agnostic unless trained jointly for domain adaptation.
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4.1.6 Adversarial.—A variety of methods use a discriminator (or critic) for learning 

domain-invariant features, realistic image generation, or promoting target discriminative 

features by forcing a network (either a feature extractor or generator) to produce outputs 

indistinguishable between two domains (source and target or real and fake). This loss is 

different than the other losses discussed in this section because this adversarial loss is 

learned [79, 109] (where learning is more than a hyperparameter search) rather than being 

provided as a predefined function. During training, gradients from the discriminator are used 

to train the feature extractor or generator (e.g., negated by a gradient reversal layer, Section 

3.1.3). This alternates with updating the discriminator itself to make the correct domain 

classification.

4.1.7 Additions for Specific Problems.—Some research focusing on specific 

problems has resulted in additional losses. For semantic segmentation, Li et al. [138] 

develop a loss making segmentation boundaries sharper to help when the mapped image-to-

image translation images will be used for segmentation, Chen et al. [40] develop a 

distillation loss in addition to performing location-aware alignment (e.g., “road” is usually at 

the bottom of each image), Hoffman et al. [97] develop a class-aware constrained multiple 

instance loss, Zhang et al. [276] develop a curriculum where after learning some high-level 

properties on easy tasks the segmentation network is forced to follow those properties 

(interpretations include student-teacher setup or posterior regularization), and Perone et al. 

[185] apply the self-ensembling method [68] replacing the cross-entropy loss with a 

consistency loss. For object detection, Chen et al. [39] use two domain classifiers (one on an 

image-level representation and the other on an instance-level representation) with a 

consistency regularization between them. For adaptation from synthetic images where it is 

known which pixels are foreground in the source images, Bousmalis et al. [21] and Bak et al. 

[11] mask certain losses to only penalize foreground pixel differences. For person re-

identification, Wei et al. [251] include a person identity-keeping constraint in their domain 

mapping GAN.

4.2 Low-Confidence or Low-Relevance Rejection

Given a measure of confidence, performance may increase if we can reject data points for 

training the target classifier that are not of sufficient confidence. This, of course, assumes 

our confidence measurement is accurate enough. Saito et al. [204] used the label agreement 

of an ensemble combined with the softmax distribution output (uniform is not confident, one 

probability much higher than the rest is confident). Sener et al. [214] used the label 

agreement of the k nearest source data points. If the confidence is to low, then the example is 

rejected and not used in training until if later on when re-evaluated it is determined to be 

sufficiently confident. Inoue et al. [106] used an object detector’s prediction probability as a 

measure of confidence, only using high-confidence detections for fine-tuning an object 

detection network. Similarly, a rejection approach could be used if we have a measure of 

relevance. For text classification, Zhang et al. [275] weight examples by their relevance to 

their target aspect based on a small set of positive and negative keywords (a form of weak 

supervision).

WILSON and COOK Page 18

ACM Trans Intell Syst Technol. Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.3 Weight Sharing

Methods employ different amounts of sharing network weights between domains or 

regularizing the weights to be similar. Most methods completely share weights between the 

feature extractors used on the source and target domains (as shown in Table 1). However, 

some techniques do not. Since deep networks consist of many layers, allowing them to 

represent hierarchical features, Long et al. [147] propose copying the lower layers from a 

network trained on the source domain and adapting higher layers to the target domain with 

MK-MMD since higher layers do not transfer well between domains. In CoGAN, Liu et al. 

[143] share the first few layers of the generators and the last few layers of the discriminators, 

making the assumption that the domains share high-level representations. In AdaBN, Li et 

al. [141] assume domain knowledge is stored in the batch norm statistics, so they share all 

weights except for the batch norm statistics. French et al. [68] define the teacher network as 

an exponential moving average of the student network’s weights (a type of ensemble). 

Instead of sharing weights, Rozantsev et al. [198, 199] propose two variants: regularizing 

weights to be similar but not penalizing linear transformations and transforming the weights 

from the source network to the target network with small residual networks. Bousmalis et al. 

[22] propose domain separation networks (DSN): learning source-specific, target-specific, 

and shared features where the “shared” source domain encoder and “shared” target domain 

encoder do share weights, but the “private” source domain encoder and “private” target 

domain encoders do not. Others have similarly explored this idea of shared vs. specific 

features [25, 144, 194].

4.4 Training Stages

Some have trained networks for domain adaptation in stages. Tzeng et al. [241] train a 

source classifier first followed by adaptation. Taigman et al. [231] use a pre-trained encoder 

during adaptation. Bousmalis et al. [20] in GraspGAN first train the domain-mapping 

network followed by the domain-adversarial network. Hoffman et al. [96] in CyCADA train 

their many components in stages because it would not all fit into GPU memory at once.

Other methods train the domain adaptation networks jointly, which using an adversarial 

approach is done by alternating between training the discriminator and the rest of the 

networks (Sections 2.2 and 3.1.3). However, variations exist for some other methods. Saito 

et al. [204] in ATT cycle through generating training the source networks, generating 

pseudo-labels, and training the target network. Zou et al. [291] alternate between pseudo-

labeling the target data and re-training the model using the labels (a form of self-training). 

Wei et al. [250] in GAGL alternate between feeding in real source and target data and the 

fake images generated by a GAN. Sener et al. [214] alternate between k-nearest neighbors 

and performing gradient descent.

4.5 Multi-Level

Some adaptation methods perform adaptation at more than one level. As discussed in 

Section 3.6, GraspGAN [20] and CyCADA [96] perform pixel-level adaptation with domain 

mapping and feature-level adaptation with domain-invariant feature learning. Hoffman et al. 

[96] found that performing both levels of adaptation significantly improves accuracy: using 

domain mapping to capture low-level image domain shifts and learning domain-invariant 
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features to handle larger domain shifts than what pure domain mapping methods can 

support. Following this idea, Tsai et al. [239] make semantic segmentation predictions and 

perform domain-invariant feature learning at multiple levels in their semantic segmentation 

network, and Zhang et al. [274] perform domain-invariant feature learning at multiple levels 

while automatically learning how much to align to each level. Chen et al. [39] perform 

domain-invariant feature learning at both image and instance levels for object detection but 

also include a consistency regularization between the two domain classifiers.

4.6 Types of Networks

Nearly all of the surveyed approaches focus on learning from image data and use 

convolutional neural networks (CNNs) such as ResNet-50 or Inception (Table 3). Wang et al. 

[247] explore the use of attention networks, Kang et al. [115] a combination of CNNs and 

attention, Ma et al. [154] graph convolutional networks, and Kurmi et al. [125] Bayesian 

neural networks. In the case of time-series data, Purushotham et al. [189] propose instead 

using a variational recurrent neural network (RNN) [43] or LSTM (a type of RNN) [94] 

rather than a CNN. The RNN learns the temporal relationships while adversarial training is 

used to achieve domain adaptation. For text classification (a type of natural language 

processing), Liu et al. [144] also use LSTMs while Zhang et al. [275] found a CNN to work 

just as well as RNNs or bi-LSTMs in their experiments. For relation extraction (another type 

of natural language processing), Fu et al. [70] also use a CNN. For time-series speech 

recognition, Zhao et al. [282] use bi-LSTMs while Hosseini-Asl et al. [100] used a 

combination of CNNs and RNNs. In the related problem of domain generalization, a 

combination of CNNs and RNNs have been used for handling a radio spectrogram changing 

through time to identify sleep stages [284].

4.7 Hyperparameter Tuning

Normal supervised learning-based hyperparamenter tuning methods do not carry over to 

unsupervised domain adaptation [22, 73, 149, 150, 171, 185, 245]. A common supervised 

learning approach is to split the training data into a smaller training set and a validation set. 

After repeatedly altering the hyperparameters, retraining the model, and testing on this 

validation set for each set of hyperparameters, the model yielding the highest validation set 

accuracy is selected. Another option is cross validation. However, in unsupervised domain 

adaptation, there are now two domains, and the data for the target domain may not include 

any labels. When evaluating domain adaptation approaches on common datasets, generally 

the target data does contain labels, so work by some groups [22, 27, 124, 201, 220, 245, 250] 

do use some labeled target data (or all of it [149, 217]) for hyperparameter tuning, which can 

be interpreted as an upper bound on how well the method could perform [245]. For example, 

some [27, 150] tuned for Office on one W labeled example per class on the A →W task, 

while others [201, 250] tuned with a validation set of 1000 randomly sampled target 

examples. Using any labeled target data is not ideal because real-world testing will not 

include labels for tuning (unless it is semi-supervised, in which case semi-supervised 

learning is recommended in Section 6).

One tuning method not requiring labeled target data is reverse validation [73], which is a 

variant of reverse cross validation [286]. For a set of hyperparameters, the reverse validation 
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risk can be estimated by first splitting source (labeled) and target (unlabeled) data into 

training and validation sets. Then, the labeled source and unlabeled target data are used to 

learn a classifier (as is normally done). Next, this forward classifier is used to label the target 

data and a new reverse classifier is learned (with the same algorithm) using the pseudo-

labeled target data (as “source”) and unlabeled source data (as “target”, i.e., ignoring the 

known labels). This reverse classifier is evaluated on the source validation data to measure 

the reverse validation risk. Ganin et al. [73] found this method works better if the reverse 

classifier is initialized with the weights of the forward classifier and if using early stopping 

on the source validation set and a pseudo-labeled target validation set. Finally, 

hyperparameters are selected (e.g., grid search, random search, Bayesian optimization, or 

other gradient-free optimization methods such as those implemented in Nevergrad [191]) 

that minimize this reverse validation risk.

Alternatively, given some domain knowledge, one may devise relevant measures of 

similarity between the domains and tune parameters to increase the similarity. For example, 

French et al. [68] were able to improve performance on the challenging problem of MNIST 

→ SVHN by tuning data augmentation hyperparameters for MNIST to match pixel 

intensities apparent in the SVHN dataset. By doing this, they were able to improve the state-

of-the-art to 97.0% (Table 2).

5 RESULTS

Tables 2 through 5 summarize the results of evaluating many of these methods on datasets 

used for image classification as well as sentiment analysis. Care must be taken in the extent 

to which conclusions are drawn from comparing published numbers in different papers since 

the provided accuracies are for different network architectures, hyperparameters, amount of 

data augmentation, random initializations (or averages over a number of them), etc. and the 

methods may perform differently in other application areas. However, interestingly, at least 

one method in each of the categories of surveyed gives promising results on at least one of 

the datasets.

With domain-invariant feature learning with the contrastive domain discrepancy, CAN [114] 

has the highest performance on the Office dataset (Table 3). By using adversarial domain-

invariant feature learning, WDGRL generally outperforms the other methods on the Amazon 

review dataset (Table 4) and Generate to Adapt is second highest of the methods evaluated 

on the Office dataset. By using adversarial pixel-level domain mapping, SBADA-GAN [201] 

obtains the highest accuracy on MNIST→MNIST-M (Table 2). AutoDIAL [27], a 

normalization statistics method, does on-par with CAN and Generate to Adapt in two of 

Office adaptation tasks. The self-ensembling method by French et al. [68] outperforms all 

other methods on the datasets in Table 2, and Co-DA [124] comes close using an ensemble 

(of size two) of adversarial domain-invariant feature networks. CyCADA increases accuracy 

from 54% to 82% for a synthetic season adaptation dataset [96] by combining both 

adversarial domain-invariant feature learning and domain mapping.

A number of these promising methods use adversarial techniques, which may be a key 

ingredient in solving domain adaptation problems. Adversarial approaches may be helpful 
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on certain datasets (e.g., WDGRL on the Amazon review dataset on Office), certain types of 

data (e.g., VRADA was developed for time series data rather than image data), or may not 

require as extensive of tuning (e.g., Co-DA on MNIST→SVHN). Or adversarial training 

may be an additional tool to incorporate into existing non-adversarial methods. For instance, 

promising non-adversarial methods such as AutoDIAL and by French et al. could be 

combined with adversarial methods (see Section 8.3). In fact, Long et al. [151] develop both 

JAN and then the adversarial version JAN-A, and JAN-A on average outperformed JAN on 

the Office dataset. CAN [114], which presently is the highest on the Office dataset, might 

also be improved by incorporating an adversarial component to it as in Long et al. [151].

Interestingly, French et al. by far outperform all other methods on MNIST→SVHN, though 

this requires a problem-specific data augmentation and hyperparameter tuning. This may 

indicate that for some problems, maybe in particular the more challenging domain 

adaptation problems, hyperparameter tuning for a specific dataset may be of utmost 

importance. Possibly if other domain adaptation methods similarly were tuned appropriately, 

they would also experience large improvements. This is an area of research requiring further 

work (see Section 8.2). However, Co-DA [124] is not far behind on SVHN→MNIST and 

MNIST→MNIST-M and is the closest on MNIST→SVHN, achieving 81.7% compared 

with 97.0%. A great advantage of Co-DA is that it does not require highly-problem-specific 

tuning on MNIST→SVHN as required by French et al. (without they only achieved 37.5%). 

Possibly some components of Co-DA such as the adversarial domain adaptation or virtual 

adversarial training may be partially responsible for the decrease in hyperparameter 

sensitivity.

6 THEORY

Having surveyed domain adaptation methods, we now address the question of when 

adaptation may be beneficial. Ben-David et al. [13] develop a theory answering this in terms 

of an ideal predictor on both domains, Zhao et al. [280] further this theory by removing the 

dependence on a joint ideal predictor while focusing on domain-invariant feature learning 

methods, and Le et al. [129] develop theory looking beyond domain-invariant methods. 

These theoretical results can help answer two questions: (1) when will a classifier (or other 

predictor) trained on the source data perform well on the target data, and (2) given a small 

number of labeled target examples, how can they best be used during training to minimize 

target test error?

Answering the first question, labeled source data and unlabeled target data are both required 

(unsupervised). Answering the second question, additionally some labeled target data are 

required (semi-supervised). We will first review the theoretical bounds followed by a 

discussion of what insights these bounds provide into answering the above two questions. 

Ben-David et al. [13] also address the case of multiple source domains, as do Mansour et al. 

[159]. In this paper, we have focused on the cases containing only one source and one target 

(as is common in the methods we survey).
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6.1 Unsupervised

6.1.1 Shared Hypothesis Space.—Ben-David et al. [13] propose setting a bound on 

the target error based on the source error and the divergence between the source and target 

domains. The empirical source error is easy to obtain by first training and then testing a 

classifier. However, the divergence between the domains cannot be directly obtained with 

standard methods like Kullback-Leibler divergence due to only having a finite number of 

samples from the domains and not assuming any particular distribution. Thus, an alternative 

is to measure it using a classifier-induced divergence called ℋΔℋ‐divergence . Estimates of 

this divergence with finite samples converges to the real ℋΔℋ‐divergence . This divergence 

can be estimated by measuring the error when getting a classifier to discriminate between 

the unlabeled source and target examples; though, it is often intractable to find the 

theoretically-required divergence upper bound. Using the empirical source error ϵS(ℎ), the 

ℋΔℋ‐divergence between source and target samples dℋΔℋ DS, DT , and ideal predictor 

error λ* using the optimal hypothesis for the source and target, the target error ϵT (h) can be 

bounded as shown in Equation 2 (using the form given by Zhao et al. [280]), ∀ℎ ∈ ℋ with 

probability at least 1 − δ for δ ∈ (0, 1).

ϵT(ℎ) ≤ ϵS(ℎ) + 1
2dℋΔℋ DS, DT + λ* + O

d log n + log 1
δ

n (2)

Zhao et al. [280] develop another upper bound that removes the reliance on λ*. Let 

ℋ ⊆ [0, 1]X, ℋ ≔ sgn |ℎ(x) − ℎ′(x)| − t ∣ ℎ, ℎ′ ∈ ℋ, 0 ≤ t ≤ 1 , DS, fS  and DT , fT  be the 

source and target domains (the true distributions, not empirical). The target error can then be 

bounded by the source error ϵS(h), the discrepancy between marginal distributions 

dℋ DS, DT , and the distance between the optimal source and target labeling functions 

∀ℎ ∈ ℋ, as shown in Equation 3.

ϵT(ℎ) ≤ ϵS(ℎ) + dℋ DS, DT + min EDS |fS − fT | , EDT |fS − fT | (3)

Zhao et al. [280] also develop an information-theoretic lower bound for target error. Let the 

labeling function Y = f (X) ∈ {0, 1}, the prediction function Y = ℎ(g(X)) ∈ 0, 1 , and Z be 

the intermediate representation output by a shared feature extractor used on source and 

target domain data. If the Jensen-Shannon distance dJS DS
Y , DT

Y ≥ dJS DS
Z, DT

Z  and the 

Markov chain X g Z ℎ Y  holds, then Equation 4 provides a lower bound on the source and 

target error.

ϵS(ℎ ∘ g) + ϵT(ℎ ∘ g) ≥ 1
2 dJS DS

Y , DT
Y − dJS DS

Z, DT
Z 2

(4)
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6.1.2 Different Hypothesis Spaces.—Le et al. [129] develop an upper bound that 

allows for different hypothesis spaces for source and target functions, possibly non-

deterministic labeling, and any bounded or continuous loss. If l is a bounded or continuous 

loss, x ℙs (source) and x ℙt (target), T :Xs Xt and K ≔ T−1 (bijective mapping), 

R(θ) = Ep(x, y) l y, ℎθ(x)  for θ parameterizing a hypothesis set 

ℋ = ℎθ ∣ θ ∈ Θ , ΔR ℎs, ℎt ≔ |Rt ℎt − Rs ℎs |, y ∈ −1, 1 , M is the number of labels, 

ℙ# ≔ K#ℙt is the pushforward probability distribution transporting ℙt via K, Δp(y|x) ≔ pt (y|

T (x)) − ps (y|x) for the true source and target labeling functions ps (y|x) and pt (y|x), where 

W Sc ℙs, ℙ#  denotes the Wasserstein-1 distance between the source and target distributions 

with a cost function c(x, x′) = 1x≠x′ (1 if x ≠ x′, otherwise 0), then Equation 5 provides an 

upper bound for the variance between a general loss on the source and target predictions.

ΔR ℎs, ℎt ≤ M W Sc ℙs, ℙ# + min Eℙ# Δp(y ∣ x) 1 , Eℙs Δp(y ∣ x) 1 (5)

6.2 Semi-Supervised

In the semi-supervised case, a linear combination of the source and target errors is computed 

[13], called the α-error. A bound can be calculated on the true α-error based on the 

empirical α-error. Finding the minimum α-error depends on the empirical α-error, the 

divergence between source and target, and the number of labeled source and target 

examples. Experimentation can be used to empirically determine the values of α that will 

perform well. Ben-David et al. [13] also demonstrate the process on sentiment classification, 

illustrating that the optimum uses non-trivial values.

The bound is given in Equation 6. If S is a labeled sample of size m with (1 − β)m points 

drawn from the source distribution and βm from the target distribution, then with at least 

probability 1 − δ for δ ∈ (0, 1):

ϵT(ℎ) ≤ ϵT ℎT* + 4 α2

β + (1 − α)2

1 − β
2d log(2(m + 1)) + 2 log 8

δ
m + 2(1 − α

) 1
2dℋΔℋ US, UT + 4

2d log 2m′ + log 8
δ

m′ + λ
(6)

Here, ℎ ∈ ℋ is the empirical minimizer of the α-error on S given by 

ϵα(ℎ) = αϵT (ℎ) + (1 − α)ϵS(ℎ) and ℎT* = minℎ ∈ ℋϵT (ℎ) is the target error minimizer.

The optimum α is then:

α* mT , mS; D =
1 mT ≥ D2

min 1, v mT ≤ D2 (7)
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Here, mS = (1 − β)m is the number of source examples, mT = βm is the number of target 

examples, D = d/A, and

v = mT
mT + mS

1 + mS

D2 mS + mT − mSmT
(8)

A = 1
2dℋΔℋ US, UT + 4

2d log 2m′ + log 4
δ

m′ + λ (9)

B = 4
2d log(2(m + 1)) + 2 log 8

δ
m

(10)

6.3 Discussion

6.3.1 Unsupervised.—Equation 2 indicates that if the optimal predictor error λ* on 

both source and target data is large, then there is no good hypothesis from training on the 

source domain that will work well on the target domain [13, 280]. However, as is more 

common in the application of domain adaptation, if λ* is small, then the bound depends on 

the source error and the ℋΔℋ‐divergence  [13]. The domain-invariant feature learning 

methods discussed in Section 3.1 try minimizing these two terms [280]: the source error via 

a task loss on labeled source data and divergence via a divergence measure such as MMD, 

with reconstruction, or adversarially. While Section 5 shows that on many datasets these 

methods work, there is no guarantee that such adaptation will increase performance (these 

are upper bounds), as shown by simple counterexamples [280]. It may actually decrease 

performance if the marginal label distributions differ significantly between source and target 

[280].

Equation 3 shows that the target error upper bound alternatively involves the marginal 

distributions and Equation 4 shows that the lower bound does too. These indicate the 

importance of aligning the label distributions. If the marginal label distributions are 

significantly different, then minimizing the source error and divergence between feature 

representations will actually increase the error [280]. Thus over-training domain-invariant 

feature learning methods can increase target error, and Zhao et al. [280] experimentally 

verified this. They found on MNIST, USPS, and SVHN adaptation that during training the 

target accuracy would initially rise rapidly but would eventually decrease again despite 

increasing source accuracy, an effect even more apparent with larger differences in the 

marginal label distributions. It is an open problem as to when the label distributions can be 

aligned without target labels [280].

6.3.2 Semi-Supervised.—Equation 6 indicates that when only source or target data are 

available, that data should be used (as we might expect). If the source and target are the 

same, then α* = β, which implies a uniform weighting of examples. Given enough target 

data, source data should not be used at all because it might increase the test-time error. 
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Furthermore, without enough source data using it may also not be worthwhile, i.e., α* ≈ 0 

[13]. In this paper we focus on unsupervised domain adaptation, but these are important 

considerations if target labels can be obtained. For example, this shows that it may be better 

to perform semi-supervised adaptation if some labeled target examples are available rather 

than using the labeled target examples to hyperparameter tune an unsupervised adaptation 

method.

7 APPLICATIONS

Domain adaptation has been applied in a variety of areas including computer vision, natural 

language processing, and for time-series data. Using domain adaptation in these various 

problems can save the human time that would be spent labeling the target data. In some 

cases such as image semantic segmentation, providing ground truth is very labor intensive. 

Each pixel-level annotated image in the Cityscapes dataset took on average 1.5 hours to 

complete [46]. In addition, similar methods as described in this paper have been applied to 

the related problem of domain generalization and some other problems as well.

7.1 Computer Vision

Most of the methods surveyed in this paper are for computer vision tasks such as adapting a 

model trained on synthetic images to real photos (e.g., from synthetic numbers or signs, 

Table 2), stock photos to real photos (e.g., Amazon to DSLR on the Office dataset, Table 3), 

or simple to complex images (e.g., MNIST to SVHN, Table 2). Others have been used in 

robotics for robot grasping [20], autonomous navigation [266], and lifelong learning [255], 

for semantic segmentation [40, 98, 102, 133, 153, 209, 239, 243, 291] including when 

additional information is available from a simulator [133], in a medical context for chest X-

ray segmentation [32], 3D CT scans to X-ray segmentation [277], MRI to CT scan 

segmentation [33], and MRI segmentation [185], in low resource situations (where there are 

very few target data points) [100], in situations with different label sets for each domain 

[223], for object detection [39, 97, 106], for person re-identification [11, 57, 73, 142, 251, 

287, 288], and for depth estimation [8, 155, 174].

7.2 Natural Language Processing

Domain adaptation has been used in natural language processing such as for sentiment 

analysis (Table 4, [275, 282]), other text classification [144, 275] including weakly-

supervised aspect-transfer from one aspect of a dataset to another [275], relation extraction 

[70], semi-supervised sequence labeling [54], semi-supervised question answering [262], 

sentence specificity [119], and neural machine translation [23, 31, 42].

7.3 Time Series

For time-series data, domain adaptation has been used for learning temporal latent 

relationships in health data across different population age groups [189], to perform speech 

recognition [100, 218, 282], for predicting driving maneuvers [238], anomaly detection 

[242], and inertial tracking [35]. In a method addressing the related problem of domain 

generalization, time-series radio data was used for sleep-stage classification [284]. Finally, a 
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combination of pre-training and fine-tuning was used to solve another transfer learning 

problem, where the source datasets have a different label space than the target dataset [108].

7.4 Domain Generalization

Domain-invariant feature learning approaches similar to those discussed in Section 3.1 have 

been used for the related problem of domain generalization, where there are multiple source 

domains and an unseen target domain [17, 173]. Zhao et al. [284] use an adversarial 

approach with a domain classifier to learn a model on a dataset collected from a number of 

people sleeping in various environments that will generalize well to new people and/or new 

environments (e.g., sleeping in a different room). Ghifary et al. [75] use a reconstruction 

approach with a denoising autoencoder to improve object recognition generalizability, where 

the “noise” is different views (domains) of the data (e.g., rotation, change in size, or 

variation in lighting) and the autoencoder tries to reconstruct corresponding views of the 

object in other domains. Carlucci et al. [28] propose an adversarial approach combining 

domain adaptation and generalization while also doing domain mapping. Akuzawa et al. [2] 

note the domain-invariance objective may compete with the discriminative objective and 

thus develop a method to find the most domain-invariant representation that does not hurt 

classification performance. Li et al. [140] note that previous domain-invariant methods 

typically assume balanced classes and develop a method to handle changes in class 

proportions.

7.5 Other Problems

Adversarial losses like those used in adversarial domain adaptation methods have also been 

applied in multiple other settings. Wang et al. [248] created an adversarial spacial dropout 

network to add occlusions to images to improve the accuracy of object detection algorithms. 

They also created an adversarial spatial transformer network to add deformations such as 

rotations to objects to again increase object detection accuracy. Pinto et al. [188] used 

adversarial agents to improve a robot’s ability to grasp an object via self-supervised learning 

by employing both shaking and snatching adversaries. Giu et al. [86] used an adversarial 

loss to predict and demonstrate (i.e., robot will copy) human motion. Rippel et al. [195, 196] 

used a reconstruction and adversarial loss with an autoencoder for learning higher quality 

image compression at low bit rates. Sinclair [222] applied adversarial loss to clone a 

physical model for real-time sound synthesis. Adversarial techniques may also be applied to 

machine learning security, where the goal is to train a classifier robust to adversarial 

examples [103, 167].

8 RESEARCH DIRECTIONS

As we have seen, the rapidly-growing body of research focused on unsupervised deep 

domain adaptation now encompasses many novel methods and components. Here we look at 

what could be explored in future research to further enhance this existing work.

8.1 Bi-Directional Adaptation

The more difficult domain adaptation problems are far from being solved. Tables 2 through 

5 indicate that some domain adaptation problems are harder than others and point to the 
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challenge that more work needs to be focused on these harder problems. While accuracy for 

SVHN→MNIST ranges from 70.7% to 99.3%, for the reverse case of MNIST→SVHN, the 

highest without highly-problem-specific hyperparameter tuning is 81.7% by Kumar et al. 

[124] (though tuned on a small amount of labeled target data). This indicates how this 

reverse problem is much harder [68, 72]. As a result, few papers offer results for this 

direction. French et al. [68] were able to vastly improve performance up to 97.0%; however, 

this required developing a problem-specific unsupervised hyperparameter tuning method. 

Other methods may similarly benefit from such tuning. Continued work is needed to 

strengthen general-purpose bi-directional adaptation.

8.2 Hyperparameter Tuning

Some methods such as reverse validation and a problem-specific pixel intensity matching 

have been applied to hyperparameter tuning without requiring target labels (Section 4.7). 

While the reverse validation method appears promising, it was not used in most of the 

methods surveyed (only [73, 183, 187]). This may be because of the increase in computation 

cost [185] or problems with the reverse validation accuracy not aligning with test accuracy 

[22]. It is also possible researchers may just be unaware of the method since in the surveyed 

papers few mention the idea (only [22, 73, 183, 185, 187]). Problem-specific methods such 

as matching pixel intensity between domains as done by French et al. [68] are possible given 

some domain knowledge, but hyperparameter tuning methodologies should be developed 

that will work across a wider range of problems. This remains an open area of research.

8.3 Combining Promising Methods

French et al. [68], Co-DA [124], CAN [114], AutoDIAL [27], Generate to Adapt [208], and 

WDGRL [217] are promising approaches based on Tables 2 through 4. French et al. uses a 

student and teacher network for self-ensembling, Co-DA trains multiple (e.g., two) 

adaptation networks while requiring diversity and agreement in addition to incorporating 

virtual adversarial training, CAN alternates between clustering and adaptation through 

minimizing intra-class discrepancy and maximizing inter-class margin, AutoDIAL adjusts 

batch normalization layer weights, Generate to Adapt uses an embedding-conditional GAN 

for adversarial domain adaptation, and WDGRL performs adversarial domain adaptation 

similar to DANN by using a domain classifier. These are largely independent ideas that if 

combined may result in additional performance gains.

For instance, the student network in French et al. that accepts either a source or target 

augmented image could be replaced by the AutoDIAL network to learn how much 

adaptation to perform at each level of the network. Or to combine with adversarial methods, 

the student and teacher networks’ outputs (or an intermediate layer’s outputs, as is being 

explored by Wang et al. [245]) could be fed to a gradient reversal layer followed by a 

domain classifier, in effect adding an adversarial loss term to the existing two terms used by 

French et al. Or since French et al. is based upon data augmentation, one might try replacing 

the existing stochastic data augmentation with a GAN since a GAN can be used for data 

augmentation (given enough unlabeled training data).
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Alternatively, key aspects of other methods could be incorporated. While domain adaptation 

methods commonly align feature distributions, a different line of research aligns the joint or 

conditional distribution of the feature and label spaces instead [44, 47, 50, 148, 151, 154, 

233, 267]. Researchers found aligning in this manner improves results when handling multi-

modal data distributions [148] or when label proportions differ between domains [47]. Other 

domain adaptation strategies may similarly benefit from aligning the joint or conditional 

distribution rather than merely the feature distribution.

8.4 Balancing Classes

In order to obtain high accuracy on the challenging problem of MNIST→SVHN, French et 

al. [68] include an additional class-balance term in their loss function, which both improved 

training stability and helped the network avoid a degenerate local minimum. Though, this 

term was not required in their other experiments. Clearly, class balancing is an important 

concern; although, this depends on the dataset being used. Other methods may similarly 

benefit from balancing classes.

For instance, Hoffman et al. [96] note that the frequency-weighted intersection over union 

results in their paper were very close to the target-only model accuracy (an approximate 

upper bound). Thus, they conclude that domain mapping followed by domain-invariant 

feature learning is very effective for the common classes in the SYNTHIA dataset (season 

adaptation on a synthetic driving dataset). It is possible then that additional balancing of 

classes could help the not-as-common classes to perform better. In addition, data 

augmentation through occluding parts of the images may improve class balancing as would 

the adversarial spatial dropout network by Wang et al. [248] since the two best classes (road 

and sky) were likely in almost every image.

8.5 Incorporating Improved Image-to-Image Translation Methods

Bousmalis et al. [21] with PixelDA had difficulty applying their method with large domain 

differences. However, other image-to-image translation methods like XGAN [197] have 

been developed that may support larger domain shifts. These methods could be extended to 

domain adaptation directly or also incorporating a semantic consistency loss (as explained in 

Section 4.1). This may allow for more substantial differences between domains. Similarly, 

image-to-image translation methods like StarGAN [41] have been developed for multiple 

domains, which could be extended for multi-domain adaptation.

8.6 Futher Experimental Comparison Between Methods

As shown in Table 2, French et al. [68] outperforms all the other methods and Co-DA [124] 

is quite close behind (with the advantage that it does not require highly-problem-specific 

tuning on MNIST→SVHN). In Table 3, CAN [114] outperforms the others followed by 

Generate to Adapt [208]. Finally, in Table 4, WDGRL [217] generally performs the best. 

However, these methods are not all compared on the same dataset, making a direct 

comparison difficult. Additional experiments must be performed to see how these methods 

compare. Similarly, other promising approaches may outperform other methods on some 

datasets, which could be determined through additional experiments.
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These comparisons can be made easier through developing a unified implementation of 

these various methods. Schneider et al. [212] are developing such an open-source set of 

implementations of state-of-the-art domain adaptation (and domain generalization) methods. 

The results provided in individual papers have different hyperparameters, data augmentation, 

network architectures, etc. that can make direct comparisons challenging. Using a unified 

implementation of these methods can facilitate more clearly understanding what aspects of a 

method are responsible for performance gains and also support combining the novel 

elements from multiple methods.

8.7 Limitations of Datasets

Varying amounts of source and target data are available in different situations. The datasets 

used for comparisons (the image datasets listed in Table 5 and the Amazon review dataset) 

are relatively small when compared with the sizes of datasets commonly in use in deep 

learning, e.g., ImageNet [56, 200] (though ImageNet is often used to pretrain adaptation 

networks). For example, Sankaranarayanan et al. [208] note how GANs require a lot of 

training data. This may limit GAN-based methods from being used on too small of source or 

target datasets. Modifications may need to be developed for such low resource situations, an 

area explored by Hosseini-Asl et al. [100]. Additionally, most domain adaptation datasets 

are for computer vision. To spur research in other application areas, other datasets could be 

created.

8.8 Other Applications

Other application areas may benefit from performing domain adaptation as have those 

discussed in Section 7. In particular, only a few methods were applied to time-series data. 

One time-series application that may benefit from adaptation is activity prediction, e.g., 

adapting from one type of sensor to another or from one person’s data to another’s. Some 

added challenges in this context may be the large differences in feature spaces due to the 

wide variety of sensors used (e.g., an event stream of fixed motion sensors turning on and off 

in a smart home vs. sampled motion and location data collected from smart phones or 

watches) or the difference in labels (e.g., one model may learn a “walk” activity while 

another learns “exercise” or may learn “read” while another model learns “school”). 

Applying domain adaptation in new areas may yield novel methods or components 

applicable in other areas as well.

8.9 Other Domain Adaptation Cases

As mentioned in Section 3, we have surveyed single-source homogeneous unsupervised 

domain adaptation methods due to this being the most commonly-studied case of domain 

adaptation. However, exploring other cases is warranted. By utilizing data from multiple 

source domains and/or multiple target domains, additional gains in performance may be 

achievable. By handling heterogeneous feature spaces or various other levels of supervision 

(e.g., semi-supervised learning [203] or weakly-supervised learning [221]), domain 

adaptation may bring performance gains to other problems as well. Finally, another under-

studied case of domain adaptation is partial domain adaptation, where the target domain 

contains only a subset of the source domain’s labels [26, 233, 272].
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9 CONCLUSIONS

For supervised learning, deep neural networks are in prevalent use, but these networks 

require large labeled datasets for training. Unsupervised domain adaptation can be used to 

adapt deep networks to possibly-smaller datasets that may not even have target labels. 

Several categories of methods have been developed for this goal: domain-invariant feature 

learning, domain mapping, normalization statistics-based, and ensemble-based methods. 

These various methods have some unique and common elements as we have discussed. 

Additionally, theoretical results provide some insight into empirical observations. Some 

methods appear very promising, but further research is required for direct comparisons, 

novel method combinations, improved bi-directional adaptation, and use for novel datasets 

and applications.
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Fig. 1. 
Realistic but entirely synthetic images of human faces generated by a GAN trained on the 

CelebA-HQ dataset [116].
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Fig. 2. 
Illustration of the GAN generator G and discriminator D networks. The dashed line between 

the D networks indicates that they share weights (or are the same network). In the top row, a 

real image from the training data (horses ↔ zebras dataset by Zhu et al. [290]) is fed to the 

discriminator, and the goal of D is to make D(x) = 1 (correctly classify as real). In the 

bottom row, a fake image from the generator is fed to the discriminator, and the goal of D is 

to make D(G(z)) = 0 (correctly classify as fake), which competes with the goal of G to make 

D(G(z)) = 1 (misclassify as real).
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Fig. 3. 
General network setup for domain adaptation methods learning domain-invariant features. 

(a) Methods differ in regard to how the domains are aligned during training (the Alignment 

Component) and whether the feature extractors used on each domain share none, some, or 

all of the weights between domains. (b) The target data are fed to the domain-invariant 

feature extractor and then to the task classifier.
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Fig. 4. 
Synthetic vehicle driving image (left) adapted to look realistic (right) [96].
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Fig. 5. 
Two possible configurations using image-to-image translation for domain adaptation. The 

conditional GAN and classifier can be trained separately or jointly. Method 1 is the most 

common. Method 2 is used by one paper. A combination of methods 1 and 2 is used in one 

paper. The dashed lines between networks indicate that they share weights (or are the same 

network). Note: this figure does not illustrate the many variants of the conditional GAN 

component, which often train a generator in each direction (one source to target and one 

target to source) and use additional losses such as cycle consistency.
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Fig. 6. 
(a) Illustration of a cycle-consistency loss using the horses ↔ zebras dataset by Zhu et al. 

[290]. The difference between the original source image and the reconstructed image (source 

to target and back to source) is minimized. (b) Example semantic segmentation situation in 

which the class names are swapped between the input image and the mapped image that 

would be prevented by including a semantic-consistency loss. The semantic-consistency loss 

requires that the class assignments are preserved.
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Table 1.

Comparison of different neural network based domain adaptation methods based on method of adaptation 

(domain-invariant feature learning [DI], domain mapping [DM], normalization [N], ensemble [En], target 

discriminative [TD]), various loss functions (distance, promoting different features, cycle consistency, 

semantic consistency, task, feature- or pixel-level adversarial), usage of a generator, and which weights are 

shared (in the feature extractor).

Name Method
Loss Functions Adversarial Loss

Generator Shared 
WeightsDistance Diff. Cycle Sem. Task Feature Pixel

CAN[114] DI,N CCD ✓ not BN

French et al.[68] En,N sq. diff. ✓ EMA

Co-DA[124]
a DI,En,N,TD L1 ✓ ✓ ✓ optional

VADA[220]
a DI,TD ✓ ✓ ✓

DeepJDOT[50] DI JDOT ✓ ✓

CyCADA[96] DI,DM ✓ ✓ ✓ ✓ ✓ ✓

Gen. to Adapt[208] DI ✓ ✓ ✓ ✓

SimNet[187] DI prototypes ✓

MADA[183] DI,En ✓ ✓ ✓

MCD[206] DI,En,TD ✓ ✓ ✓ ✓

GAGL[250] DI,TD ✓ ✓ ✓ ✓ ✓

SBADA-GAN[201]
b DM ✓ ✓ ✓ ✓

MCA[278] DI MCA ✓ ✓

CCN++[101] DI clusters ✓ ✓

M-ADDA[127] DI clusters ✓ ✓

Rozant. et al.[199] DI MMD ✓ regularize

XGAN[197] DM ✓ ✓ ✓ ✓ some

StarGAN[41] DM ✓ ✓ ✓ ✓

PixelDA[21] DM ✓ ✓ ✓ ✓ ✓

AutoDIAL[27] N,TD ✓ not BN

AdaBN[145] N not BN

JAN-A[151] DI JMMD ✓ ✓ ✓

LogCORAL[249] DI logCOR, 
mean ✓ ✓

Log D-CORAL[172] DI logDCOR ✓ ✓

VRADA[189] DI ✓ ✓ ✓

ATT[204] En ✓ ✓ ✓

SimGAN[219] DM ✓ ✓ N/A
c

ADDA[241] DI ✓ ✓

CycleGAN[290] DM ✓ ✓ ✓ d

RegCGAN[160] DM ✓ ✓ ✓ ✓
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Name Method
Loss Functions Adversarial Loss

Generator Shared 
WeightsDistance Diff. Cycle Sem. Task Feature Pixel

Sener et al.[214] DI k-NN ✓

DSN[22] DI ✓ ✓ ✓ ✓ some

DRCN[76] DI ✓ ✓ ✓

CoGAN[143] DM ✓ ✓ ✓ some

Deep CORAL[226] DI CORAL ✓ ✓

DANN[1, 72, 73] DI ✓ ✓ ✓

DAN[147] DI MK-MMD ✓ low

Tzeng et al.[240]
e DI ✓ ✓ ✓

a
also incorporate virtual adversarial training [167]

b
also a self-labeled classification loss (learn label on source images, pseudo-label mapped target to source)

c
maps to target domain so only have feature extractor for target (part of the classifier)

d
unspecified; originally not applied to domain adaptation, but later used for this [14, 69, 96]

e
semi-supervised for some classes, i.e., requires some labeled target data for some of the classes
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Table 2.

Classification accuracy (source → target, mean ± std %) of different neural network based domain adaptation 

methods on various computer vision datasets (only including those used in > 2 papers). Adversarial 

approaches denoted by *.

Name
MNIST and USPS MNIST and SVHN MNIST[-M] Synthetic to Real

MN→US US→MN SV→MN MN→SV MN→MN-M SYNN→SV SYNS→GTSRB

Target only (i.e., if 
we had the target 
labels)

96.3 ± 0.1 
[96]

96.5 [21]

99.2 ± 0.1 
[96]

99.2 ± 0.1 
[96]

99.5 [22]
99.51 [72]

96.4 [21]
98.7 [22]
98.91 [72]

92.44 [72]
92.4 [22]

99.87 [72]
99.8 [22]

French et al.[68] 98.2 99.5 99.3
37.5

97.0
a 97.1 99.4

Co-DA[124]
b
* 98.6 81.7 97.5 96.0

DIRT-T[220]
b
* 99.4 76.5 98.7 96.2 99.6

VADA[220]
b
* 94.5 73.3 95.7 94.9 99.2

DeepJDOT[50] 95.7 96.4 96.7 92.4

CyCADA[96]* 95.6 ± 0.2 96.5 ± 0.1 90.4 ± 0.4

Gen. to Adapt[208]* 92.8 ± 0.9 90.8 ± 1.3 92.4 ± 0.9

SimNet[187]* 96.4 95.6 90.5

MCD[206]* 96.5 ± 0.3 94.1 ± 0.3 96.2 ± 0.4 94.4 ± 0.3

GAGL[250]
b
* 96.7 74.6 94.9 93.1 97.6

SBADA-GAN[201]
b
* 97.6 95.0 76.1 61.1 99.4 96.7

MCA[278] 96.6 96.8 89.0

CCN++[101]* 89.1

M-ADDA[127]* 98 97

Rozantsev et al.[199] 60.7 67.3

PixelDA[21]* 95.9 98.2

ATT[204] 85.0 52.8 94.0 92.9 96.2

ADDA[241]* 89.4 ± 0.2 90.1 ± 0.8 76.0 ± 1.8

RegCGAN[160]* 93.1 ± 0.7 89.5 ± 0.9

DTN[231]* 84.4

Sener et al.[214] 78.8 40.3 86.7

DSN[22]
b
* 91.3 [21] 82.7 83.2 91.2 93.1

DRCN[76] 91.80 ± 0.09 73.67 ± 0.04 81.97 ± 0.16 40.05 ± 
0.07

CoGAN[143]* 91.2 ± 0.8 89.1 ± 0.8 62.0 [21]

DANN[72, 73]* 85.1 [21]

71.07
70.7 [22]
71.1 [204]
73.6 [96]

35.7 [204]
81.49

77.4 [22]
81.5 [204]

90.48
90.3 [22, 204]

88.66
88.7 [204]
92.9 [22]

DAN[147] 81.1 [21] 71.1 [22] 76.9 [22] 88.0 [22] 91.1 [22]
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Name
MNIST and USPS MNIST and SVHN MNIST[-M] Synthetic to Real

MN→US US→MN SV→MN MN→SV MN→MN-M SYNN→SV SYNS→GTSRB

Source only (i.e., no 
adaptation)

78.9 [21]
82.2 ± 0.8 

[96]

69.6 ± 3.8 
[96]

59.19 [72]
59.2 [22]
67.1 ± 0.6 

[96]

56.6 [22]
57.49 [72]
63.6 [21]

86.65 [72]
86.7 [22]

74.00 [72]
85.1 [22]

a
problem-specific hyperparameter tuning of data augmentation to match pixel intensities of target domain images

b
hyperparameter tuned on some labeled target data
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Table 3.

Classification accuracy (source → target, mean ± std %) of different neural network based domain adaptation 

methods on the Office computer vision dataset. Adversarial approaches denoted by *.

Name

Office (Amazon, DSLR, 
Webcam)

A→W D→W W→D A→D D→A W→A

CAN[114]
a 94.5 ± 0.3 99.1 ± 0.2 99.8 ± 0.2 95.0 ± 0.3 78.0 ± 0.3 77.0 ± 0.3

Gen. to Adapt[208]
a
* 89.5 ± 0.5 97.9 ± 0.3 99.8 ± 0.4 87.7 ± 0.5 72.8 ± 0.3 71.4 ± 0.4

SimNet[187]
a
* 88.6 ± 0.5 98.2 ± 0.2 99.7 ± 0.2 85.3 ± 0.3 73.4 ± 0.8 71.8 ± 0.6

MADA[183]
a
* 90.0 ± 0.1 97.4 ± 0.1 99.6 ± 0.1 87.8 ± 0.2 70.3 ± 0.3 66.4 ± 0.3

AutoDIAL[27]
bc 84.2 97.9 99.9 82.3 64.6 64.2

CCN++[101]
d
* 78.2 97.4 98.6 73.5 62.8 60.6

Rozantsev et al.[199] 76.0 96.7 99.6

AdaBN[145]
b 74.2 95.7 99.8 73.1 59.8 57.4

JAN-A[151]
a
* 86.0 ± 0.4 96.7 ± 0.3 99.7 ± 0.1 85.1 ± 0.4 69.2 ± 0.4 70.7 ± 0.5

LogCORAL[249] 70.2 ± 0.6 95.5 ± 0.1 99.5 ± 0.3 69.4 ± 0.5 51.2 ± 0.3 51.6 ± 0.5

Log D-CORAL[172] 68.5 95.3 98.7 62.0 40.6 40.6

ADDA[241]
a
* 75.1 97.0 99.6

Sener et al.[214] 81.1 96.4 99.2 84.1 58.3 63.8

DRCN[76] 68.7 ± 0.3 96.4 ± 0.3 99.0 ± 0.2 66.8 ± 0.5 56.0 ± 0.5 54.9 ± 0.5

Deep CORAL[226] 66.4 ± 0.4 95.7 ± 0.3 99.2 ± 0.1 66.8 ± 0.6 52.8 ± 0.2 51.5 ± 0.3

67.3 ± 1.7 94.0 ± 0.8 93.7 ± 1.0

DANN[72, 73]* 72.6 ± 0.3 [76] 96.4 ± 0.1 [76] 99.2 ± 0.3 [76] 67.1 ± 0.3 [76] 54.5 ± 0.4 [76] 52.7 ± 0.2 [76]

73.0 [199, 241] 96.4 [199, 241] 99.2 [199, 241]

DAN[147]

68.5 ± 0.4 96.0 ± 0.3 99.0 ± 0.2

63.8 ± 0.4 [226] 94.6 ± 0.5 [226] 98.6 [199] 67.0 ± 0.4 54.0 ± 0.4 53.1 ± 0.3

64.5 [199] 95.2 [199] 98.8 ± 0.6 [226] 65.8 ± 0.4 
[226]

52.8 ± 0.4 
[226]

51.9 ± 0.5 
[226]

68.5 [241] 96.0 [241] 99.0 [241]

Tzeng et al.[240]
e
* 59.3 ± 0.6 90.0 ± 0.2 97.5 ± 0.1 68.0 ± 0.5 43.1 ± 0.2 40.5 ± 0.2

Source only (i.e., no 
adaptation) 62.6 [241]

a
96.1 [241]

a
98.6 [241]

a

a
with ResNet-50 network

b
with Inception-based network

c
hyperparameter tuned on one W labeled example per class on A →W task (see [150])

d
with ResNet-18 network

e
semi-supervised for some classes, but evaluated on 16 hold-out categories for which the labels were not seen during training
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Table 4.

Classification accuracy comparison for domain adaptation methods for sentiment analysis (positive or negative 

review) on the Amazon review dataset [18]
a
 with domains books (B), DVD (D), electronics (E), and kitchen 

(K). Adversarial approaches denoted by *.

Source→Target DANN[73]
b
* DANN[73]

c
* CORAL[225]

d
ATT[204]

c
WDGRL[217]

ce
* No Adapt.[225]

f

B→D 82.9 78.4 80.7 83.1

B→E 80.4 73.3 76.3 79.8 83.3 74.7

B→K 84.3 77.9 82.5 85.5

D→B 82.5 72.3 78.3 73.2 80.7 76.9

D→E 80.9 75.4 77.0 83.6

D→K 84.9 78.3 82.5 86.2

E→B 77.4 71.3 73.2 77.2

E→D 78.1 73.8 72.9 78.3

E→K 88.1 85.4 83.6 86.9 88.2 82.8

K→B 71.8 70.9 72.5 77.2

K→D 78.9 74.0 73.9 74.9 79.9 72.2

K→E 85.6 84.3 84.6 86.3

a
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

b
using 30,000-dimensional feature vectors from marginalized stacked denoising autoencoders (mSDA) by Chen et al. [36], which is an 

unsupervised method of learning a feature representation from the training data

c
using 5000-dimensional unigram and bigram feature vectors

d
using bag-of-words feature vectors including only the top 400 words, but suggest using deep text features in future work

e
the best results on target data for various hyperparameters

f
using bag-of-words feature vectors
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Table 5.

List and description of computer vision datasets from Tables 2 and 3

Computer Vision Datasets used for Domain Adaptation

MNIST[130]
a This is a binary (mostly black and white, but actually grayscale due to anti-aliasing) handwritten digit dataset (digits 0–9), 

which stands for “modified NIST.” It is based on the National Institute of Standards and Technology’s (NIST) Special 
Database 1 and 3, one of which was easier than the other, so MNIST is a combination of the two that are size normalized to 
fit in a 20×20 box preserving the aspect ratio and centered in a 28×28 pixel image.

MNIST-M[73]
b This is a modification of MNIST where the digits are blended with random patches from BSDS500 dataset color photos.

USPS[131]
c This is another handwritten digit dataset (digits 0–9). It consists of handwritten zipcodes scanned and segmented by the U.S. 

Postal Service (USPS). They were size normalized to 16×16 pixels preserving the aspect ratio. The values are normalized to 
be between −1 and 1.

SVHN[175]
d The Streetview House Numbers (SVHN) consists of single digits extracted from images of urban house numbers in Google 

Street View. The digits have been size normalized to 32×32 pixels.

SYNN[73]
b Ganin et al.[73] used Microsoft Windows fonts to create a synthetic digit dataset (“Syn Numbers”) consisting of 1–3 digit 

numbers with various positions, orientation, background color, stroke color, and amount of blur.

SYNS[168]
e This is a synthetic sign dataset created from modifications to Wikipedia pictograms of traffic signs. It consists of 100,000 

images and 43 classes of signs.

GTSRB[224]
f The German Traffic Signs Recognition Benchmark (GTSRB) is a dataset created from video taken driving around Germany. 

It consists of about 50,000 images and 43 classes of signs.

Office[202]
g This dataset consists of 31 classes of objects in three different domains: Amazon (taken from its online website; medium 

resolution and studio lighting), DSLR (taken with a digital SLR camera; high resolution and in a real-world environment), 
and Webcam (taken with a 640×480 computer webcam; have noise, artifacts, and white balance issues). Note: due to 
Office’s small size, some networks [73, 199, 226] were pre-trained on ImageNet.

a
http://yann.lecun.com/exdb/mnist/

b
See Ganin’s website http://yaroslav.ganin.net/ for links to download.

c
This can be found on various sites and some Github repositories. One such place: https://web.stanford.edu/~hastie/ElemStatLearn/data.html

d
http://ufldl.stanford.edu/housenumbers

e
The synthetic dataset linked to on: http://graphics.cs.msu.ru/en/research/projects/imagerecognition/trafficsign

f
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

g
http://ai.bu.edu/adaptation.html
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