Skip to main content
. 2021 Jul 22;7:e547. doi: 10.7717/peerj-cs.547

Table 15. Performance comparison with state-of-the-art approaches.

References Target classes Approach Accuracy (%)
da Rocha Neto et al. (2011) 3 SVM 85.0
Karabulut & Ibrikci (2014) LMT 89.0
Akben (2016) MLP 83.0
Unal & Kocer (2013) MLP 85.0
Alafeef et al. (2019) ANN 98.5
Prasetio & Riana (2015) KNN 93.0
Jiménez & Quintero-Ospina (2019) Ensemble 90.0
Unal, Polat & Kocer (2014) Fuzzy+SVM 96.4
Proposed ETC with CR 99.0
Unal, Polat & Kocer (2016) 2 MSCBAW+RBDNN 99.3
Proposed ETC with CR 99.5

Note:

Bold entries show the highest accuracy and indicate that the proposed approach outperforms state-of-the-art approaches.