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Abstract

Currently, there is no sensitive molecular test for identifying transformation-prone actinic 

keratoses (AKs) and aggressive SCC subtypes. Biomarker-based molecular testing represents a 

promising tool for risk stratifying these lesions. We evaluated the utility of a panel of UV-

biomarker genes in distinguishing between benign and transformation-prone AKs and SCCs. The 

expression of the UV-biomarker genes in 31 SCC and normal skin (NS) pairs and 10 AK/NS pairs 

was quantified using the NanoString nCounter system. Biomarker testing models were built using 

logistic regression models with leave one-out cross validation in the training set. The best model to 

classify AKs versus SCCs (area under curve (AUC) 0.814, precision score 0.833, recall 0.714) was 

constructed using a top-ranked set of 13 UV-biomarker genes. Another model based on a 15-gene 

panel was developed to differentiate histologically concerning from less concerning SCCs (AUC 

1, precision score 1, recall 0.714). Finally, 12 of the UV-biomarker genes were differentially 

expressed between AKs and SCCs, while 10 genes were uniquely expressed in the more 
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concerning SCCs. UV-biomarker gene subsets demonstrate dynamic utilities as molecular tools to 

classify and risk stratify AK and SCC lesions, which will complement histopathologic diagnosis to 

guide treatment of high-risk patients.

Keywords

Actinic Keratosis; squamous cell carcinoma; ultraviolet radiation

Introduction

Squamous cell carcinoma (SCC) is the second most frequent nonmelanoma skin cancer 

(NMSC), with over 700,000 cases diagnosed annually (1-3). SCCs are generally curable 

apart from a concerning subset with increased tendency for metastasis, recurrence, and 

disease-related morbidity and mortality (4). Although most SCCs arise from precursor 

lesions termed actinic keratoses (AK), the estimated rate of progression from AK to SCC is 

less than 5% (5-8). There is a significant unmet need for reliable and sensitive methods to 

identify transformation-prone AKs and concerning SCCs which may facilitate early 

intervention and improve disease outcomes (9).

Ultraviolet radiation (UVR) is a major risk factor for melanoma and NMSC including SCCs 

and their AK precursors (10). Repeated sunburns cause cumulative genetic and epigenetic 

lesions that promote malignant transformation in sun-damaged skin cells (11, 12). Imaging 

methods such as dermoscopy aid in tumor detection (13), while biopsy with 

histopathological analysis can establish a definitive diagnosis. However, these methods are 

limited because they rely on visual pattern recognition and cannot detect oncogenic 

molecular alterations in sun-exposed skin that may persist for decades (13-16). More 

sensitive biomarker-based molecular methods may facilitate identification of concerning 

lesions prior to gross histologic alterations, enabling early interventions and improved 

outcomes.

Studies have attempted to identify biomarkers for monitoring UV damage and skin cancer 

risk (13, 17-20). However, no consensus UV-biomarker panel is available due to large 

variations among studies and lack of cross-validation of candidate UV-biomarker genes. We 

recently reported a panel of highly conserved UV-biomarker genes discovered in human 

keratinocytes in response to various UVR conditions and among keratinocytes from different 

donors (21, 22). This UV-biomarker panel consists of UV-responsive genes involved in 

cancer-related pathways. Through statistical and bioinformatics analyses, we selected a set 

of 77 UV-biomarker genes that are often dysregulated in human SCCs. We posit that this 

UV-biomarker subset has potential in skin cancer risk stratification. Here, we performed 

multiplex gene expression analyses to characterize the ability of subsets of the UV-

biomarker genes to identify transformation-prone AKs and SCCs.
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Materials and Methods

Patient tissue collection, procurement, and histopathological analysis

The study was approved by the Institutional Review Board at Columbia University Irving 

Medical Center (CUIMC) (IRB#AAAR3361). Fresh surgically resected AK or SCC with 

patient-matched adjacent normal skin (NS) were obtained from patients (male and female, > 

age 18) who presented to CUIMC for treatment of clinically evident AK or SCC on sun-

exposed areas (face, neck, upper back, arms). AKs were obtained using shave biopsy, and 

SCCs were collected during Mohs micrographic surgery (MMS). Prior to each SCC 

collection, incisional biopsy was collected for histopathological analysis. During MMS, 

frozen sections were processed by trained histotechnicians, stained with hematoxylin-eosin, 

and reviewed by the surgeon. Half of each AK was used for RNA extraction and gene 

expression analysis, and the other half was formalin fixed, paraffin embedded, and used for 

histopathological grading by hematoxylin-eosin staining based on established diagnostic 

criteria. For RNA extraction, freshly collected AK, SCC, and matched NS tissues were 

procured by incubation in 5 U/mL dispase solution (StemCell Technologies) for 1 hour at 37 

°C to separate and remove dermal and adipose tissues.

RNA extraction and multiplex gene expression analysis of UV-biomarker genes by 
NanoString

Total RNA was isolated from procured NS epidermis, AK, or SCC tissues as previously 

reported using the RNeasy Kit (QIAGEN, Gaithersburg, MD) (21). Human SCC and 

adjacent normal skin tissues were lysed in Qiazol (QIAGEN) and homogenized using 

TissueLyser II (QIAGEN). Total RNA was isolated from each homogenized tissue using the 

miRNeasy Kit (QIAGEN). All RNA samples were subsequently analyzed using an RNA 

6000 nano chip (Agilent Technologies) to confirm the RNA quantity and integrity. RNA 

samples from 10 AK/NS pairs and 31 SCC/NS pairs with satisfactory RNA quality and 

quantity were included in subsequent NanoString experiments. To evaluate the biomarker 

potential and utility of 77 top-ranked and highly conserved UV-responsive genes (21), 

simultaneous quantification of these UV-biomarker genes was performed on the NanoString 

nCounter system (NanoString) using a custom NanoString CodeSet. NanoString 

experiments were performed using100 ng of RNA per sample and reagents from NanoString 

at the Genome Technology Center of New York University. The counts per gene were 

normalized to the geometric mean of the internal reference genes (GLYR1, NMT1, XPO7) 

included in the CodeSet. Normalized fold change (FC) for each target gene in each AK-NS 

or SCC-NS pair was generated and log2-transformed log2FC). log2FC values were used in 

unsupervised data clustering analysis.

Data analysis and statistical models

Unsupervised hierarchical clustering of samples based on log2FC values of each UV-

biomarker gene was performed using average linkage based on their pairwise distances. We 

computed the Euclidean distances between sample pairs using their normalized log2FC 

values. Student’s t-test was applied and two logistic regression biomarker models were built 

to compare and classify AKs versus SCCs and concerning versus less concerning SCCs, 

respectively. 70% of the dataset was used as the training set with leave-one-out cross-
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validation (LOOCV), and the remaining 30% was used as the testing set. Within each 

iteration of the LOOCV, a Student’s t-test was used to identify the top genes that were 

different between the AKs and SCCs or between the concerning and less concerning SCCs 

to be used as the features of the logistic regression models. Samples were classified as more 

concerning (invasive or evolving SCC) or less concerning (SCC in situ or keratoacanthoma) 

based on histopathological evaluation by a dermatopathologist (G.N.). Training performance 

was evaluated based on the predicted likelihood of each sample to be either an AK or SCC 

and more or less concerning in the LOOCV, which provides an unbiased measure of the 

training model performance. Classifier performance was estimated by computing the area 

under the curve (AUC) scores for the receiver-operator curve (ROC), the precision score, 

and the recall score. All statistical analyses and visualization were performed using the R 

software package.

Results

Thirty AK/NS pairs and 41 SCC/NS pairs were collected. Following RNA extraction and 

quality assessment, 41 matched pairs (10 AK/NS; 31 SCC/NS) with satisfactory RNA 

quantity and quality were included in the multiplex gene expression analysis using the 

NanoString nCounter system. Demographic information and histologic diagnosis are 

summarized in Table 1. Representative histological images are shown in Figure 1. In 

addition to patient samples, two pairs of UV-irradiated and non-irradiated control human 

keratinocytes were included in the multiplex gene expression analysis to represent UV-

induced gene expression signatures. Gene expression datasets were used to identify 

molecular classifiers that can distinguish between AKs and SCCs. Based on their clinical 

and histological features (Table 1), SCC samples were divided into a less concerning SCC 

subgroup comprising keratoacanthomas (KAs) and in situ SCCs, which generally exhibit a 

more indolent course, and a more concerning subgroup comprising evolving or invasive 

SCCs that often progress and exhibit invasive, aggressive behavior (23, 24).

Similarities in Gene Signatures between AK, SCC and UV Signatures

The similarity of AK and SCC gene signatures to the UV signatures was determined using 

cosine similarity, which is the dot product of the two non-zero vectors divided by the 

product of the two vectors’ lengths (magnitudes) and is defined to equal the cosine of the 

angle between the vectors (25). Genes with log2FC values greater than 0.9 were considered 

over-expressed and assigned with a value of 1. Genes with log2FC values less than −0.9 

were considered under-expressed and assigned a value of −1. All other genes with log2FC 

values between −0.9 to 0.9 were assigned a value of zero. Unsupervised hierarchical 

clustering analysis based on the expression signature of the 77 UV-biomarker genes 

confirmed greater similarity between the AK signatures and the UV signature than between 

the SCC and UV signatures (Figure 2). However, among the 31 SCCs, six SCCs 

demonstrated a higher similarity to the UV signature than the rest of the SCC samples, 

indicating some molecular heterogeneity among the SCCs (Table 1). Similarly, cosine 

similarity-based analysis revealed a greater similarity between AK gene signatures and the 

UV signature than between SCC gene signatures and the UV signature (Supplementary 
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Figure 1). These findings suggest that UVR plays a more consistent role in the pathogenesis 

of AKs than SCCs.

Development of a Classifier to Distinguish AKs from SCC

Next, we built a statistical model based on selected UV-biomarker gene subsets to 

differentiate between gene signatures for AKs and SCCs by randomly sampling 70% of the 

dataset (n=29) from the 41 samples (10 AKs, 31 SCCs) as the training dataset. The 

remaining samples (30%, N=12) comprised the testing dataset for assessing the model’s 

accuracy and specificity. Within the 29 training samples, LOOCV was performed and a 

logistic regression model based on these genes was built to predict the likelihood of each 

sample being from the SCC group or AK group.

To optimize the number of biomarker genes to be included, we ranked all 77 genes from 1 to 

77, and tested each classifier model containing different numbers of genes (up to 77) using 

LOOCV. We identified an optimal classifier based on a 13-gene panel that yielded an AUC 

score of 0.846, a precision score of 0.95, and a recall score of 0.792 (Figure 3A, left panel). 
Using this training model, we built a model using all 29 training samples, which was used to 

determine the model’s accuracy for predicting the 12 testing samples as AK or SCC. As 

shown in the right panel in Figure 3A, this model showed a strong prediction power with an 

AUC score of 0.814, a precision score of 0.833, and a recall score of 0.714 for the testing 

samples. Unsupervised hierarchical clustering using this 13-gene panel also divided the 12 

testing samples into the AK group and SCC group that is largely consistent with their 

clinical diagnosis except for one AK and three SCC outliers (Figure 3B).

Development of a Classifier to Distinguish More Concerning SCCs from Less Concerning 
SCCs

Next, we attempted to build a molecular classifier based on other UV-biomarker gene 

subsets for differentiating less concerning SCCs from more concerning SCCs that exhibit 

higher risk (23, 24). We divided the 31 SCC samples into 23 more concerning SCCs and 8 

less concerning SCCs based on the histopathological report (Table 1). We trained a model by 

randomly sampling 70% of the SCCs (n=23) from both groups as the training dataset. The 

remaining 30% of samples (n=8) were utilized as the testing dataset. We first performed 

LOOCV on the training samples by including all possible subsets of the 77 UV-biomarker 

genes to build a logistic regression model, which was then applied to predict the likelihood 

of a sample either belonging to the more concerning group or less concerning group. 

Following the LOOCV tests, the best training model was identified using a 15-gene panel 

that produced an AUC score of 0.885, a precision score of 0.933, and a recall score of 0.875 

(Figure 4A, left panel). A logistic regression model using all 22 training samples was then 

constructed based on these 15 biomarker genes that were the most differentially expressed 

between the more and less concerning SCC groups. Using the nine testing SCC samples, we 

demonstrated that the prediction power of this risk classifier model was high with an AUC 

score of 1, a precision score of 1, and a recall score of 0.714 for the testing set 792 (Figure 

4A, right panel). Similarly, unsupervised hierarchical clustering using this 15-gene panel 

clustered these 31 SCC samples into two distinct groups of more and less concerning SCCs, 
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respectively, which was consistent with their clinical diagnosis except for SCC65 and 

SCC66 (Figure 4B).

Differentially Expressed Genes Among AKs, More and Less Concerning SCCs

To identify individual UV-biomarker genes differentially expressed between SCCs and AKs, 

we performed Student’s t-tests comparing SCC versus AK signatures for each UV-

biomarker gene. We identified six genes with significantly lower log2FC levels in the AK 

group compared to the SCC group (SPRR3, TTC7A, HDAC9, TNFAIP2, SPNS2, and 

DPP4) with FDR-corrected p-values < 0.1 (Figure 5A). Six genes had significantly higher 

log2FC levels in the AK group compared to the SCC group (HSPB8, CLDN4, HIST2H2BE, 

DEFB1, PVRL4, and HR) with FDR-corrected p-values < 0.1 (Figure 5B). We performed 

similar comparative gene expression analysis to identify individual genes that were most 

consistently differentially expressed between the more concerning SCCs and less concerning 

SCCs using the Student’s t-test. Eight genes showed significantly higher log2FC levels in 

the more concerning SCC samples compared to less concerning SCC samples (HPGD, 

SPNS2, USP2, HDAC5, LCE6A, RNF220, KRT23, and LCE1A) (Figure 5C). In contrast, 

only two genes had significantly lower log2FC levels among the more concerning SCCs 

compared to less concerning SCCs (NMT1 and PRSS22) (Figure 5D). Several genes 

identified as strong UV-biomarker candidates in previous studies, including PTGS2 (COX-2) 

(26), were inconsistently dysregulated among SCCs or AKs, suggesting a lesser potential for 

clinical utility.

Discussion

AKs are common, especially among people of European origin, and are the second leading 

reason for dermatologic visits (27). Advancing, aggressive SCCs pose health concerns given 

their invasive nature associated with recurrences, metastasis, and dismal prognosis. Clinical 

diagnosis of AKs and SCCs relies on gross clinical appearance and histopathological 

features, which are often subjective and can lead to inconsistent diagnosis (28, 29). There is 

growing interest in biomarker-based molecular tests for more objective and accurate 

diagnosis of transformation-prone AKs and concerning SCCs. Building upon our previous 

efforts to identify a panel of highly-conserved UV-biomarker genes, we performed multiplex 

gene expression analysis of a 77 UV gene signature panel to characterize their biomarker 

potential in AK and SCC risk-stratifications. The expression pattern of the UV-biomarker 

genes demonstrates a gradient distribution of UV signatures among AKs and SCCs. The 

similarity between AK signatures and the UV signature supports the critical role of UVR in 

AK pathogenesis. It is intriguing that the unsupervised hierarchical clustering based on the 

expression of UV-biomarker genes identified two SCC subgroups, with one group more 

closely related to UV exposure. While UVR is believed to be the major cause of SCC 

development, accumulating evidence suggests that SCC pathogenesis is multifactorial and 

dependent on both intrinsic (age, scars, skin pigmentation, and photosensitive dermatoses) 

(30) and extrinsic factors (UVR, industrial carcinogens, immunosuppressive medications, 

and human papillomavirus) (31). Our findings of two distinct SCC subgroups corroborate 

the theory of different molecular pathways leading to SCC development including UV and 

non-UV carcinogens.
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Using selected subsets of UV-biomarker genes, we found differential clustering of AK and 

SCC groups. While the differentiation of AK and SCC subgroups based on our molecular 

classifiers (Figures 3 and 4) is highly consistent with the histopathologic diagnosis, some 

outliers exist. This is attributable to inherent differences in histopathology-based and 

biomarker-based classification. Although further optimization and validation of the 

biomarker classifiers will likely improve their diagnostic accuracy, other factors contributing 

to this inconsistency include tumor heterogeneity, atypical histopathologic features, and 

inability of histopathology to predict disease progression (28, 29). Therefore, discrepant 

results between histopathology-based diagnosis and biomarker-based classification are 

expected. In our samples, all of the AKs that clustered more closely with SCCs were from 

patients who had a history of melanoma or nonmelanoma skin cancer in the past. 

Additionally, two of these patients were SOT recipients and predisposed to development of 

NMSCs, perhaps indicating a transformation-prone nature of these AKs. Further clinical 

observations and laboratory characterizations of atypical and outlier samples are warranted 

to resolve the discrepancy and evaluate the reliability of each method. Given the versatility 

of the UV-biomarker genes, it is possible to develop multiple panels based on different 

subsets of the UV-biomarker genes for cross validation to improve diagnostic accuracy.

Importantly, the UV-biomarker gene subsets can provide molecular diagnostic information 

that complements standard histologic evaluations. Molecular classifiers derived from the 

UV-biomarker panel can be used to develop affordable molecular tests to distinguish 

transformation-prone AKs from more benign AKs. Given the vast prevalence of AKs among 

the older Caucasian population, identification of indolent, low-malignant potential AKs will 

allow clinicians to avoid unnecessary treatment and limit healthcare costs. Notably, the 

classifier in Figure 3B reveals that AK1 exhibits a stronger SCC-like signature than other 

AKs. This AK was from a patient who was immunosuppressed, which increases risk for 

SCC. It is realistic that this AK was progressing towards SCC despite its clinical appearance 

as an AK. Similar biomarker-tests are needed to risk-stratify SCC subtypes and provide 

additional information in atypical cases. Tumor-associated UV-biomarkers have the potential 

to detect cancer early and enable risk stratify lesions, enabling a targeted approach for 

aggressive modalities.

Based on the SCC risk classifier in Figure 4B, one invasive SCC sample (SCC66) by 

histologic analysis clustered molecularly with the less concerning SCC group. This patient 

had a solid organ transplant and had many prior BCCs, AKs, a melanoma, and a SCC. The 

patient was over 70 years-old and had no evidence of metastatic or perineural invasion. We 

postulate that despite a pathological diagnosis of invasive SCC, this SCC may have 

demonstrated lower risk behavior, never going on to metastasize or recur. Another patient 

diagnosed with invasive SCC (SCC65) clustered with the less concerning group. This 

patient’s pathology showed a predominantly in situ and focally invasive SCC. Histologically, 

this was characterized as an invasive SCC with the tumor extending to the margins, but the 

biomarker-based test classified it with the less concerning SCCs, perhaps highlighting the 

mixed nature of this tumor with invasive and in situ components. Thus, biomarker-based 

tests can provide clinically-relevant, sensitive molecular information that may complement 

histologic assessment.
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A limitation of the current study is the relatively small number of AK samples. Instead of 

using whole skin biopsy or bulk tumor tissue to extract RNA for gene expression analysis, 

all clinical samples were carefully procured to obtain epidermal tissue with minimal 

contamination of other cell types from the dermal and adipose tissue to minimize tissue 

heterogeneity. While this stringent tissue procurement protocol greatly increased our data 

quality, it inevitably rendered losses of the limited clinical specimens. Although we collected 

AKs from over 30 patients, many AK specimens were too small as half of each was saved 

for histopathologic analyses. In the end, we obtained sufficient RNA from only 10 AK 

specimens, which were used in subsequent gene expression analyses. Future studies using a 

larger cohort of AK samples are warranted.

In conclusion, our analyses demonstrate that the UV-biomarker panel identified in our 

previous studies contains a dynamic set of genes with versatile implications in clinical 

diagnosis and risk stratification of cutaneous lesions related to UVR. We have demonstrated 

that subsets of the UV-biomarker genes can be used to develop molecular classifiers to 

distinguish AKs from SCC subtypes. While classification of AK and SCC subtypes by these 

novel molecular classifiers is largely consistent with clinical and histopathological diagnosis, 

the molecular classifiers provide distinctive molecular information on atypical samples that 

correlate better with their clinical course than histopathology. Biomarker-based diagnosis 

may be especially sensitive for identifying patients prone to biologically more aggressive 

skin cancers who would benefit from more proactive treatment. Upon further optimization 

and clinical validations, these biomarker-based classifiers can provide complementary 

information to enable accurate clinical classification and risk stratification of cutaneous 

lesions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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NS normal skin

UV Ultraviolet

NMSC nonmelanoma skin cancer

log2FC log2-transformed FC

LOOCV leave one out cross validation

AUC area under the curve

ROC receiver-operator curve
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Figure 1. 
Histopathology of representative samples. A-C) Images of a representative AK sample at 4x, 

10x, and 20x, respectively, showing epidermal hyperplasia and dysplasia and marked hyper 

and parakeratosis with alteration of the ortho and parakeratotic keratin. The dermis shows 

solar elastosis and an infiltrate of mononuclear cells. D) Matched normal skin adjacent to the 

AK sample. E-G) Images of a representative KA sample at 4x, 10x, and 20x, respectively. 

Epidermis shows a crater-like invagination filled with ortho and parakeratotic horn. The 

lining of the invagination is formed by proliferating dysplastic squamous epithelium. H) 
Matched normal skin adjacent to the KA sample. I-K) Images of a representative SCC 

sample at 4x, 10x, and 20x, respectively. Arising from the epidermis and extending into the 

dermis there are aggregates of dysplastic keratinocytes. L) Matched normal skin adjacent to 

the SCC sample. AK: Actinic keratosis, KA: keratoacanthoma, SCC: squamous cell 

carcinoma.
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Figure 2. 
Heatmap showing the gene expression signatures (log 2-fold change) of 77 genes in each of 

the UV, SCC, or AK samples versus their matched normal skin control. Red, white, and blue 

colors indicate over-expressed, not differentially expressed, or under-expressed genes, 

respectively. Black, cyan, and green colors in the sidebar represent UV, AK, and SCC 

samples, respectively.
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Figure 3. 
A) Receiver-operating curves (ROC) curves showing the training and the testing 

performance of the Logistic regression model using the 29 training samples with LOOCV 

(left) and the 12 testing samples (right), respectively. B) Heatmap showing clustering of AK 

samples in orange and SCC samples in green based on the 13 features selected by the model.
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Figure 4. 
A) Receiver-operating curves (ROC) curves showing the training and the testing 

performance of the logistic regression model using the 22 training SCC samples with 

LOOCV (left) and in the 9 testing SCC samples (right), respectively. B) Heatmap showing 

the clustering of more concerning SCC (purple) and less concerning SCC (cyan) signatures 

based on the 15 UV biomarker genes selected by this model.
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Figure 5. 
Differential expression of SCCs and AKs and more concerning versus less concerning 

SCCs. A) Boxplot of genes with lower expression values in AK signatures than in SCC 

signatures. B) Boxplot of genes with higher expression values in AK signatures than in SCC 

signatures. C) Boxplot of genes with lower expression values in more concerning SCC 

signatures than in less concerning SCC signatures. D) Boxplot of genes with higher 

expression values in more concerning SCC signatures than in less concerning SCC 

signatures.
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Table 1.

Patient and tumor characteristics*

Sample
ID Age Sex Race/Ethnicity Patient History

Specimen
Location

Histopathologic
Diagnosis

AK-1 67 M White/NHL OT (liver), B Forehead AK

AK-2 67 M White/NHL OT (liver), B Cheek AK

AK-3 79 M White/NHL B, P Shoulder AK

AK-4 79 M Not specified B, P Arm AK

AK-5 79 M Not specified B, P Chest AK

AK-6 86 M White/NHL B, P Dorsal hand AK

AK-37 73 M White/NHL OT (renal), B, M, P L shoulder AK

AK-39 85 M White/NHL P Mid parietal scalp AK

AK-60 76 M White/NHL N R forearm AK

AK-61 76 M Not specified N L scalp AK

SCC-1 93 M White/NHL L Posterior scalp EVO

SCC-2 80 M White/NHL P Scalp vertex KA

SCC-3 70 M Unknown OT (lung), P Forehead KA

SCC-4 67 F White/NHL OT (lung), P R lower leg KA

SCC-5 53 F Unknown - L lower leg KA

SCC-6 77 M White/NHL - Scalp INV

SCC-7 74 F Not specified N Scalp INV

SCC-8 87 M Not specified P Cheek EVO

SCC-9 78 M White/NHL P Temple INV

SCC-10 70 M White/NHL OT (lung), P Mandible KA

SCC-11 70 M White/NHL OT (renal), B, P Thumb base INV

SCC-27 71 M White/NHL OT (lung), P L parietal scalp INV

SCC-28 83 M Not specified - Crown INV

SCC-29 78 M White/NHL L, M, N Scalp INS

SCC-30 90 M White/NHL B, P R forehead INV

SCC-33 84 M White/NHL B, O Mid frontal hairline INV

SCC-35 57 M Native Hawaiian or Pacific Islander L, P, S L crown INV

SCC-36 75 M Not specified - R temple INV

SCC-38 63 M White/NHL OT (renal), B, M, S L mid helix INV

SCC-42 89 M Not specified - L vertex scalp INV

SCC-44 67 M White/NHL OT (renal), B L nasal bridge EVO

SCC-50 94 F Not specified B L cheek DIG

SCC-51 88 M Not specified P L cheek INV

SCC-52 58 M White/Unknown P Nasal tip EVO

SCC-53 65 M White/NHL OT (lung) Upper chest KA

SCC-54 85 M White/NHL - R upper chest INV
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Sample
ID Age Sex Race/Ethnicity Patient History

Specimen
Location

Histopathologic
Diagnosis

SCC-56 62 M White/NHL OT (liver) L temporal INS

SCC-57 90 M White/Unknown B, P L dorsal wrist EVO

SCC-58 69 F White/NHL OT (lung), P R brow INV

SCC-65 84 F White/NHL B, M, P Central chest INV

SCC-66 73 M White/NHL OT (renal), B, M, P R dorsal Hand INV

*
Abbreviations INV: invasive; INS: in situ; EVO evolving; KA: keratoacanthoma type; AK: actinic keratosis; DIG: digitated; OT: organ transplant 

patient; P: past history of SCC(s); B: history of BCC(s); N: history of NMSC (unknown type); M: history of melanoma; L: history of lymphoma; S: 
history of splenectomy; O: other; L: left; R: right; NHL: Not Hispanic or Latino; White/Unknown: white race/unknown ethnicity.
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