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Abstract

We present PEAX, a novel feature-based technique for interactive visual pattern search in sequential 

data, like time series or data mapped to a genome sequence. Visually searching for patterns by 

similarity is often challenging because of the large search space, the visual complexity of patterns, 

and the user’s perception of similarity. For example, in genomics, researchers try to link patterns 

in multivariate sequential data to cellular or pathogenic processes, but a lack of ground truth and 

high variance makes automatic pattern detection unreliable. We have developed a convolutional 

autoencoder for unsupervised representation learning of regions in sequential data that can capture 

more visual details of complex patterns compared to existing similarity measures. Using this 

learned representation as features of the sequential data, our accompanying visual query system 

enables interactive feedback-driven adjustments of the pattern search to adapt to the users’ 

perceived similarity. Using an active learning sampling strategy, PEAX collects user-generated 

binary relevance feedback. This feedback is used to train a model for binary classification, to 

ultimately find other regions that exhibit patterns similar to the search target. We demonstrate 

PEAX’s features through a case study in genomics and report on a user study with eight domain 

experts to assess the usability and usefulness of PEAX. Moreover, we evaluate the effectiveness of 

the learned feature representation for visual similarity search in two additional user studies. We 

find that our models retrieve significantly more similar patterns than other commonly used 

techniques.

1 Introduction

Visually searching for patterns in sequential data can be challenging when the search space 

is large, the data is complex, or the search query is difficult to formalize. Visual query 

systems simplify the query formalization by allowing analysts to find regions in the data 

given a visual description of the pattern, often in the form of a sketch [32,50,67] or an 

example [7]. Using the query, the system retrieves regions that are most similar given some 

notion of similarity. But the search can fail when the analyst’s subjectively perceived 

similarity does not match the system’s similarity measure [17]. The larger the query region, 

the more likely it is that the query contains several distinct visual features, such as peaks, 
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trends, or troughs, which can be hard to capture with current techniques (Figure 2). Not 

knowing what visual feature is important to the user makes similarity search even more 

challenging.

While well-known distance metrics, like Euclidean distance (ED) and dynamic time warping 

(DTW), in combination with one-nearest neighbor search are traditionally used for 

classification of sequential data [16], Correll and Gleicher have found that “no single 

algorithm accounts for human judgments of time series similarity” [12]. They instead 

suggest to combine several metrics and let the analyst choose which one to use for pattern 

search. To this end, the distance measures act as a feature representation of the sequential 

data. Such an approach has been used before [24, 25, 34], as a first step to address the issue. 

However, it assumes that the handcrafted distance metrics are able to capture many 

important pattern variations [12], that the analyst is aware of the visual features in the query 

pattern that they care about, and that the analyst knows which individual distance metric can 

identify or ignore the variations of interest. If the latter two do not hold, the visual query 

system can become inefficient and confuse the analysts rather than leading to successful 

exploration—known as the gulf of execution and evaluation [56]. Prior work on natural 

image search [21] has shown that user-provided binary relevance feedback can be a powerful 

approach to interactively learn which visual aspects are important without introducing a 

complicated user interface.

To address these challenges, we propose a novel feature-based approach for assessing the 

similarity of visual patterns in sequential data using convolutional autoencoder models. An 

autoencoder is a type of neural network that learns an identity function of some data. By 

introducing a lower-dimensional layer during the encoding step, the neural network is forced 

to find a compressed latent representation of the input data that captures as many visual 

details of the input data as possible (Figure 1.1). We use this learned latent representation as 

features to compare the similarity between patterns. Since the subjectively perceived 

similarity of an analyst is not known upfront we have developed PEAX, a visual query system 

that interactively learns a classifier for pattern search through binary relevance feedback 

(Figure 1.3). After the analyst defines a query by example, PEAX samples potentially 

interesting regions based on their distance in the learned latent space from the autoencoder 

models. We employ a sliding window approach with a user-defined window size and 

resolution to limit the search space. The analyst has to label the sampled windows as either 

interesting or not interesting to provide training data for a random forest classifier. After the 

classifier is trained, we employ an active learning strategy (Figure 1.2) to focus the labeling 

process on the windows that are close to the query window, located in dense areas in the 

latent space, and hard to predict by the classifier. PEAX supports exploration of multivariate 

sequential data by concatenating multiple latent representations provided by potentially 

different autoencoders. This enables the analyst to adjust the combination data to be 

explored on the fly without having to re-train the autoencoder.

We apply our technique on two epigenomic datasets and demonstrate how PEAX can be used 

to explore biological phenomena (section 8). In epigenomics, biomedical researchers study 

how the genome of an organism is regulated through various modifications of the DNA and 

associated proteins that do not change the underlying DNA sequence. A better 
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understanding of epigenomic modifications is crucial as, for example, genome-wide 

association studies have found that over 90% of all disease-associated DNA sequence 

variants are located in non-coding regions [39, 52, 63] that are most likely acting on gene 

regulation. Finding epigenomic patterns is challenging [23, 59] as the inter- and intra-dataset 

variance is high, the data is typically very noisy, and ground truth is missing in almost all 

cases. Furthermore, formally describing biological phenomena is often challenging due to 

the complexity of datasets or different interpretations of the same biological mechanism 

[22].

To evaluate our approach, we first assess the autoencoder’s ability to reconstruct visual 

features in sequential patterns and measure how the learned latent representation can be used 

for similarity search in two Mechanical Turk user studies. Compared to six commonly used 

techniques for similarity search, we find that our model retrieves patterns that are perceived 

significantly more similar by the participants than any other technique. Additionally, we 

evaluated the usability and usefulness of PEAX through an in-person user study with eight 

domain experts in epigenomics. The results show that PEAX is easy to learn and use, and that 

it offers a new and effective way of exploring epigenomic patterns. To the best of our 

knowledge, we present the first deep-learning-based approach for interactive visual pattern 

search in sequential data. The source code for PEAX, instructions on how our autoencoder 

models are trained, and a set of 6 autoencoders [42] for two types of epigenomic data are 

available online at https://github.com/Novartis/peax/.

Supplementary Figure and Table references are prefixed with an “S”.

2 Related Work

Similarity Measures for pattern search in sequential data have been studied extensively 

[72]. Techniques for similarity search include distance-based and feature-based methods. 

Distance-based methods provide a single value for how different patterns are compared to 

each other. The two most widely used distance measures with consistently strong 

performance [16, 66] are Euclidean distance [19] (ED) and dynamic time warping [5] 

(DTW). Feature-based methods use a set of features describing the data in conjunction with 

a distance-based method or machine learning technique for comparison and classification [9, 

12, 25, 34–36, 44]. Widely-used feature-based methods include, for example, piecewise 

aggregate approximation [35] (PAA) and symbolic aggregate approximation [44] (SAX), 

which are part of a class called symbolic representations. Both methods discretize sequential 

data into segments of equal size and aggregate these segments into a new representation. We 

apply PAA (Figure 4.1c) to downsample the segmented data as a preprocessing step. Other 

feature-based approaches combine several distance metrics [12, 34] into a feature 

representation assuming that a combination will capture more variations. Fulcher and Jones 

[24, 25] took this approach to an extreme and proposed a supervised feature extraction 

technique that represents a time series by a combination of over 9000 analysis algorithms. 

Christ et al. [10] extended this approach but we find that it does not provide comparable 

performance in an unsupervised setting (subsection 9.2). General purpose dimensionality 

reduction techniques such as t-SNE [49] or UMAP [53] can also be used to learn a lower-

dimensional embedding as a feature representation. But while they are useful for 
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visualization purposes, we show that their embedding is not effective for visual pattern 

search (Figure 8).

Finally, autoencoder [4] (AE) models provide a data-driven approach to learn a feature 

presentation. It was shown that AEs can extract a hierarchy of features from natural images 

[51], textual data like electronic health records [54], or scatter plot visualizations [48]. AEs 

have also been applied on time series data for classification [20] and predictions [27, 47, 60]. 

Furthermore, AEs are also used in genomics for general feature learning [68] and prediction 

[71] of gene expression data. In this paper, we extend upon these works and leverage AEs to 

learn feature representations for interactive similarity search in sequential data.

Visual Query Systems (VQS) can be divided into two general approaches that let the user 

query for patterns by example or by sketching. Time-Searcher [29, 30] is an early instance of 

a query-by-example system that supports value-based filtering and similarity search [7] 

using rectangular boxes drawn on top of a time series visualization. QueryLines [62] is a 

sketch-based filtering technique for defining strict or fuzzy value limits based on multiple 

straight lines. Time series that conflict with a limit are either filtered or de-emphasized 

visually. QuerySketch [67] is one of the first systems that supports similarity search by 

sketching. The user can directly draw onto the visualized time series to find similar instances 

using the ED. Holz and Feiner [32] combined the ideas of QuerySketch and QueryLines and 

developed a tolerance-aware sketch-based system. Their technique measures shape and time 

deviation during sketching to determine which parts of the sketched query should be relaxed. 

Recently, Mannino and Abouzied presented Qetch [50] for querying time series data based 

on scale-free hand-drawn sketches. Qetch ignores global scaling differences and instead 

determines the best hit according to local scale and shape distortions. However, Lee et al. 

[40] find that sketch-based systems are rarely used in real-world situations as users are often 

unable to articulate precisely what they are looking for and, therefore, have a hard time 

sketching the correct query. PEAX does not use a sketch-based strategy as it is hard to to 

accurately draw complex patterns as shown in Figure 2.

Apart from the query interface, Keogh and Pazzani [36, 37] show that the notion of 

similarity can heavily depend on the user’s mental model and might not be captured well 

with an objective similarity measure. Eichmann and Zgraggen [17] extend this line of work 

and show that the objective similarity can differ markedly from the perceived similarity, even 

for simple patterns.

Corell and Gleicher [12] build upon these findings and define a set of ten invariants, i.e., 

visual variations or distortions that a user might want to ignore during pattern search. They 

evaluate three distance measures and find that “no single algorithm accounts for human 

judgments of time series similarity” [12]. This indicates that it might be impossible to 

develop a single distance metric that captures all perceived notions of similarity.

Interactive Visual Machine Learning is a powerful technique to adjust the results of a 

VQS through user interactions. For example, Keogh and Pazzani [36, 37] propose relevance-

feedback driven query adjustments for time series. Given a query, their system asks the user 

to rank the three nearest neighbors. The ranking is then used to change the query using a 
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weighted average of the original query and the ranked nearest neighbors. A similar approach 

has been proposed by Behrisch et al. [3] for scatter plots, where the user interactively trains 

a classifier based on the user’s feedback to learn to capture the interestingness of scatter plot 

views. Recently, Dennig et al. [15] proposed a system to interactively learn the best 

combination of feature descriptors and a distance function for pattern separability, assuming 

the existence and user’s knowledge about the feature descriptors. In contrast, CueFlik [21] is 

a tool for interactive concept learning in image search, which allows the user to rank the 

results of a text-based image search using simple binary feedback. CueFlik employs an 

active learning strategy to speed up the learning process by finding images that potentially 

help to separate interesting from non-interesting images. In our work we use an active 

learning sampling strategy for interactive binary labeling based on uncertainty sampling 

[64]. We extend this strategy with a distance-dependent term (section 5) to ensure that more 

similar regions are labeled before the exploration space is broadened.

3 Goals and Tasks

The primary goal of PEAX is to find regions in sequential data that show an instance of the 

target pattern. The target pattern can either be defined manually by example or by a set of 

already existing labels derived elsewhere. In both cases, the user might either be interested in 

finding the k most similar matches or in retrieving all windows that exhibit a pattern 

matching the target. The main difference between the two goals is whether recall is 

negligible (first case) or essential (second case). To achieve either goal, the user needs to 

know which windows are predicted to match the target pattern. Therefore, it is crucial that 

the user understands what concept the classifier has learned. Since the classifier is 

interactively trained based on the user’s subjective labels, there is no objective metric for 

when to stop the training process. Thus, the user needs to be aware of the training progress 

to decide when to stop training.

As summarized in Figure 3, the user might either start with a query by example or a set of 

labeled data. To arrive at a set of matching windows the user has to provide labels in order to 

train the classifier and steer the pattern search. We identified four main avenues for training 

the classifier. First, users need to be able to explore unlabeled windows, ideally with a 

sampling strategy that chooses windows intelligently to reduce the labeling efforts. It also 

needs to be possible to manually select windows for targeted labeling. Once a classifier is 

trained, the user needs to be allowed to provide immediate feedback on the results to 

confirm or correct what the classifier assumes is interesting. Finally, examining and 

potentially re-labeling already-labeled windows is important to resolve conflicts between the 

user’s and predicted labels. We assume that the first two labeling strategies are more 

common when building a classifier from scratch. The latter two strategies seem more 

relevant when starting with already labeled data.

Following these goals and this workflow (Figure 3), we have identified a set of high-level 

interaction tasks that underlie the design of PEAX (section 6):

• T1 Freely browse and explore to be able to gain an overview of the data and to 

find search queries.
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• T2 Identify the classifier’s predictions to be able to understand what the 

currently matching pattern is.

• T3 Compare windows to identify similarities or dissimilarities among 

potentially related windows.

• T4 Contextualize windows to understand the broader impact of a pattern, to 

improve confidence of the manually assigned labels, and to find related windows.

• T5 Visualize the learning progress to highlight the impact of labeling and 

inform about the status of the trained classifier.

• T6 Show the capabilities of the latent representation to realize if the visual 

features of the query pattern were captured.

4 Representation Learning

Instead of relying on handcrafted feature descriptors that do not always capture complex 

patterns well (Figure 8), we learn the feature representation in an unsupervised fashion using 

a convolutional autoencoder (CAE) model. To limit the search space and improve 

learnability, we employ a sliding window approach with a fixed window size and resolution 

as shown in Figure 4.1.

4.1 Data Preprocessing

We cap values at the 99.9th percentile to remove rare outliers and then scale the data to [0, 

1]. Then we split the data into overlapping windows w of fixed length l. The overlap is 

controlled by the step size s and step frequency f, where f = l
s . The step frequency f can be 

adjusted during the search process but the window length l is fixed. Therefore, l is critical 

and depends on the application (see section 8 for an in-depth example) as the CAE will only 

be able to recognize co-located patterns that appear within the window. Ideally one would 

want to use the highest possible l to capture more context but in practice the level of detail 

that the CAE can capture decreases with larger l (Figure 7). Thus, we suggest l to be slightly 

bigger than the largest pattern that is expected to be found. After segmentation, we 

downsample each window by a factor of r to allow the CAE to learn on data that looks 

similar to what a user would see when visualizing the data on a common computer screen. 

Also, downsampling has been shown to be an effective similarity search strategy on its own 

[35]. Finally, depending on the type of sequential data it might be necessary to filter out 

windows that contain very little to no visual features or that are highly overrepresented 

(section 8).

4.2 Convolutional Autoencoder

The preprocessed windows are used to train a CAE. The CAE consists of an encoder and a 

decoder model, where the encoder is trying to learn a transformation of the input data that 

the decoder is able to reconstruct into the original input as best as possible. Having the 

encoder output a vector that has fewer dimensions than the input forces the encoder to 

compress redundant information and to effectively learn features that are useful for 

reconstruction. Our encoder model (Figure 4.2) consists of four convolutional layers 
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followed by two fully-connected layers. The four convolutional layers have 128, 192, 288, 

and 432 filters with kernel sizes of 3, 5, 7, and 9 respectively. Following Springenberg et 

al.’s approach [65] we use a striding of 2 instead of max pooling to shrink the convolved 

output per layer. Such architectures have previously been shown to enable hierarchical 

feature learning [51]. While the kernel size is typically unchanged in models for natural 

images, we found that larger kernel sizes lower the reconstruction error for sequential data 

(Supplementary Table S5). The two fully-connected layers consist of 1024 and 256 units. 

The final layer consists of 10 units and outputs the latent representation. All layers use the 

ReLu activation function. The CAE’s decoder model consists of the same layers just in 

reverse order and features an additional final layer with a sigmoid activation function to 

ensure that the output is within [0, 1].

5 Active Learning

PEAX employs two sampling strategies to select unlabeled windows that are subsequently 

shown to the analysts for labeling. Both strategies operate in the learned latent space of the 

CAE (subsection 4.2). The first sampling strategy is only used upon starting a new search 

when no classifier has been trained yet. Supplementary Figure S1 illustrates this initial 

sampling strategy. As classifier-related metrics such as uncertainty are unknown, the initial 

sampling strategy only relies on the average distance of a window w to its k nearest 

neighbors (default: 5) and the windows’ distance to the query in the latent space. Formally 

the average distance is defined as follows where nn is a function returning the ith nearest 

neighbor, and norm scales the input to [0, 1].

avg dist w, k = norm(∑
i

k
( w − nn

i
w )/k) . (1)

During the initial sampling strategy, we gradually increase the search radius such that 

positive and negative windows are sampled. The search radius r (default: 10) is defined as 

the number of r nearest neighbors that are taken into account in each initial sampling round. 

To sample from a relevant but also broad spectrum, we double the radius r in each of the m 
sampling rounds (default: 5). To not sample twice from the same neighborhood, we exclude 

windows from the previous search radii. In each round, we iteratively sample n windows 

(default: 5). We select the ones with lowest average distance to k nearest neighbors that 

maximize the distance from the already chosen samples S. Formally, we select the unlabeled 

window u from S, the complement of S, with the lowest following score:

avg dist u, k + norm(max( S − S ) − S − u ) (2)

Sampling positive and negative windows is essential because we need both types of labels 

for the first training; otherwise, the initial classifier could be highly biased towards negative 

or positive windows. We include the average distance term to avoid sampling outliers, and 

we maximize the pairwise distance between sampled windows to let the user annotate 

diverse samples. After the first classifier has been trained, PEAX switches to an active 
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learning sampling strategy. This strategy extends the previous sampling approach with a 

distance-to-query and an uncertainty term. See Supplementary Figure S2 for a visual 

example. The distance-to-query term stands for the distance of a window w to the search 

query q. The uncertainty term, which is inspired by uncertainty sampling [64], is defined as

uncertainty w = 1 − 2pw − 1 , (3)

with the classifier’s prediction probability pw of a window w.

Finally, our active learning sampling strategy iteratively selects na (default: 10) unlabeled 

windows. In each step, the unlabeled window u with the lowest following score is selected:

uncertainty u + avg dist u, k + norm q − u
+ norm max S − S ) − S − u ) (4)

We sample uncertain windows that are within dense neighborhoods of the latent space to 

reduce the overall uncertainty of the classifier after the next training. The distance-to-query 

term is added to balance exploration and exploitation during the sampling strategy. Sampling 

highly uncertain regions broadens the exploration, especially at the beginning, when the 

classifier is generally more uncertain. On the other hand, sampling windows that are close to 

the query are expected to retrieve similar windows (subsection 9.2). Default values are 

derived from experience with our use cases (section 8).

5.1 Classifier

Given the small number of labels when training a new classifier from scratch and the 

repeatedly online training during the search, we choose to use a random forest classifier. 

Also, the random forest classifier shows superior performance compared to other popular 

binary classifiers (Supplementary Figure S49). This allows for efficient re-training each time 

the labels have changed or after requesting a new set of unlabeled windows based on the 

active learning sampling strategy. For searching across multiple sequential datasets, as 

shown in Figure 6, we concatenate the windows’ feature vectors from each datasets to avoid 

having to train a new CAE. Ultimately, we use the predicted classes to define the resulting 

set of matching windows.

5.2 Training Progress

To measure the classification process, we record overall uncertainty, the total change in 

prediction probability, and the divergence of prediction probabilities. The overall uncertainty 

is defined as the arithmetic mean of the class prediction uncertainty (Equation 3). The 

classifier’s uncertainty can indicate if the classifier learned to reliably detect a certain pattern 

type and if any progress is made over several iterations. The prediction probability change, 

which is defined as the arithmetic mean of the difference between the per-window prediction 

probability of the current and previous classifier, can provide insights about the impact of a 

training iteration. Finally, convergence is determined as the overall number of windows for 

which the prediction probability consecutively decreases or increases over the last 3 

classifiers. All non-converging windows are considered diverging if the change in the 

prediction probability is larger than 0.01. The convergence and divergence rate can inform 
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the user about the overall stability of the classifier. For formal definitions see Supplementary 

Table S1.

6 The User Interface

Based on the identified tasks T1–T6 (section 3), we have developed PEAX to provide a visual 

interface for feedback-driven interactive visual pattern search and exploration of sequential 

data. The user interface consists of four main components shown in Figure 5.

Query View.

The system shows the selected search query or the highest ranked window by default in the 

query view (Figure 1) to provide content to the targeted pattern search (T4). This view is not 

static but allows the user to interactively browse the entire dataset (T1) for contextualization 

(Figure 5.1). The user can also choose to visualize additional metadata (Figure 5.1a) such as 

gene annotations to add further context (T4) during exploration. Additionally, after having 

trained a classifier for the first time, the view features a one-dimensional heatmap track 

(Figure 5.1b) that color-encodes the prediction probability for regions in the data (T2). The 

main focus during navigation is on positive hits and we use a max-binning approach to show 

positively classified regions even when the user is zoomed out to view an entire chromosome 

(Figure 5.1a). In addition to the prediction probability, the query view shows two more types 

of region-based annotations: blue and pink rectangles indicate positive and negative labels 

(Figure 5.1c) that were defined by the user and yellow highlights selected windows (Figure 

5.1d). Finally, the sequential data track can be superimposed with the reconstruction of the 

CAE model (Figure 1 and Figure 5.2e) for understanding which visual features are captured 

by the CAE (T6). Knowing how well the learned features represent the data can inform the 

user whether a search for a specific pattern is feasible. Therefore, this feature can be used for 

debugging when a pattern search fails. It is also useful during the development and testing of 

new (auto)encoder models.

List View.

The list view (Figure 5.2) visualizes several independent windows for labeling and 

comparison (T3). These windows are stacked vertically and are aligned to the query view for 

visual comparisons (Figure 1). Each window has three buttons (Figure 5.2g) to label it as 

interesting , not interesting , or inconclusive . The two buttons on the left side of each 

window (Figure 5.2d) allow the user to select a window ( ) for separate comparison and to 

re-scale ( ) all currently visible windows to the associated window such that the y-scales of 

all windows are the same for value-based comparison (T3). By default, each window and the 

query view are individually scaled to the window’s minimum and maximum value to 

emphasize the pattern shapes. The list view consists of three permanent and one temporary 

set of windows that are organized under different tabs (Figure 5.2a). The new samples tab on 

the left is selected upon starting a new search and contains unlabeled windows that are 

sampled by the active learning strategy (section 5). The results tab in the middle lists the 

windows that are predicted by the classifier to match the query. The results tab includes two 

additional features to improve recall and debug data. First, it allows to dynamically adjust 

the probability threshold at which a window is considered a positive hit (Figure 5.2b). And 
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in case the classifier and the user’s labels disagree, a pink button appears (Figure 5.2f) to 

inform the user about the potential conflicts. The labels tab on the right holds the set of 

already labeled windows. Additionally, when the user selects some windows a fourth tab is 

shown to the right of the labels tab allowing the user to compare the selected windows (T3).

Embedding View.

To provide an overview of the entire dataset and allow users to contextualize (T4) windows 

by their similarity in the latent space, PEAX provides a view of the 2D-embedded windows 

(Figure 5.3). The embedding is realized with UMAP [53]. It takes into account the window’s 

latent representation and the user’s labels. Windows are represented as points that are either 

color-encoded by their label (Figure 5.3a) or by their prediction probability (Figure 5.3b). 

The view supports pan and zoom interaction as well as dynamic selection via a click on a 

dot or a lasso selection that is activated by holding down the shift key and the left mouse 

button while dragging over points (Figure 5.3a). Selecting windows is important for 

comparing (T3) local neighborhoods during exploration and for debugging already labeled 

windows.

Progress View.

To inform the user of the training progress and provide guidance on when to stop the 

training (T5), we visualize metrics for the uncertainty and stability (Figure 5.4) as defined in 

subsection 5.2. Each metric is applied separately to the entire set of windows and to the 

labeled windows. Visually this information is encoded as superimposed bars where the 

smaller but more saturated bars (Figure 5.4a) represent the metric in regards to the labeled 

windows. The wider bar represents all windows (Figure 5.4b), to indicate how well the 

trained classifier generalizes to the entire dataset. The y-scale is normalized to [0, 1] and the 

x-scale stands for the number of labeled windows that were used to train a classifier. The 

diverging bar plot for the convergence metric simultaneously visualizes the convergence 

score in the upper part and the divergence score in the lower part. In general, as the training 

progresses one would expect each score to decrease. Large bars either indicate that the 

classifier is still uncertain or unstable. It is also possible that the target pattern changed or 

that the latent representation is not able to properly represent the features of the query.

View Linking.

The query, list, and embedding view are highly interlinked to foster contextualization (T4) 

and comparison (T3) of windows. For instance, moving the mouse over a window in the list 

view (Figure 5.2c) highlights the same location in the query view (Figure 5.1e) and the 

corresponding point in the embedding view (Figure 5.3d). The highlighted position of a 

window in the embedding view informs the user how windows compare to each other in 

terms of their latent representations and the shared mouse location highlights the windows’ 

spatial locality in terms of the underlying sequence.

7 Implementation

PEAX’s code base is highly modular. The frontend application is implemented in JavaScript 

and uses React [18]. The bar charts are visualized with HiGlass [38]. The embedding view 
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[41] uses Regl [46] for WebGL rendering. The Python-based backend server is built upon 

Flask [61] and can be configured via a JSON file. We use Scikit-Learn’s implementation 

[57] of the random forest classifier and persistently stored search results in a Sqlite [28] 

database. For training the CAEs we use Keras [8] with TensorFlow [1]. Documentation on 

how we trained our CAEs is provided in the form of iPython Notebooks [58]. All of the 

source code and detailed instructions on how to get started are available at https://

github.com/Novartis/peax/.

8 Use Cases: Epigenomics

The human genome is a sequence of roughly 3.3 billion chemical units, called base pairs 

(bp), which encode for protein and RNA genes. But genes make up only less than 2% of the 

human genome, the remaining fraction contains the regulatory information for when and 

where genes are expressed. The regulatory information consists of genomic regions, called 

regulatory elements [55], and associated protein complexes. Gene expression is then 

controlled by modification of the degree of compaction of DNA and modification of the core 

proteins of the DNA and protein complex, called histones. These modifications are 

collectively called the “epigenome”. Studying the epigenome involves, for example, the 

genome-wide measurement of DNA accessibility (e.g., DNase-seq [13]), DNA protein 

binding and histone modifications (e.g., ChIP-seq [2]), gene expression (e.g., RNA-seq 

[45]), or spatial chromatin conformation (e.g., Hi-C [43]). Consortia like ENCODE [11], 

Roadmap Epigenomics [6], or 4D Nucleome [14] provide a large collection of these assays 

across many cell types and tissues. But while strict protocols and processing pipelines are 

applied, the variance between measurements and biological samples remains high and 

detecting regulatory elements is highly challenging [23, 59].

As our driving use case, we focus on the exploration of regulatory elements [55]. DNA 

accessibility and histone modifications are often used as proxies for detecting these 

elements, where peak-like patterns (Figure 6) show the strength of the epigenomic marks. 

Multiple datasets are typically explored in parallel, as multivariate sequential data, since no 

single method provides enough evidence to confirm the presence of a regulatory function. To 

explore such data we trained six CAEs [42] for 100 epochs on 343 histone ChIP-seq 

(modifications H3K4me1, H3K4me3, H3K27ac, H3K9ac, H3K27me3, H3K9me3, and 

H3K36me3) and 120 DNase-seq datasets, on 3 kilobase pairs (kb), 12 kb, and 120 kb 

windows, with bin sizes of 25, 100, and 1000 bp respectively. We chose the above 

mentioned window sizes (l) to capture local regulatory interactions as well as long-range 

regulatory domains. See Supplementary Tables S3–S5 for details.

8.1 Finding Peaks

We demonstrate how PEAX can be used to find regulatory regions in epigenomic data. In 

recent work exploiting epigenomic data to detect regulatory enhancer patterns, Fu et al. [23] 

found that DNase-seq and histone mark ChIP-seq peak callers retrieve and rank peak 

patterns very differently and that the overall accuracy for finding regulatory elements is still 

quite low. Inspired by their findings, we first show how PEAX can be used to build a classifier 

for asymmetrically co-occurring peak patterns from scratch. We then illustrate how existing 
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peak annotations can be used as a starting point to find patterns of differentially activated 

regulatory regions.

Building a Classifier From Scratch.—We choose a lung DNase-seq and H3K27ac 

histone mark ChIP-seq dataset from ENCODE and encode it with our 3 kb DNase and ChIP-

seq CAEs. We begin by selecting an asymmetrically co-occurring peak through brushing to 

start the search (Figure 6.1a) See our supplementary video and Supplementary Figure S22–

S33 for complementary screenshots. We follow the left side of our workflow (Figure 3) and 

use our active learning strategy (section 5) to label 65 windows. The progress view (Figure 

6.1c–f) shows that the uncertainty first increases (Figure 6.1c) and then gradually decreases 

(Figure 6.1d) before it stabilizes (Figure 6.1e), indicating that the classifier is learning to 

detect a certain pattern type. To get an overview of all windows, we compute the 2D 

embedding, which shows several clusters. Next, we switch the results, exclude our own 

positive labels, and find the classifier is able to detect patterns similar to our target. To assess 

the recall of our classifier, we invert the sort order of the results to find windows with a 

prediction probability close to 0.5. We find that these windows still match our target pattern 

and lower the threshold to 0.35. PEAX now warns us about potential false-negative and false-

positive conflicts, which we subsequently inspect and fix. Finally, we manually identify 

neighborhoods of windows showing instances of our query pattern using the embedding 

view. Using the prediction probability color encoding, we find a neighborhood of windows 

that are predicted to match our search target and select these windows using the lasso tool to 

improve the labeling further.

Refine Existing Labels to Build an Improved Classifier.—PEAX also supports 

interactive refinement of existing labels. This time we search for differentially-accessible 

peaks in two DNase-seq datasets from face and hindbrain. Such peaks are shown [23] to be 

highly predictive of tissue-specific regulatory elements. Using algorithmically-derived peak 

annotations, we define positive labels as regions that have a reported peak annotation in the 

face dataset but not the hindbrain dataset and negative labels as regions that share peak 

annotations. See Supplementary Figure S34–S48 for complementary screenshots. We start 

by training a classifier with our pre-loaded labels. Since we have not specified a query 

region, PEAX shows the region with the highest prediction probability in the query view. We 

find that the top results indeed show a pronounced peak in the top track and no peak in the 

bottom track (Figure 6.2a). Given the surprisingly high number of positive matches, we 

investigate the prediction probability landscape in the embedding view and see that almost 

every window has a probability higher than 0.5 (Figure 6.2c). After realizing that most 

results with a probability threshold close to 0.5 do not contain a differentially-accessible 

peak, we increase the probability threshold to 0.85. As a consequence, several incorrect 

labels appear as conflicts, which shows that the pre-loaded peak annotations are far from 

perfect. After resolving the conflicts and retraining the classifier, we observe a strong change 

in the average prediction probability and notice that the uncertainty for labeled windows 

decreased while the uncertainty for unlabeled data increased (Figure 6.2f), which is also 

reflected in the embedding view (Figure 6.2d dark-gray dots). Using the embedding view’s 

lasso tool, we assign labels local neighborhoods with high uncertainty, which leads to a 
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notable reduction in the overall uncertainty (Figure 6.2e). Finally, using query view we 

explore the entire dataset to assess the spatial location of the found windows (Figure 6.2g).

9 Evaluation

9.1 Reconstruction

First, we study the reconstruction quality with data from our use case (section 8) to assess 

the general performance of our CAE models. While the reconstruction is not expected to be 

perfect given the 12-fold compression, it should capture the main visual properties to be 

useful for visual similarity search. Figure 7 exemplifies the reconstruction quality of the six 

CAEs from our use case (section 8). More example reconstructions are available in 

Supplementary Figure S3–6. It appears that the model is able to learn the visual properties of 

the epigenomic datasets. Most of the salient peaks are captured by the CAEs. As the window 

size and resolution increase from 3 kb over 12 kb to 120 kb (with a binning of 25 bp, 100 bp, 

and 1000 bp) the reconstruction quality decreases. Hence, the model is not able to encode 

high-frequency variations. Numerically this is captured by an increase in the reconstruction 

loss for larger window sizes. Since absolute loss is hard to interpret, we report R2 scores to 

assess how much variability is captured by the reconstruction, where a score of 1 stands for a 

perfect reconstruction. All scores are computed on the test data. For the CAEs trained on 

DNase-seq data the R2 is .98, .90, and .78 for 3 kb, 12 kb, and 120 kb windows respectively. 

Similarly, the R2 scores for the CAE trained on histone mark ChIP-seq data are .84, .69, 

and .73 for 3 kb, 12 kb, and 120 kb windows respectively.

9.2 Similarity Comparison

Knowing that the CAEs are able to successfully reconstruct most of the visual features, we 

wanted to know whether the learned representation is more effective for visual similarity 

search in terms of the perceived similarity compared to other techniques. Given a DNase-seq 

dataset from our use case, we manually identified 9 diverse query patterns. Using a 5-nearest 

neighbor search, we subsequently retrieved the 5 windows that are closest to the queries 

using the latent representation of our CAEs and six other techniques (Supplementary Table 

S6). ED [19], SAX [44], DTW [5], and zero-normalized cross-correlation (XCORR) are 

four distance-methods we compare against. Additionally, we included UMAP [53] and 

TSFRESH [9] as two feature-based techniques. Figure 8 and S15 shows the nine queries for 

12 kb windows together with the 5-nearest neighbors of every method. Subjectively, the 

results from our model consistently find more similar patterns on average. While simple 

pattern, like Figure 8.4, are well captured by several techniques, every other method has at 

least one instance where the five 5-neighbors are missing important visual features 

compared to our CAE (Figure 8 “!”). Supplementary Figure S16 and S17 show the 

comparison for 3 kb and 120 kb windows.

To determine whether our subjective findings hold true, we evaluated the similarity in an 

online user study on Amazon Mechanical Turk. For each of the 27 patterns (9 patterns × 3 

window sizes), we generated an image showing the 5-nearest neighbors for each technique 

together with the query pattern (Supplementary Figure S18). We asked the participants to 

“select the group of patterns that on average looks most similar and second most similar to 
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the target pattern”. The order of target patterns and search results were fixed but we 

randomized the order in which techniques were shown. We asked for the most and second 

most similar group as a pilot study revealed that the task can be hard when there are two or 

more groups with similarly good results. In total, participants had to make 18 choices by 

comparing 7 × 9 groups of patterns. We paid $1 for an estimated workload of 6 minutes. 

Participation was restricted to master workers with a HIT approval rate higher than 97% and 

at least 1000 approved finished HITs. In total, we collected 75 responses. We hypothesize 

(H1) that our CAEs outperform other techniques by finding more similar patterns on 

average.

Using a Pearson’s chi-squared test, we find significant differences between the techniques (3 

kb: χ2(1,N=25)=206.4, p<.001; 12 kb: χ2(1,N=25)=284.5, p<.001; 120kb: 

χ2(1,N=25)=319.0, p<.001). In a post-hoc analysis using Holm-Bonferroni-corrected [31] 

pairwise Pearson’s chi-squared tests between our and the other six methods (Figure 9 and 

S20), we find that our CAEs retrieves significantly more often patterns that are perceived 

most or second most similar to the target compared to SAX (3 kb: χ2(1,N=25)=19.8, 

p<.001; 12 kb: χ2(1,N=25)=44.6, p<.001; 120kb: χ2(1,N=25)=76.8, p<.001), DTW (3 kb: 

χ2(1,N=25)=57.3, p<.001; 12 kb: χ2(1,N=25)=49.5, p<.001; 120kb: χ2(1,N=25)=41.4, 

p<.001), UMAP (3 kb: χ2(1,N=25)=23.6, p<.001; 12 kb: χ2(1,N=25)=53.4, p<.001; 120kb: 

χ2(1,N=25)=100.3, p<.001), TSFRESH (3 kb: χ2(1,N=25)=126.2, p <.001; 12 kb: 

χ2(1,N=25)=134.4, p <.001; 120kb: χ2(1,N=25)=117.4, p<.001), and XCORR (3 kb: 

χ2(1,N=25)=72.0, p <.001; 12 kb: χ2(1,N=25)=97.7, p <.001; 120kb: χ2(1,N=25)=122.0, 

p<.001). We find no significant differences between CAE and ED. Therefore, H1 does not 

hold true given the strong performance of ED. In general, we found that for simple patterns 

it is more likely that any method performs well.

We were surprised by some results where ED outperformed our model, e.g., Supplementary 

Figure S15.8. We hypothesize that for complex patterns groupwise comparison can be too 

challenging. To gain a more detailed picture, we conducted a follow-up study on pairwise 

similarity search between the 5-nearest neighbors of just our model and ED. For each of the 

27 patterns, we generated images showing the target pattern together with one pattern found 

with CAE and ED. The pairing of patterns is determined by the order in which they were 

found, e.g., the first nearest neighbor from CAE is paired with the first nearest neighbor 

from ED, etc. The order in which the patterns are drawn was randomized but the order of 

targets was fixed as in the first study (Supplementary Figure S19). We asked the participants 

to “select the pattern that looks more similar to the target” for each of the 5-nearest neighbor 

pairs. This resulted in a total of 45 comparisons (9 patterns × 5 pairs). We paid participants 

$1 for an estimated workload of 6 minutes. Participation was limited to the same population 

as in the first user study and we again collected 75 responses. We hypothesize (H2) that our 

CAE model outperforms ED in pairwise comparisons on average. However, we also expect 

mixed results for simple patterns. Using the same analysis from the first user study, we 

found that across all 5-nearest neighbors, our model retrieves significantly more similar 

patterns compared to ED for 3 kb (χ2(1,N=25)=70.3, p<.001), 12 kb (χ2(1,N=25)=171.5, 

p<.001), and 120 kb (χ2(1,N=25)=85.2, p<.001) window sizes. Thus, we can accept H2. See 

Supplementary Figure S20 and S21 for detailed votes.
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9.3 Usability & Usefulness

We conducted an in-person user study with 8 domain experts (P1–8) to investigate the 

usability and usefulness of PEAX. All experts are computational biologists who work with 

epigenomic data on a regular basis (Supplementary Table S9). In each individual one hour-

long session, we first introduced PEAX using our supplementary video, summarized the 

primary use cases for genomics, and provided a brief demo of features not covered in the 

video (15 minutes). Afterward, each expert completed two tasks on building and evaluating 

pattern classifiers. The experts had 15–20 minutes to complete each task, and we asked them 

to think aloud while we recorded the screen and audio. See Supplementary Table S8 for a 

detailed description of the procedure.

Task 1.—We asked the participants to build a classifier to find windows that contain a peak 

pattern in the first two out of three datasets (Supplementary Figure S50). To assess the 

performance of the classifiers, we simulated three ChIP-seq experiments (Supplementary 

Table S7) with ChIPsim [33] and used our 3kb ChIP-seq CAE for encoding. As a guideline, 

we mentioned that 50–100 labels are typically needed to produce reasonable results. See 

Supplementary Table S11 for the participants’ actions. All but one expert started by 

sampling and labeling windows for the first 5–10 minutes before they switched to the 

results. In the results tab, they typically labeled windows of the first few pages. Six experts 

also labeled windows that were close to the prediction probability threshold. While assessing 

the results, six experts noticed potential conflicts highlighted by PEAX (Figure 5.2f) and 

adjusted the labels if necessary. Also, two experts increased the prediction probability 

threshold (Figure 5.2b) after inspecting the conflicts. Finally, six experts computed the 

embedding view and explored windows within this view. Interestingly, one expert (P2) 

switched to the results after only one round of training. As the results were not good yet, P2 

continued labeling and retraining the classifier in the results tab.

We compared the ground-truth labels from our simulated data against the expert-generated 

labels and found (Supplementary Figure S51) high sensitivity of 0.98 (SD=0.02) and 

specificity of 0.95 (SD=0.07) on average. P2 and P5 had a relatively high number of false-
positive labels, which indicates that their imagined target pattern might have differed from 

ours. Next, we evaluated the performance of the classifiers in terms of the area under the 

receiver operating characteristic curve (AUC-ROC), average precision (AP), and Matthews 

correlation coefficient (MCC) with a probability threshold of 0.5. When training the 

classifiers on our experts’ labels, we found an average AUC-ROC of 0.93 (SD=0.04), AP of 

0.56 (SD=0.09), and MCC of 0.49 (SD=0.12) (Figure 10). The MCC scores for classifiers 

trained on P2’s and P5’s labels are significantly lower, as their search targets diverged. We 

then compared the performance against classifiers trained on ground truth labels sampled 

with our active learning strategy to study the impact of a human-in-the-loop. Interestingly, 

we found that on average, AUC-ROC (+0.13) and AP (+0.14) are higher for classifiers 

trained on the experts’ labels (see blue versus gray bars in Figure 10), which indicates that 

the expert-steered training process is more effective. The differences for the MCC scores are 

minor, except for P2 and P5, which indicates that a probability threshold of 0.5 might not be 

ideal.
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Task 2.—We asked the participants to evaluate and improve a classifier trained on a set of 

pre-loaded labels. The dataset and labels were taken from our second use case scenario 

(section 8) to assess PEAX’s usability on a real-world dataset. See Supplementary Table S12 

for the participants’ actions. In the beginning, all experts acknowledged that the classifier 

correctly predicts differentially-accessible peaks and that they don’t have to label new 

samples. Subsequently, all experts assigned labels to the top results and noticed that the 

number of matching windows was too high. Interestingly, different actions made the experts 

question the number of results. Three experts noticed that results with a prediction 

probability close to the threshold did not match the target pattern. Two experts discovered 

that a lot of regions had a prediction probability close to 0.5 after examining the embedding 

view. Another two experts investigated the threshold after inspecting conflicts. Finally, one 

expert decided to retrieve new samples and realized that the classifier is uncertain about 

regions with low signal, that typically appear in high numbers. Eventually, all experts 

increased the threshold to reduce false positives results.

In general, through the two tasks and the post-study questionnaire (Q7 and Q9) we found 

that PEAX’s interactive pattern search is an effective and useful new exploration approach. 

None of the experts is aware of any tool that supports a similar pattern exploration approach. 

P6 and P8 mentioned that they currently have to browse and annotate their data manually. 

We also found that PEAX is easy to learn and use. The 15-minute introduction was sufficient 

to enable the experts to successfully build and refine pattern classifiers. Expert P1 mentioned 

that “for having just seen a quick video and a couple of quick instructions, it’s pretty easy to 

work through”. After the study, we addressed smaller usability issues that were mentioned 

by the experts (Supplementary Table S13). However, use case-specific guidelines would be 

helpful to lower the initial learning curve, as mentioned by P2, P3, and P8. While the manual 

labeling and training process requires more work than a purely computational search, the 

classifier comparison from Task 1 suggests that a human-in-the-loop can make the labeling 

process more effective. Also, P8 noted that the labeling “is really awesome to play around 

with. It’s like playing a game.”, and we also see increasing trust in the results of PEAX 

compared to fully automatic peak and feature detectors (see Figure S52 Pre-Study Q5 versus 

Post-Study Q5).

10 Discussion

Instead of using deep learning techniques to predict the presence of a specific pattern type in 

a fixed combination of datasets, we use deep learning to augment human intelligence to 

search for patterns in multivariate sequential data. Our approach improves the performance 

of visual pattern search by providing a learned latent representation together with an 

actively-learned classifier. Having a tool for general exploration of large sequential datasets 

by pattern similarity allows to ask new questions and find previously undetectable patterns, 

and complements efforts for highly specialized pattern detectors.

While the overall results of our user study suggest that the user-steered learning process 

leads to more effective classifier training, subjective interpretation of the target pattern can 

influence the classifier’s performance strongly. Visualizing the impact of a label on the 

classifier might help to stabilize the labeling between users. Despite its complexity, we show 
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that PEAX is easy to learn and use, given a short introduction to PEAX’s general search 

approach. While all participants actively used at least two different labeling strategies to 

broaden the exploration, more in-depth training might be required to utilize all functionality 

of PEAX. Carefully-designed notifications could also inform the user if their exploration 

strategy is too narrow.

PEAX is not limited to any of the specific autoencoders that we presented in this paper. In 

fact, the system is explicitly designed to facilitate extension with custom encoders, and we 

hope that analysts will use PEAX as a tool to evaluate their own (auto)encoders for pattern 

search. Thus, it is up to the user to normalize the data before loading the data into PEAX. 

Moreover, while the use case presented in this paper is about epigenomic data, the ideas 

apply equally to other sequential or time series data, given that the autoencoder is purely 

data-driven and does not require any prior knowledge. For other use cases, the most 

important consideration is the window size. The windows need to fully include the target 

pattern to allow the CAE to extract relevant features. In our current implementation, we use 

a random forest classifier given its superior performance (Supplementary Figure S49). But 

PEAX supports any classifier that implements Scikit-Learn’s API [57].

While we found that the reconstruction is not perfect, it is hard to tell what a “perfect” 

reconstruction in regards to visual pattern search might be. In general, our CAEs work best 

at encoding distinct patterns, e.g., medium-frequent peaks with a noticeable difference in 

magnitude compared to the background signal. High-frequency patterns are smoothed out by 

the CAE, which can be beneficial when the underlying phenomena is independent of the 

background noise. While there are legitimate reasons to assess the “randomness” of the 

background noise, like in anomaly detection, systems supporting such use cases should not 

be steered visually by humans, as judging randomness is a hard task [69, 70] for humans. In 

general, PEAX’s ability to find patterns is bound by the extracted features of the input data. 

As we aim for generic search, the unsupervised feature learning employs a general loss 

function, which emphasizes high compared to low-magnitude differences. As a 

consequence, a feature that is not visible with our eyes stays undetected by the CAEs. To 

address specific search scenarios, the user can provide a custom (auto)encoder model.

Currently, PEAX scales well to up to one million windows. To ensure interactivity, PEAX 

preprocesses the data, which takes about 25–30 minutes for one million windows on a 

regular laptop. The main limiting factor is the computation of the nearest neighbors and 

UMAP embedding. For datasets with more than 100,000 windows, we switch to an 

approximate nearest-neighbor algorithm. Cluster-based data preprocessing can further 

reduce the startup time for larger datasets. Visually, the main limitation is the embedding 

view, which works smoothly until one million dots but can slow down above 1.5 million 

dots. For larger datasets, interactive filtering techniques could alleviate overplotting and 

rendering issues. Finally, the amount of labels needed to train a reasonable classifier depends 

on the complexity of the search query. As an example, roughly 25–50 labels can be enough 

to retrieve reasonable results if the latent representation effectively captures a single-dataset 

query for a distinct pattern. This number can increase linearly in a multi-dataset search but 

ultimately depends on the complexity of the datasets.
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Finally, the choice of the similarity search metric should depend on the data type and search 

goals. The larger the data, the more likely it is that different instances of the same pattern 

type exist. If the goal is to find the top k hits than many different techniques will likely yield 

equally good results. If, on the other hand, one seeks to find all pattern instances or the data 

are highly variable then a feature-based approach can be more effective as shown by our 

evaluations and similarity comparisons.

11 Conclusions and Future Work

We have presented PEAX, a novel technique and tool for interactive visual pattern search in 

sequential data. We found that our convolutional autoencoder models learn a latent 

representation that is more effective at similarity search than existing techniques.

In future work we want to compare the performance of different autoencoders such as 

different variational autoencoders, recurrent autoencoders, and other deep learning 

approaches such as generative adversarial networks. Especially the latter would allow visual 

judging of the encodings to improve debugging and sensemaking. In addition to the 

encoding efforts, there are several avenues to extend the active learning strategy. For 

example, when training a classifier from an existing set of peak annotations, a deep-learning-

based strategy similar to Gonda et al. [26] might prove to be superior. Finally, in our in-

person user study, we found that the articulated and imagined target pattern can differ 

between people. An exciting avenue for future work is to systematically test the variance of 

human labels within and between different subjects. Also, it would be interesting to expand 

PEAX to a multi-user system and study the impact of multiple users on the labeling and 

learning process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The PEAX System.
Using an autoencoder model (1), regions of sequential data are encoded into a compressed 

latent representation. Using this encoding, PEAX employs an active learning strategy (2) to 

focus the labeling (3) on regions that are useful for training a classifier. This classifier is then 

iteratively trained on the user’s binary labels ( ) to predict the interestingness of other 

regions in the data.
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Figure 2: Similarity Search.
Given the query (blue), the two nearest neighbors of the six methods on the left fail to 

capture many salient peaks (pink dots). While our autoencoder-based technique (CAE) also 

misses the small left-most peak it finds more similar instances.
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Figure 3: Workflow.
A new search can be started with a query by example or already labeled data. The user then 

needs to provide and adjust labels to steer the classifier’s learning process.
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Figure 4: Data Processing and Encoding Pipeline.
(1) We employ a sliding window approach for pattern search on (1a) piecewise (1b) 

aggregated (1c) windows. (2) The windows are encoded with our convolutional autoencoder 

(CAE) to obtain the latent representation. The CAE consists of a 4-layer convolutional 

encoder with an increasing number of filters and kernel size followed by two dense layers.
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Figure 5: User Interface.
The sequential data is visualized as blue bar charts (1&2), which can be superimposed with 

the CAE’s reconstruction as gray bars (2e). Additionally, the query view (1) can show 

metadata (1a-d) as region-based annotations. The list view (2) shows windows for 

comparison and labeling. The embedding view (3) represents windows as dots on a 2D 

canvas. The progress view (4) visualizes training metrics of the classifiers as composed bar 

charts (4), where the dark and light bars are relative to the labeled and all windows 

respectively.
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Figure 6: Findings from the Use Cases.
(1) shows the result and progress of our asymmetrical peak detector training. In (2) we 

refined existing labels to build a differential peak detector (2a) after resolving an initially 

high uncertainty in the existing labels (2b-c).
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Figure 7: Example Reconstructions.
The black bars represent the input and the blue bars visualize the reconstruction. The third 

chart plots the differences, where blue indicates missing data and pink indicates over-

estimation of the reconstruction. As the window size increases the reconstruction gets less 

accurate. Since DNase-seq data contains less frequent peaks the reconstruction is more 

accurate.
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Figure 8: Similarity Comparison.
Given a query ( ) at 12 kb, we ran a 5-nearest neighbors search with our model (CAE), four 

distance-based methods (PAA/ED, SAX, DTW, and zero-normalized cross-correlation 

(XCORR)), and two feature-based methods (UMAP and TSFRESH). All techniques are able 

to detect the most distinct visual feature but many fail to match secondary features, as 

highlighted with (!). For simple patterns (4) many methods are equally good and we only 

show the top results. See Supplementary Figure S15 for all results.
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Figure 9: Results of the Similarity Comparison.
Bars show the votes per technique per target pattern for 12 kb patterns. More votes are 

better. The highest votes are indicated by a dot. Results for our method (CAE) are drawn in 

blue.
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Figure 10: User Study Task 1 Classifier Performance.
We trained our classifier 10 times on the experts’ labels (blue) and on ground-truth labels 

sampled with our active-learning strategy (black). Vertical and horizontal bars show the 

mean and standard error
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