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Abstract

Brain-computer interfaces (BCIs) have been explored in the field of neuroengineering to 

investigate how the brain can use these systems to control external devices. We review the 

principles and approaches we have taken to develop a sensorimotor rhythm EEG based brain-

computer interface (BCI). The methods include developing BCI systems incorporating the control 

of physical devices to increase user engagement, improving BCI systems by inversely mapping 

scalp-recorded EEG signals to the cortical source domain, integrating BCI with noninvasive 

neuromodulation strategies to improve learning, and incorporating mind-body awareness training 

to enhance BCI learning and performance. The challenges and merits of these strategies are 

discussed, together with recent findings. Our work indicates that the sensorimotor-rhythm-based 

noninvasive BCI has the potential to provide communication and control capabilities as an 

alternative to physiological motor pathways.
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I. Introduction

Using thought alone to communicate with others and interact with the environment around 

us has been a theme mentioned frequently in science fiction. Recent scientific findings and 

emerging technologies over the last two decades have begun to make these ideas a reality. In 

particular, advances in neuroscience and signal processing have enabled thought-control of 

external devices.

Brain-computer interfacing is an emerging technology that connects our natural brain with 

man-made devices, providing a new output channel for brain signals to communicate or 

control external devices without using the natural neuromuscular pathways [1–7]. A brain-

computer interface (BCI) recognizes the intent of the user through electrophysiological or 
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other signals from the brain, decodes the ongoing neural activity, and translates it into output 

commands that accomplish the user’s goal. BCI technology has the potential to restore lost 

or impaired functions of people severely disabled by various devastating neuromuscular 

disorders or spinal cord damage, and to enhance or supplement functions in healthy 

individuals. Figure 1 illustrates the general concept of a BCI system, based upon the 

principles of sensorimotor rhythms generated via motor imagery (MI) tasks, a framework 

that we will discuss in this paper.

Various kinds of brain signals have been used as the basis for decoding user intent in BCI 

research. Direct neuronal recordings using implanted sensors have led to precise control and 

fast learning in animals, and recently also in a few severely paralyzed human subjects [5,8–

11]. Similarly, noninvasive BCIs have been widely pursued with the hope of developing a 

BCI system that can decode and interpret users’ intentions without requiring invasive 

surgical procedures and implantation, such that the system can be used in daily life [12–25]. 

Electroencephalography (EEG) has been widely used for this purpose due to its 

noninvasiveness, ease of use, and low cost. EEG-based BCI signal types include stimuli-

evoked potentials, slow cortical potentials, and sensorimotor rhythms (SMRs). Of these, 

while the steady-state visual evoked potential (SSVEP) based BCI can provide many 

commands [26], the SMR-based BCI offers a high level of control in terms of degrees of 

freedom as initiated by the intent of users [7]. SMRs are readily detectable in healthy [6,27] 

as well as disabled individuals with neuromuscular diseases or injuries, including spinal-

cord injury, amyotrophic lateral sclerosis (ALS), and stroke (see [7] for review). SMR 

signals can be modulated through MI tasks, which have been shown to provide a robust 

paradigm for generating noninvasively detectable and usable EEG signals.

In this article, we describe an SMR-based BCI approach, focusing on our efforts with this 

paradigm at the University of Minnesota. Compared with other approaches, a unique feature 

of our approach is to leverage neuroscience knowledge to maximize the performance of 

BCIs. With respect to this, we have investigated BCIs for controlling an external device in 

virtual and physical spaces to engage human subjects in a highly interactive manner, 

developed the source-analysis-based BCI technique to improve the spatial resolution of 

scalp-recorded EEG signals, integrated transcranial direct current stimulation (tDCS) with 

MI to improve BCI performance, and pursued mind-body awareness training (MBAT) to 

improve the learning rate and applicability of BCI to a greater population of human subjects. 

This body of work reflects our approach of focusing on the brain aspect of the brain-

computer interface, including user engagement, brain source imaging, brain stimulation, and 

mind-body awareness training. We will review research efforts in these four thrust areas, 

including our latest findings, and then discuss the challenges and future perspectives to 

establish a noninvasive BCI system for broad use in daily life.

II. BCI Control of Physical Devices

BCIs have the potential to provide two key benefits to disabled users: an alternate means of 

communication, and the ability to independently move around in and interact with their 

environment. Past BCI research has primarily focused on the communication aspect with 

spelling systems utilizing P300 responses [28–31], SSVEPs [32–35], and sensorimotor-
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rhythms (SMRs) [19,36,37]. However, there is great potential for BCI systems to provide a 

means of physical interaction that can restore critical aspects of autonomy for disabled users, 

and eventually to offer alternate output pathways for healthy users [6].

The bulk of BCI research has focused on simplified tasks confined to a two-dimensional (2-

D) computer monitor, such as text entry or movement of a virtual cursor [18]. However, in 

recent years an increasing amount of effort has been devoted to using BCIs to interface with 

physical devices, real or virtual. This includes BCI control of virtual helicopters [25,38], 

physical quadcopters [15], wheelchairs [39–42], limb orthoses [43], and telepresence robots 

[44].

The common paradigm of a paced, cued virtual cursor task is suited for characterizing 

fundamental BCI characteristics such as classification accuracy and subject performance, but 

its practical utility in assisting users with activities of daily living is limited. BCI control of 

physical devices encourages translational research, advancing technologies that can be 

useful in real-life conditions. BCI experiments with physical devices are important for 

discovering practical issues that these systems will face in real-life environments [45], and 

can better inform how to design rigorous and useful virtual experiments in the future [15]. 

Additionally, BCI tasks involving physical device control have been observed to increase 

research subject motivation [25,38], which may influence BCI performance [46].

a. Control Paradigms

A variety of input signals, classification methods, and task paradigms are available for BCI 

systems. There are several key considerations when using a BCI to control a physical device.

1) Continuous control—The system must be able to respond quickly and smoothly to 

changes in both dynamic neural processing as well as the external environment. Discrete 

selection methods and synchronous (cued) trial structures may not be adequate for attaining 

fast response times in some applications. Some work has been done examining P300 and 

SSVEP-based humanoid robots [47], robotic arms [48], and wheelchairs [34,49]. However, 

the P300 response does not allow for continuous control, and both P300 and SSVEP require 

focusing of visual attention on a presented stimulus, which may distract a user from 

observing their surroundings. Distraction in an SSVEP paradigm could be minimized by 

incorporating flashing stimuli into a virtual environment while still allowing for continuous 

control [50,51], however this is not likely to be feasible in non-virtual settings. For these 

reasons, BCIs based on SMRs have been pursued for control of physical devices 

[6,15,40,52]. SMR-based BCIs allow for continuous, asynchronous control paradigms, 

although challenges still exist for the limited information transfer rates associated with these 

systems.

2) Multidimensionality—A single dimension of control, or a single degree of freedom, 

is typically not sufficient for complex real-time physical interaction with the environment. 

Therefore, most BCI systems controlling physical devices employ methods to interpret 

multiple simultaneous control signals from the user. For example, in [15] users performed 

MI of left or right hands individually to rotate left or right, imagery of both hands to move 

up, and rest to move down, as illustrated in Figure 2. Users could modulate these control 
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signals independently and use them to simultaneously induce movement in multiple 

dimensions.

3) Level of control—A system designer must carefully consider how outputs will be 

controlled by user input. At the lowest level, a user’s filtered SMR signal may control the 

position, velocity, or acceleration of the physical device. Alternatively, users could provide 

higher-level, abstract instructions and rely on an intelligent semi-autonomous system to 

manage the details of low-level control.

Absolute control of position may make sense for a manipulator such as a robotic hand, in 

which a user performs MI to open the hand to a desired position, and rests to return the hand 

to a closed position. However, with a noisy input signal, this control paradigm may produce 

abrupt movements, and could make it difficult to hold a device in a given position. 

Additionally, non-stationarities in the control signal [53] may make it difficult to 

consistently map a user’s intent to absolute positions or orientations over extended periods 

of time.

Because of these difficulties, velocity control is more common. With this paradigm, a user 

performs MI to change the position of an object, whereas the position is held when the user 

rests. This control method has been used widely in the traditional virtual cursor task [18], 

and is relatively well established. Studies show that SMR EEG signals can be used to decode 

users’ intention of velocity in a MI paradigm [54], which could help to make BCI velocity 

control more intuitive. However, velocity control can produce some unrealistic movement 

commands (e.g., sudden changes in speed) that are not physically feasible [15].

Acceleration control, or force control, can provide a more intuitive experience [15]. For 

these paradigms, a user performs MI to change an object’s velocity, resulting in relatively 

smooth changes in position over time. By coupling a user’s intent to applied force (or 

change in velocity), objects appear to move according to more natural physical principles. 

Typically some damping force is applied to counteract the user’s “applied” force, bringing 

the device to a halt gradually when the user rests.

A noninvasive SMR-BCI effectively bypasses much of the closed-loop neural circuitry 

responsible for smooth motor actions (e.g. proprioceptive sensory feedback, cerebellar 

circuitry, etc.), and instead solely bases movement off of a gross increase or decrease in 

energy of specific neural oscillations. As a result, the hardware and software of the BCI 

system must provide a significant amount of smoothing and other intelligent processing to 

convert user-generated signals into functional and safe actuator outputs. Some simpler safety 

measures are to limit maximum acceleration and maximum velocity. However, there are 

many more possibilities for safeguards with more advanced systems. For example, a 

quadcopter may perform automatic takeoff and landing [15], or a wheelchair may perform 

automatic obstacle avoidance [52].

As these systems become more complex, the concept of shared control arises. In these 

setups, the human user is no longer the only entity providing input. An “intelligent” 

automated controller is also employed to provide input or some cooperative assistance to 
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help the user accomplish their desired task [38,55,56]. The level of assistance provided by 

this intelligent controller can vary: a novice, untrained user may require significant support, 

while an experienced user may be allowed more dexterous manual control of the system. At 

the highest level, a user may select a predetermined action (e.g., “go to kitchen”) and allow 

the system to carry out all the necessary steps to complete that action automatically 

(navigate through several rooms, open any doors, etc.). Because these higher level 

commands require only sporadic input from the user, they may reduce fatigue associated 

with long-term continuous control tasks [57]. Additionally, if a system can operate with 

infrequent discrete commands from the user, a smaller number of robust control signals can 

be utilized with a decision tree structure to select from many high-level commands [58].

4) Non-control state—During the practical use of a BCI system, the user needs to be 

able to focus on activities other than controlling the device. There are several ways to 

implement robust non-control states in which the BCI system does not respond to the user’s 

stray control signals. The most straightforward approach is to choose strong control signals 

that are easily discriminated from a rest condition, such as foot or hand MI [40]. If the rest 

state can be reliably recognized, it can facilitate self-paced operation of the BCI, in which 

the system can immediately respond to new input from the user while also tolerating periods 

of inactivity [59]. However, this method does not lend itself to rejecting user input for long 

periods of time due to noise in the control signal and minimal time needed to trigger an 

action. A more practical method is to implement some type of brain-controlled “switch” that 

activates or deactivates physical device control [60–62]. This switch does not need as fast of 

a response time as the primary BCI control method because it will be toggled infrequently. 

A longer response time allows a system designer to choose a much more robust signal which 

will have a low false positive rate [63]. For example, a pre-specified sequence of mental 

tasks (MI or others) could be used to enable and disable system control [64]. Alternatively, a 

hybrid BCI could employ other signal types, such as SSVEPs, P300 responses, heart rate 

[65], or even a different modality such as near-infrared spectroscopy (NIRS) [66], to enable 

and disable full device control.

b. Training

Unlike other paradigms such as P300 and SSVEP-based BCIs that require minimal training, 

SMR-based BCIs typically require much longer training periods. In order to attain high 

levels of performance, the user and the BCI system both need time to adapt to each other. 

The user is not expected to be able to achieve competent control immediately upon 

interacting with the device. Instead, a prescribed training process is often employed, both to 

introduce the user to the system and to provide calibration data for the system’s classifier(s).

When working with multidimensional BCIs, users may begin with independent single 

dimension control, then progress to more dimensions as they achieve competency 

[15,18,25,38,67]. This approach has several benefits. Single dimension tasks are generally 

perceived to be easier, which helps to maintain subject motivation during the early learning 

stages, whereas a multidimensional task may excessively frustrate new users. Initial training 

in a single dimension may also give the user clearer or more obvious feedback on individual 

control signals. In one training paradigm, subjects begin with simple one-dimensional (1-D) 
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and 2-D cursor tasks, progress to a virtual task mimicking real physical control, and then 

progress to an actual physical control task [15].

In contrast, it is also possible to have new users begin immediately with full 

multidimensional control [68]. These systems typically rely on an initial calibration of a 

data-driven machine learning algorithm with minimal user training required. However, 

starting untrained users with a more difficult task with higher failure rates risks increasing 

frustration and limiting learning [69]. A variety of methods for optimizing training have 

been described in the literature [69]. User-centered training approaches may be employed in 

which control tasks and signal processing algorithms are highly customized to individual 

users [70]. Alternate forms of feedback can provide users with supplementary or redundant 

information to aid learning [71,72]. Motivation can be enhanced by biasing feedback [73] or 

adaptively adjusting task difficulty [74] to reduce user frustration. Novel or entertaining 

tasks can help to maintain user interest. In particular, game-like structures and virtual 

environments can have a significant impact on user learning and performance [63,75–78].

Control of devices within a virtual reality (VR) environment plays an important part in 

training users to control physical devices. A virtual environment is not subject to the 

physical, mechanical, or economic constraints of real devices; this freedom allows 

simulation of a greater range of experimental protocols, and facilitates the exploration of 

new types of hardware without added expense or design work. Importantly, a virtual 

environment does not risk compromising the safety of a subject controlling a prosthetic or 

wheelchair system [40,79]. Virtual experiments can be much more rigorously controlled, 

allowing for repeated trials with highly consistent conditions in a virtual environment. 

Additionally, VR facilitates measurements of user and system performance. For instance, a 

simulated quadcopter’s position, orientation, and velocity can be easily measured in a virtual 

environment, whereas complex specialized hardware would be required to make similar 

measurements in reality. Despite these advantages, VR experiments cannot fully capture all 

of the practical issues that will be encountered in real-world use. For example, a wheelchair 

simulation cannot provide the user any proprioceptive sensation of acceleration in a way that 

mimics actual wheelchair movement.

c. Measuring Performance

Robust performance metrics are critical in assessing the performance of online BCI systems. 

Task-specific metrics can be used for quantitative comparisons within subjects over time and 

between subjects within a study. More general metrics, often founded in information theory, 

can facilitate comparison of performances between studies with slightly different conditions 

or even drastically different task structures.

Simple task-specific metrics can provide some practical information on user performance. 

Metrics such as percent valid correct (PVC) and percent total correct (PTC) are used in BCI 

tasks with fixed targets. PVC compares the number of correct target hits to total number of 

target hits (correct or incorrect). PTC compares the number of correct target hits to the total 

number of trials, including timeouts or aborts where no target was hit. While these metrics 

are easy to compute and provide intuitive measures of user performance, they do not provide 

meaningful quantitative comparisons between different tasks.
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Many conventional BCI performance metrics, such as information transfer rate (ITR) 

[80,81], have been established in the context of very controlled, simple fixed choice tasks 

such as 1-D cursor control. With physical device control and other complex BCI paradigms, 

these metrics are often no longer suitable for characterizing system performance [74,82,83]. 

Targets may not have equal probabilities of being hit, trial length may not be highly 

controlled, or there may not even be any distinct trials built in to the task paradigm.

Another common performance metric, particularly suited for cursor movement or similar 

tasks, is the index of difficulty (ID) based on Fitts’ law, initially developed to characterize 

human motor movement [84]

ID = log2( D
W + 1) (1)

Where D is net movement distance from starting position to the target, and W is the width of 

the target [85]. This can be converted to an approximation of ITR simply by dividing ID by 

the time taken to reach the target [15]. However, as described in detail in [74], there are 

several limitations to this metric, particularly with regard to its inability to facilitate 

quantitative comparisons between different tasks.

One common method for characterizing complex BCI system performance is to compare 

user BCI control to random chance control and “ideal” (manual) control conditions 

[15,25,38,52,74,86]. The random control condition provides a baseline measure of worst-

case performance, in which a subject has no influence on the experiment outcome. The 

manual control condition, often implemented as keyboard or joystick control, provides a 

measure of the best-case performance. It is also possible to perform an additional reference 

measurement to characterize how much a given signal processing pipeline degrades system 

performance, using manual control to generate a pseudo-BCI signal [74].

In general, it is difficult to apply generalizable performance metrics to a given task without 

making assumptions about various statistical parameters of that task (e.g. that all targets are 

presented with equal probabilities). Because of this, it is important to choose a suitable 

performance metric early and incorporate its constraints into the experimental task design.

d. Future Directions

BCIs have great potential for providing assistive solutions to disabled individuals, and 

eventually also providing general-purpose interfaces for healthy users. However, there 

remains a significant amount of work to be done before BCI physical device control systems 

will be practical for widespread real-world use.

Higher-dimensional control is critical for complex physical interaction with the 

environment. One possible way to increase dimensionality is to decode additional MI tasks, 

such as using an inverse-solution-based BCI to discriminate between imagery of different 

hand gestures [87]. This high-resolution decoding could potentially allow for more 

naturalistic MI tasks, such as using finger MI for dexterous control of the fingers of a 

prosthetic hand. Conceivably, naturalistic MI would be more intuitive for users and thus 

require less training time.
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If these systems are going to be used in the real world as assistive devices, they will need to 

be much more than just single-purpose systems. A multifunctional BCI system would 

provide integrated control of multiple devices (e.g. wheelchair and robotic arm) and allow 

for dynamic switching between output tasks (e.g. slower fine movement control for grasping 

a utensil, and faster gross control for opening a door).

Future advances in robotics, including autonomous navigation and environmental 

interaction, will drive a transition towards control of more intelligent systems with higher-

level user input. Users may not need to dexterously control individual joints in a robotic 

hand, but instead robustly communicate their intent to grasp a specific object and allow an 

intelligent BCI-controlled system to perform the task.

Finally, a major future aim is to improve the quality of the MI signal generated by users. 

There are many possible methods for enhancing a user’s control capability. We will discuss 

several approaches in the following sections.

III. Source-Analysis-based BCI

EEG is well known to have excellent temporal resolution in tracking neural dynamics across 

the scalp, but suffers from the drawback of limited spatial resolution. The low spatial 

resolution of EEG is attributed to the smearing of electrical signals as they travel from the 

brain, through the skull and meningeal layers, to the scalp. This phenomenon, referred to as 

the volume conduction effect, results in the detection of mixed signals at individual 

electrodes on the scalp [88]. Historically, a number of efforts have been made to correct for 

the volume conduction effect of EEG by solving the so called “inverse problem” which 

projects the scalp EEG back into the source domain, over the brain surface or within the 

brain [88,89]. In such source analysis, the relationship between neural sources and the scalp 

EEG is established by a forward model which leads to a transfer matrix that maps brain 

electrical activity to the scalp EEG [90,91]. Neural activation, in terms of membrane 

excitation of neurons, results in transmembrane currents, which generate current flow within 

the brain. The resulting electrical potential, as sensed by electrodes, is the observed scalp 

EEG. The activity of a single neuron, or the random firing patterns of multiple neurons, is 

too weak to be detectable at the scalp. Rather, only synchronized neural networks involving 

a large number of neurons generate strong enough signals to be detected by the EEG 

electrodes. Since brain function is encoded by networks involving a number of neurons 

firing in a synchronized manner, EEG provides a noninvasive manifestation of the 

underlying synchronized neural networks’ activities, thus revealing brain function or 

dysfunctions. The superposition of neurons firing simultaneously and synchronously 

amplifies the signal produced by a local population and can be modeled by a single dipole 

on the macroscopic scale. The scalp EEG can then be considered as the result of a 

distribution of equivalent dipoles located within the head volume conductor.

The forward solution determines the contribution of each dipole within the brain model to 

each electrode located on the scalp. The forward conduction from equivalent current dipoles 

to the scalp potential has been modeled using spherical models, realistic geometry boundary 

element models [90,91], and finite element models [92,93]. The forward conduction from 
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the dipole distribution to the scalp electrodes can be represented by a transfer matrix, A. The 

system equation of EEG generation can then be written as

b = Ax + n (2)

where x is the source activity, b the EEG measurements, and n the measurement noise.

The source analysis entails solving (2) seeking x, given EEG measurement b, and 

anatomical information A, which can usually be obtained from subjects’ structural MR 

images. The concept of source-analysis-based BCI is illustrated in Figure 3, in comparison 

with the traditional sensor-based BCI approach. Since source signals more closely reflect 

neural activation, we hypothesized that the use of source analysis will improve the 

performance of BCI and have demonstrated its merits in classifying MI tasks [94–96].

a. Source Analysis and Brain-Computer Interfaces

Sensor-based SMR BCIs take advantage of the event-related phenomena observed at specific 

electrodes located along the motor cortex. Large numbers of neurons in the motor cortex 

maintain an idling firing rate in the alpha/mu band (8–13 Hz) and synchronize within focal 

regions based on the type of task being performed. Upon executing or imagining movement, 

the cortical processing of neurons encoded for different movements disrupts that idle state 

and results in a desynchronization of certain local populations. These phenomena are termed 

event-related synchronization (ERS) and event-related desynchronization (ERD) 

respectively [27] and are visualized in Figure 4. Because of the brain’s contralateral motor 

control, when an individual executes a motor movement or motor imagination, ERD is 

usually observed in the contralateral hemisphere, whereas ERS is often observed in the 

ipsilateral hemisphere and/or along the brain’s midline. SMR BCIs exploit this 

neurophysiological phenomenon by detecting different spatio-temporal patterns of increased 

or decreased activity to determine which motor task a user is performing; however, 

traditional BCIs rely only on those patterns recognized from signals collected from a limited 

number of electrodes on the scalp.

EEG source analysis, on the other hand, has revealed additional information regarding the 

source generators of these fundamental control signals. Yuan et al. [96] applied linear 

inverse methods to pre-recorded 1-D BCI data to show not only that the ERD/ERS in 

response to right and left hand MI tasks have unique anatomical traces within the 

sensorimotor cortex (Figure 4a), but also that the event-related activity from the source 

domain was better correlated with the BCI task than that from the scalp electrodes.

Qin et al. [94] first reported the connection between MI tasks and equivalent dipole 

modeling by separating, in an offline setting, left and right MI tasks on a trial-by-trial basis. 

Equivalent dipole modeling has been shown to localize neuronal sources with high accuracy 

[90,97,98]. In this approach, multiple signal processing techniques, in addition to data-

driven signal separation algorithms, including independent component analysis (ICA) 

[99,100], were used to isolate the signal generated in response to MI. Components 

accounting for high levels of variance within the EEG envelope are thought to represent 

dynamic on-off processes relative to a specific task, which in this case is the activation or 
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deactivation of cortical regions responsible for performing MI. By fitting a single equivalent 

dipole to selected component maps at time points of maximal activation, a simple 

classification scheme was derived. Each trial was classified as a right hand MI trial if the 

dipole localized to the right hemisphere and was classified as a left hand MI task if the 

dipole localized to the left hemisphere. This work was soon after explored with a two 

equivalent dipole analysis in a similar fashion; however, both dipoles were required to 

localize to one hemisphere in order to classify the trial as either left or right hand MI [95]. In 

both of these studies, classification rates of >80% were achieved, making these source 

analysis techniques highly competitive with sensor-based methods.

Despite the promising results using equivalent dipole analysis for classifying MI tasks, such 

parametric methods need to solve a nonlinear inverse problem and thus may not be suitable 

for real time implementation of online BCI. Non-parametric solutions on the other hand not 

only provide more distributed activation patterns, but also have the capability of being 

applied in real time using simple matrix algebra [101].

Non-parametric inverse solutions can offer additional information over parametric methods 

in the sense that these techniques estimate the current density over the entire cortex. These 

methods involve minimizing the norm of the residual between the model-predicted and 

recorded scalp EEG distributions, as shown by the first term in (3). For this discussion, only 

the L2 norm will be discussed although in principle other norms may be applied as well.

Non-parametric solutions involve many more equivalent dipoles than the scalp electrodes, 

and are thus ill-posed inverse solutions which require regularization [88,102]. In the 

conventional minimum norm solution, in addition to minimizing the residual (first term of 

(3)), constraints are applied to minimize the norm of the solution (second term of (3)) in a 

minimal energy sense. To balance the influence of these two terms, a regularization 

parameter, λ, is introduced to control the impact of each term on the final solution. The 

optimal value of λ can be found using various techniques including the generalized cross-

validation and L-curve methods [103,104].

min
x

∥ Ax − b ∥ 2
2 + λ ∥ x ∥ 2

2
(3)

When the penalizing term in (3) is quadratic, this formulation is known as Tikhonov 

regularization and allows (3) to be solved analytically in the form of (4), where I is the 

identity matrix [105].

x = AT(AAT + λI)−1b (4)

This solution, termed the minimum norm estimate (MNE), can be further generalized into 

forms where a priori knowledge of source and sensor correlation can be integrated into the 

solution [88].

The MNE and its variations have become much more popular than parametric inverse 

solutions in the BCI community in order to quickly localize and image brain activation 
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patterns that are responsible for controlling these systems. For many of these studies, the 

inverse solution was used to map the scalp data onto a higher dimensional cortical space so 

that the activity of specific dipoles, rather than signals recorded by scalp electrodes, could be 

examined for MI task classification. Figure 4 illustrates the general concept of an EEG 

inverse BCI, the framework of which can be utilized in both online and offline applications. 

Common statistical measures, including information theoretic metrics, were used to identify 

regions of interest (ROIs) on the cortex that contained dipoles which best separated MI tasks 

[106,107]. Single-trial signal dynamics from the pre-selected ROIs were then broken down 

into time-frequency features, in a similar fashion to [108] and fed into a linear classifier. A 

simulation study with similar ROI selection methods compared the classification between 

source and sensor space using both time-frequency and phase-locking features from multiple 

ROIs [109]. In this study, sensor clusters on the scalp were selected to resemble those ROIs 

on the cortex; with the same features taken from both the electrode groups and cortex ROIs, 

reconstructed source activity yielded binary classification results up to 12% higher than 

classification from scalp activity. In particular, this study found that the phase-locking value 

between different cortical ROIs produced better accuracies than time-frequency features. 

This result indicates that information from multiple brain regions can significantly improve 

the identification of different brain states, and that this information can be more precisely 

extracted in the source domain than in the sensor domain.

It should be noted that various other spatial filtering techniques have been implemented for 

the classification of MI tasks with comparable results to EEG inverse solutions. Of these, the 

common spatial pattern (CSP) algorithm is widely accepted as a technique known to yield 

successful separation of different MI tasks [110–112]. Despite the fact that EEG inverse 

solutions and CSP are both used to generate spatial filters that are then applied to the scalp 

recorded data, the two techniques have key differences. Where the EEG inverse solutions 

derive the filter based on the geometric constraints introduced by the head’s anatomy to 

remedy the distortions introduced by the physical process of volume conduction, CSP is a 

data-driven approach that produces sensor weights based on statistical measures that best 

separate the different MI tasks. Even though some studies have implemented CSP-based 

classification with more than two tasks [68,113], this technique is difficult to implement for 

a multi-class MI-based BCI and thus limits the dimensionality of sensor-based BCIs. 

Furthermore, since the CSP and inverse solutions are based upon different principles, these 

two methods can be used in combination – that is, CSP can be applied in the source domain.

A study conducted by Congedo et al. [114] attempted to combine these two methods for a 

two-class MI paradigm by projecting the scalp potentials onto a template brain and applying 

CSP in different frequency bands. This study found that the combination of these two 

methods yielded results similar to those previously described and greater than that of the 

tradition sensor-only paradigms. Of greater importance though is the fact that this study 

further supports the idea that by working in the source domain, more spatially specific 

information can be extracted to better determine a user’s motor intent. Additionally, the 

improvement of distributed non-parametric solutions over parametric methods verifies the 

idea that current density source imaging provides increased information related to the 

distinct cortical patterns generated by different MI tasks and is more suited for possible 

online paradigms.
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b. Online Applications and Future Directions

The previous discussion has focused solely on offline classification of different MI tasks; 

however, most of these studies include information from limited time points to test their 

methods. Nevertheless, the activity generated in response to MI tasks is a dynamic process 

which fluctuates over time. Therefore, even though BCIs utilize MI tasks, a subject must be 

able to sustain focus in order to generate distinct patterns and control an output device. 

Studies [115] and [116] were conducted to determine if inverse solutions could be used in an 

online paradigm to gain better control of a BCI than when using sensor data from the scalp. 

In these studies, a linear inverse solution was integrated into the BCI2000 [117] platform’s 

filtering module with ROIs selected from those regions dedicated to control of different body 

parts [118]. Waveforms from multiple dipoles within these ROIs were then used to control 

the BCI rather than the waveforms from selected electrodes. These studies found that control 

signals arising from the EEG inverse solution were better correlated with the motor intent of 

the subjects and therefore provided improved control for the user. This finding was 

corroborated by the offline analysis in [96] comparing the source and sensor signal 

correlations with the BCI task, and the comparative study of EEG source imaging and 

BOLD functional MRI for movement and MI tasks [119].

With the recent development of additional real-time source imaging platforms, various 

online paradigms have utilized linear inverse methods to investigate the ability of subjects to 

modulate signals generated in specific regions of the brain for training of BCI control [120–

122]. The aforementioned offline analysis of cursor control indicates that the underlying 

control signal for these systems is directly based on the event-related activity generated in 

the sensorimotor cortex during different MI tasks. Therefore, the strength of the control 

signal for these systems depends on the ability of a user to voluntarily modulate activity 

within specific populations of neurons. By estimating cortical activity during these tasks, the 

information subspace expands from tens of electrodes to thousands of dipoles, which better 

represent the geometry of the brain and its neural processes. By incorporating this 

anatomical information, the inverse solution provides a means to better constrain the 

information used for interpretation of motor intent. When in the form of ROIs, these 

constraints can provide subjects direct neurofeedback regarding their performance of a MI 

task and can strengthen the control signal needed for BCI control [123,124]. Using source-

level neurofeedback, it can be seen that the neural response to MI tasks converges to focal 

regions on the cortex, indicating that sensor space may be a limiting factor in BCI control 

[125]. In the larger information subspace of the inverse solution these regions can be better 

isolated for interpretation, whereas the signals collected in sensor space contain mixed 

information from expanded cortical regions, incorporating noise or activity that is irrelevant 

to the task being performed.

We have recently begun to extend the source level ideology, which we have proposed since 

2004 [94], by investigating the unique dynamics, on the cortical level, of more downstream 

MI tasks of the hand [87]. We have investigated the discriminability of MI tasks of right 

hand flexion, extension, supination, and pronation in three human subjects. After an inverse 

transform, an ROI located over the left motor cortex was selected as the estimated right hand 

dedicated cortical region similar to [116]. Using time-frequency features from dipoles within 
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this ROI, we aimed to determine how distinct the traces of each MI task were by performing 

four one-vs-all classifications. The most discriminable features in source and sensor space 

were separated using a linear classifier. The source analysis yielded >85% classification 

accuracy for two of the four tasks, whereas the sensor analysis was not able to achieve >85% 

for any of the tasks (Figure 5). Furthermore, the source analysis improved the classification 

accuracy by up to 15% over the sensor analysis across the four tasks. When considering a 

chance level of 50%, this advancement represents a noteworthy upgrade in the ability to 

independently decode the different MI tasks. These results further suggest that a source level 

feature space provides more discriminable information, in terms of motor intent, than the 

sensor domain and warrants further investigation.

IV. tDCS and SMR-based BCI

The use of inverse source imaging allows us to spatially and temporally locate the regions on 

the cortex involved in MI-based BCI and with this information we can turn our attention 

towards the use of emerging neuromodulation technologies to alter the activity at these sites. 

Such noninvasive neuromodulation technologies are being increasingly investigated for 

targeting learning and behavior [126]. Of particular interest are reports that applying anodal 

transcranial direct current stimulation (tDCS) during motor tasks results in improved 

learning and performance [127]. As MI and motor execution proceed from similar neural 

correlates [119,128], it may be possible to combine tDCS with BCI to improve BCI learning 

and performance by directly modulating the brain.

a. tDCS, Motor Learning, and Motor Imagery

tDCS, a noninvasive neuromodulation technology, was first investigated in its modern form 

less than two decades ago [129,130]. tDCS consists of a current source connected to the 

scalp via electrodes, through which a low level of current is applied and passed into the brain 

[131]. The amplitude of tDCS stimulation is generally set between 0.5–2 mA for between 5–

30 minutes; this current is gradually increased over 5–30 seconds to a constant current which 

is held for the duration of stimulation, and then ramped down at the end of stimulation. 

tDCS does not result in direct neuronal firing but rather modulates the membrane potentials 

of affected neurons to increase or decrease excitability. tDCS suffers from the fact that the 

skull is much less conductive than the skin and cerebrospinal fluid, which reduces the 

focality of stimulation. However, it is inexpensive, mobile, easy to apply, and has been 

suggested to be functionally targeted [132] due to its effect on neuronal excitability and 

influence on ongoing task-specific neural activity.

Traditional tDCS consists of two electrodes: an anode, which generally increases the 

excitability of underlying cortical tissue, and a cathode, which generally decreases the 

excitability of underlying cortical tissue. In high-definition systems, multiple electrodes are 

used in combination as anodes or cathodes to allow for controlled current during the 

stimulation. Initial evaluation of tDCS effects were performed by delivering anodal 

stimulation over the primary motor cortex and using transcranial magnetic stimulation 

(TMS) to induce a motor evoked potential (MEP), the activation of a peripheral motor 

neuron by stimulation of descending motor neurons in the brain. Following anodal tDCS 
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over the motor cortex, the MEP was increased, suggesting greater cortical excitability 

following the stimulation, while cathodal stimulation decreased MEP amplitude [133]. This 

modulation has been found to last up to an hour following stimulation and improvements in 

task learning can remain up to 3 months post stimulation [134].

The mechanism of action of tDCS lies in altering the membrane potential across all areas of 

affected neurons, including dendrites, cell bodies, and axons. The distribution, connectivity, 

and geometry of these neuronal elements have been characterized and the effects of tDCS 

have been investigated in vitro [135,136], but the effects within the human cortex are more 

difficult to determine due to the lack of in vivo imaging of human tissue. Based on in vitro 

and computational modeling studies, tDCS either depolarizes or hyperpolarizes the 

membrane of neurons, but the current flow and voltage changes induced by tDCS are 

complex due to head anatomy and tissue geometry, including cortical sulci and gyri and the 

neurons’ orientation within these macrostructures [137,138]. The resulting effects on 

membrane potentials can thus be different in sign and magnitude in a spatially localized 

area. Additionally, different cortical layers can receive different polarity stimulation 

simultaneously based on cortical and neural geometry and thus the actual behavioral results 

are difficult to predict [139,140].

tDCS has been used in humans to safely modulate neural tissues for over a decade 

[129,130,141]. There have been a plethora of proposed targets for stimulation from learning, 

in realms such as mathematics, and mental health conditions such as schizophrenia, 

depression, attention deficit hyperactivity disorder, and obsessive compulsive disorder [131]. 

Of specific interest to the BCI field is the work on motor learning to evaluate the behavioral 

effects of tDCS both acutely and with respect to motor learning over time. Anodal 

stimulation over the motor cortex has resulted in a faster learning rate for implicit [142] and 

explicit [143] motor learning as well as retention of the learned paradigm [134,144]. With 

cathodal stimulation, Nitsche and colleagues and Stagg and colleagues also found the 

opposite or no effect in using the same motor learning paradigms. These studies, and others 

[139,145], suggest that anodal tDCS can improve behavioral motor learning across implicit 

and explicit motor tasks. The timing of tDCS application in relation to task learning is of 

utmost importance. Pharmacological and experimental evidence suggest tDCS application 

during, as compared to prior to or after, learning of a new motor task results in a faster 

learning rate and an increased performance for up to six months post stimulation when 

compared to controls [145].

The networks underlying MI overlap with those that underlie motor execution [128], 

particularly within the premotor and motor areas, but the effect of tDCS on MI ability is not 

clear. Increased MI desynchronization has been found in both healthy [146] and stroke [147] 

subjects. With anodal stimulation of the primary motor cortex, both studies found an 

increase in the ERD of the stimulated hemisphere, suggesting that there is an increase in 

excitability during MI following tDCS. More recently, Lapenta and colleagues [148] 

investigated MI by following tDCS stimulation of 2 mA for 20 minutes with MI and motor 

observation and found an effect opposite of the initial MI studies: that anodal stimulation 

decreased the ERD in the same hemisphere as stimulation for both MI and during motor 

observation. A recent study combining 64-channel EEG recording of MI before and after 
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high-definition anodal tDCS found similar results: a decrease in beta band ERD in the 

stimulated hemisphere [149]. With these differing results being reported, further work needs 

to be done to clarify how tDCS affects MI ability acutely following stimulation.

We hypothesized that simultaneous anodal tDCS over the primary motor cortex can improve 

motor learning and result in an enhanced outcome of MI-based BCIs. Despite a number of 

efforts, SMR-based noninvasive BCIs face challenges including long training time and the 

inability of 20% of healthy subjects to learn to self-modulate SMR-based BCIs [150,151]. 

As motor learning can be improved with specific tDCS paradigms, the integration of tDCS 

and SMR-based BCIs promises to improve BCI learning through similar MI-based 

pathways.

b. tDCS and Online BCI

A key factor in the combination of tDCS with learning is the timing of the stimulation with 

respect to the performance of the task [145]. An initial study of anodal tDCS followed by 

BCI has reported to increase ERD over the stimulated motor cortex during BCI performance 

following 15 minutes of 1 mA sponge electrode stimulation, but this did not result in an 

increase in performance within a single session [152]. With this setup, the sponge electrodes 

interfere with the EEG recording electrodes due to their relatively large size, and online BCI 

could not be performed simultaneously with stimulation. More recently, Soekadar et al. 

utilized trained SMR-BCI subjects to investigate acute BCI performance under stimulation 

conditions [153]. All subjects initially underwent sham stimulation, and on a second day, 

half of the subjects underwent sham and the other half underwent anodal stimulation while 

performing SMR-BCI acutely. There was no change in performance for those who received 

anodal stimulation compared to the sham stimulated group. This work parallels the mixed 

results that have been found in the application of tDCS followed by MI, but does not address 

the ways in which tDCS could affect learning over time.

Recently, we have begun to evaluate changes in neural activity and performance during BCI 

learning induced by simultaneous BCI-tDCS in naïve subjects. As previous motor learning 

work suggests, simultaneous stimulation and task performance optimizes the effect on task 

learning (Figure 6). We utilized high-definition tDCS combined with 64-channel EEG to 

evaluate the effect of simultaneous anodal stimulation on BCI learning. Naïve subjects were 

recruited and randomly assigned to either sham or anodal stimulation for 20 minutes at 2 

mA. Stimulation was delivered equidistant between C3 and CP3 with return electrodes 

located at a radius of 3.5 cm from the center electrode. Subjects performed 1-D left/right MI 

to control the BCI within the BCI2000 environment. Each session was divided into four 

blocks: before stimulation (72 trials), during stimulation (90–108 trials), immediate post-

stimulation (72 trials), and delayed post-stimulation (72 trials). The immediate post-

stimulation occurred from 0–12 minutes post-stimulation and the delayed post-stimulation 

occurred from 25–37 minutes post-stimulation, with a visual oddball task between the 

immediate and delayed post-stimulation blocks. Power in the 11–13 Hz range at C3/C4 was 

used to control the cursor, when possible. During anodal stimulation, this was not possible 

on all experimental days; therefore one of the 9 surrounding electrodes was used instead of 

C3 to minimize the stimulation artifact. We evaluated the percent valid correct for each 
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group of subjects at the beginning of the experiment (start) compared to the result after 

stimulation during the third experimental session (end). With our initial group of subjects, 

anodal subjects (n=7) demonstrated a trend for increased performance with an increase in 

performance from 63% to 73% resulting in an effect size (Hedges’ g) of 0.63. The sham 

subjects (n=6) showed no change in performance. These pilot results suggest that 

simultaneous tDCS and BCI leads to an increased learning rate over 3 sessions of 1-D left/

right BCI training (Figure 6). These initial results show promise towards utilizing tDCS 

combined with online BCI to improve subject learning of the MI task and to improve the 

learning rate for this BCI setup, though more subjects are needed to better understand the 

learning changes resulting from tDCS application. In addition, future work will target 

subjects showing BCI illiteracy to evaluate if increasing the excitability of the motor cortex 

with tDCS during BCI performance will allow subjects who could not previously learn to 

control their SMR, to begin to control them.

c. Issues and approaches to combining tDCS and EEG

Motor evoked potentials have been used to initially evaluate the effect of tDCS, and many 

groups have utilized behavioral measures to examine the effect as well, but simultaneous 

electrophysiological recordings in humans is under-investigated due to issues with signal 

artifacts. Recently, the electrophysiological network effects of tDCS have begun to be 

evaluated using both simultaneous EEG and MEG. These methods can record rapid 

oscillations and neural activity altered by tDCS on the millisecond scale, where these 

changes underlie reported behavioral changes for a variety of tasks [126].

With recently developed high-definition tDCS systems [154], electrodes are the same size as 

conventional EEG electrodes and can be placed on a conventional electrode cap adjacent to 

the EEG electrodes, which allows for online recording of the EEG during stimulation 

[149,154]. In addition, these allow a more localized stimulation area, reducing current flow 

to a limited area and reducing potential side effects to non-targeted areas. As anodal and 

cathodal stimulation are predicted to affect neural tissue in opposite ways and can improve 

or decrease performance in directed tasks [155], it is important to understand and limit 

current flow to areas of interest. Using noninvasive electrophysiological recordings during 

stimulation is a promising way of further understanding the effects of tDCS stimulation on 

brain networks, as without these online recordings, we cannot understand the underlying 

physiological changes that result in the vast number of behavioral changes reported in the 

literature [126].

Multiple investigators have now examined neural activity simultaneously with stimulation 

including high-definition tDCS with EEG [149] and conventional tDCS with MEG [156]. 

Both have examined stimulation activity with phantom models and healthy human subjects. 

Roy et al. [149] identified tDCS artifacts utilizing phantom experimental data and cleaned 

simultaneous data utilizing maps of independent components. Soekadar et al. [156] found 

wideband noise in MEG sensors up to 8 cm from the stimulation electrodes, though at a 

greater distance the noise was primarily below 20 Hz and, in more recent work using EEG, 

found most of the induced noise to be below 8 Hz [156]. Soekadar et al. [153] also found no 

difference in frequency spectra with or without stimulation in the source space for task or 
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baseline data and no frequency shift in the recorded frequency in the phantom due to 

stimulation.

As the tDCS system is maintained at a constant current, any changes in impedance result in 

a voltage change that can interfere with the EEG signals recorded by electrodes adjacent to 

the stimulation electrodes. In order to examine the recorded signal from the brain, these 

artifacts must be removed. Multiple techniques have been used and suggested from 

independent component analysis [149] to frequency-based filtering or high-pass filtering 

[153]. This also yields problems online; while low pass filtering can be implemented in a 

straightforward manner, there are residual power increases that can affect the ability of the 

subject to utilize an affected electrode for BCI control. Future progress for developing inter-

compatible tDCS and EEG devices should aim at reducing or accounting for the noise 

induced by the tDCS system.

The increasing investigation and integration of noninvasive neuromodulation and brain-

computer interfaces is beginning to yield new tools for the delivery of modulation based on 

brain states. This concept has recently been introduced in the field of invasive deep-brain 

stimulation in order to improve the delivery of therapeutic electrical stimulation to deep 

brain structures [157]. In all BCI techniques we are measuring neural activity, be it invasive 

or noninvasive, direct or indirect, and we can exploit this information to improve our 

targeting of neuromodulation and the BCI tasks. As the technical difficulties of EEG 

recording during the delivery of electrical stimulation are addressed with online filtering and 

artifact removal strategies, we can begin to develop systems to deliver stimulation at an 

optimal time and amplitude to improve the targeted outcome in the subject or patient. This 

closed-loop control will also allow us to better understand the ability of stimulation 

technologies to modulate brain activity as well as to investigate cognitive and behavioral 

psychology and neuroscience.

V. Mind-Body Awareness and BCI

In SMR-based BCI, a key factor is the subject’s ability to intentionally modulate the SMR 

signal. SMR-based BCI performance relies on a user’s concentration level and ability to 

focus on modulating a SMR that can be detected and translated into features controlling an 

external device. Literature suggests that there are a portion of subjects who have difficulty 

modulating their SMR signal to achieve even a minimal level of control with a noninvasive 

BCI [150,151]. In order to move noninvasive BCIs towards clinical application or daily use 

by the general population, there is a need to shorten the lengthy training time that is required 

by users to achieve satisfactory performance, and increase the proportion of BCI users that 

ever achieve acceptable BCI control, even after training [158,159].

Considerable progress has been made in algorithm, sensor, and system development within 

the field of BCI. While researchers are dedicating substantial effort into the machine side of 

BCI utility, little effort has been focused on enhancing the users’ control abilities. As such, 

there exists a need for user-centered training techniques that focus on the refinement of the 

mental practices to improve the signal produced by the user. User-centered BCI training 

approaches have been attempted recently [160,161] focusing on the brain component of 
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BCIs by emphasizing early focus on the users, tasks, and environment with the goal of 

improving the performance of BCIs. The investigation of both the “brain” and “computer” 

aspects will be important to further improve BCI performance and contribute to its 

translation for wide applications, considering that both aspects are necessary for BCI 

control.

a. Mind-Body Awareness Training

Mind-body awareness training (MBAT), in the form of yoga and meditation, has recently 

garnered interest due to an increasing awareness of the potential health benefits and 

improvements in concentration that this training can provide to practitioners. A consistent 

and reliable EEG pattern may depend on an undistracted mind and sustained attention. Yoga 

and other meditation practices are considered to be efficient techniques to reduce stress, 

anxiety, and frustration which may otherwise contribute to an unstable EEG [162].

Meditation is a practice that involves a complex process of self-regulation and inhibition of 

interfering internal and external stimuli, which can enhance a practitioner’s ability to sustain 

attention. There are many different types of meditation techniques. In general they can be 

categorized into concentrative-based meditation or mindfulness-based meditation. Both 

categories involve a sense of non-judgmental acceptance of single or multiple stimuli [162]. 

What different meditation techniques have in common is their ability to build concentration. 

It has been shown that experienced meditators have more distinguishable EEG patterns than 

untrained subjects during MI performance [163].

b. Mind-Body Awareness Training and BCI

Based upon the observation that some of our best SMR-based BCI performers were 

meditation practitioners, we hypothesized that MBAT would increase a subject’s learning to 

control SMR signals and improve the overall performance of noninvasive SMR-based BCI. 

The role of experience with yoga and/or meditation in the initial learning of an SMR-based 

BCI has been examined in a group of human subjects [164]. Figure 7a displays a conceptual 

diagram of the study and the potential role of MBAT in the context of an SMR-based BCI. 

The study compared the MBAT subject group (12 subjects) and control group (24 subjects; 

little or no MBAT experience) in early learning of 1-D cursor movement using MI.

All subjects were previously naïve to BCI, and participated in three, two-hour BCI 

experiments. Figure 7b illustrates the experimental paradigms. All subjects underwent the 

same task progression starting with a left vs. right cursor task, and later with an up vs. down 

cursor task. Each experiment consisted of ten, three-minute trials using the 1-D cursor 

movement task controlled by motor imaginations. Subjects were first introduced to and 

trained in the left vs. right cursor task. All subjects were instructed to use imaginations of 

either left or right hand movements to move a computer cursor to hit a target on the left or 

right side of a computer screen respectively. If subjects achieved accuracies of ≥80% over 

four consecutive three-minute runs or an overall session (ten, three-minute runs) accuracy of 

≥80%, subjects progressed to an up vs. down control task. This task consisted of imagining 

both hands versus a volitional rest state to control the movement of the cursor to targets 

located at the top or bottom of a computer screen respectively. If subjects achieved 
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accuracies of ≥ 80% over four consecutive three-minute runs or an overall session accuracy 

of ≥80% for this up vs. down task, subjects were deemed proficient in 1-D BCI control. 

Figure 7b illustrates the experimental design of subject progression for the MBAT and 

control groups, and the proportion of subjects completing each of the tasks.

Figure 8 illustrates the ratios of weighted average slope measures for MBAT subject left-

right performance as compared to control subject performance. This figure clearly 

demonstrates the significantly improved performance of the MBAT cohort in early learning 

of SMR-based BCI as compared with the control cohort. Examination of SMR EEG in all 

subjects revealed that for both left vs. right and overall 1-D control, the group-weighted 

average neural power measures were greater for the MBAT cohort compared to the control 

group. This supports the hypothesis that users with MBAT are able to generate stronger 

SMR control signals via motor imagination.

c. Discussion

Our work so far suggests that experience with MBAT, such as yoga and meditation, can 

improve learning to control a SMR BCI using the aforementioned MI paradigm. Previously 

it was suggested that more distinguishable EEG patterns in terms of ERS could be observed 

in human subjects with meditation experience as compared with controls [163]. This offline 

study showed that the classification rate in subjects with meditation is higher than that in 

control subjects, although no online BCI experiments were conducted to directly assess the 

effects of MBAT on BCI performance. Our online BCI experiments in 36 human subjects 

show that MBAT subjects not only outperformed control subjects in various measures of 

BCI control, but that these subjects also demonstrated the ability to learn at a significantly 

faster rate than controls. Such substantially greater performance in the MBAT group may be 

due to the process of learning and refining particular mental techniques that provide subjects 

with the experience and practice of modulating their SMRs prior to even participating in a 

BCI task. Several forms of yoga and meditative practices utilize such specific mental 

techniques that intentionally produce increases and decreases in the spectral power of the 

EEG rhythms during training [165,166]. As can be seen from Figure 8, the SMRs produced 

in the MBAT cohort are significantly greater than those in the control group.

Meditation involves functional and structural changes of the brain [167]. Concentration is a 

key element in meditation and depends on the ability to focus. Since EEG represents 

synchronized neural activity within the brain, the enhanced ability to focus or concentrate 

may also increase the ability to produce synchronized brain activity that translates into 

detectable rhythmic activity in the scalp EEG. Through the self-regulation process of 

meditation, “neural noise” – background non-task related brain activity –- may be filtered 

out, leading to more stable EEG patterns.

This work suggests that mind-body awareness may be considered a mental skill for human 

subjects, and MBAT may serve as a means of acquiring such a skill that could be translated 

to improved SMR BCI performance. Further investigation is needed to explore the subtleties 

of how mind-body awareness influences BCI performance.
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VI. Concluding Remarks

Controlling computers or other devices using our brain is no longer science fiction but is 

now a reality. Sensorimotor-rhythm-based brain-computer interfaces (BCIs) offer a 

noninvasive means of communicating and interacting with our environment directly using 

brain signals based on mental intentions initiated spontaneously and continuously. With 

ongoing advances in wearable sensors, signal processing algorithms, and “brain”-centered 

approaches, SMR-based BCIs may soon become more common in our daily lives.

Notwithstanding the rapid progress in BCI development in the past decade, challenges still 

exist with regard to SMR-based noninvasive BCIs. Lengthy training is still required before 

most users can use BCIs proficiently, and there remains a portion of users who may not 

become proficient despite extended training. The approaches reviewed in this article, 

including integrating noninvasive neuromodulation techniques to improve the learning of 

BCI control, and mind-body awareness training to enhance early skill acquisition, display 

great promise towards addressing these issues. Directly targeting a user’s ability to modulate 

cortical oscillations and attention using mind-body awareness training or targeting a user’s 

motivation using robotic devices may allow more users to learn to control BCIs faster. 

Furthermore, there are possible benefits to combining many of these methods to optimize the 

realization of high-level BCI control. EEG source imaging is a powerful tool that can 

identify the origins of BCI control signals as well as identify brain regions responsible for 

motor learning. Creative study designs targeting these regions with noninvasive 

neuromodulation technologies may unlock doors to overcoming inherent user deficits in 

regards to obtaining BCI control.

Integrating noninvasive BCIs into clinical and daily use is the ultimate objective of the field 

[168,169]. The techniques and technologies we have used have the possibility of being 

integrated into standard BCI training paradigms as well as combined with traditional EEG 

devices. For the BCI field to progress towards use in everyday applications, continuous 

innovation in system design and optimized signal detection techniques are needed to 

increase the speed and utility of noninvasive BCIs. Despite these challenges to the 

implementation of everyday BCI use, the field continues to move forward in identifying 

novel approaches to improve user training, understanding the underlying psychological 

factors influencing learning, and developing tools to address these challenges.
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Figure 1. 
General concept diagram of a motor-imagery based brain-computer interface (BCI). A user 

imagines some motor action, but performs no actual physical movement. The imagery 

produces a measureable signal that can be recorded with EEG, filtered, and decoded to 

determine the user’s intent. Once an estimate of user intent is obtained, a variety of physical 

devices can be controlled as an artificial substitute or replacement for the user’s natural 

motor movement.
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Figure 2. 
Schematic diagram of an example control paradigm. As described in [15] a user controls a 

wireless quadcopter to fly through target hoops in three-dimensional space by imagining 

movement of left or right hands to turn left or right respectively, both hands to move up, or 

resting to move down.
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Figure 3. 
Concept of EEG source imaging based BCI. Source signals can be estimated from scalp 

EEG measurements in conjunction with the head conduction model and used to control a 

computer cursor.
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Figure 4. 
Source imaging of right and left hand MI tasks in source space (a) and sensor space (b). (c) 

Time-frequency representation of the C3 and C4 electrode waveforms capture the ERD and 

ERS phenomena occurring during these two tasks. Localization of this event-related activity 

to the motor cortex indicates that neural processes responsible for the BCI control signal 

originate in the sensorimotor cortex [96].
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Figure 5. 
Average one-vs-all classification results from three subjects comparing the source (ROI) and 

sensor data for the different MI tasks (Ext – Extension, Flex – Flexion, Sup – Supination, 

Pro – Pronation).
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Figure 6. 
Overview of conventional approach of stimulation followed by performance with online 

approach of simultaneous stimulation and brain-computer interface learning. (bottom right) 

Subject performance change between beginning of first session and end of last session 

(Session 3) for sham (n=6) (dotted line) and anodal stimulation (n=7) (solid line) subjects. 

Error bars represent standard error.
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Figure 7. 
(a) A conceptual diagram of the study design and the potential role of mind body awareness 

training (MBAT) in the context of a sensorimotor-rhythm-based BCI. The EEG signal that is 

produced from motor imaginations is depicted in the background of the figure. The yellow 

target bars displayed on the left and right sides of the figure, in addition to the red ball in the 

middle, represent the standard left vs. right cursor task that is used for initial one-

dimensional BCI training. (b) Experimental paradigms. Subjects belong to one of two 

cohorts – MBAT practitioners and controls. All subjects undergo the same task progression 
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starting with a left vs. right cursor task, and later with an up vs. down cursor task. Opaque 

dots on the figure represent the percentage of subjects (drawn to scale) who have passed 

each stage of the protocol. Translucent dots represent the original pool of subjects. (The 

impact of mind-body awareness training on the early learning of a brain-computer interface, 

K. Cassady, A. You, A. Doud, and B. He, Technology, vol. 2, no. 3, Copyright @ 2014 

World Scientific Publishing Co./Imperial College Press)
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Figure 8. 
The ratios of weighted average slope measures for MBAT subject left-right performance as 

compared to control subject performance. The red, dashed line at 1 indicates no difference 

between the two cohorts evaluated. A star indicates a statistically significant difference 

between the MBAT and control cohorts. (Based on work from [164])
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