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Abstract

Both arsenic and cadmium are reported to be toxic to humans. The use of saliva as a biomarker of 

low-level exposures to these elements has not been adequately explored, and the putative 

relationship between exposure and obesity is unclear. This cross-sectional study aims to 

investigate the relationship between salivary arsenic and cadmium concentrations and their 

association with obesity. Arsenic and cadmium concentrations were analyzed in human saliva 

samples by Inductively Coupled Plasma-Mass Spectrometry on 270 randomly selected women 

who participated in the Arkansas Rural Community Health Study. Multivariable logistic regression 
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was performed to evaluate the association between heavy metal concentrations and obesity. 

Stratified logistic regression was performed based on menopausal status. Generalized linear 

models were used to evaluate weight gain velocity. Significant positive associations were observed 

in postmenopausal women for both arsenic (OR = 4.43, 95% CI 1.91–10.28) and cadmium (OR = 

2.72, 95% CI 1.23–5.99) concentrations, as well as significant trends among tertiles (p < 0.01 and 

p = 0.01, respectively). No relationship with obesity was evident among premenopausal women 

for either metal. A dose–response relationship was observed between increasing weight gain 

velocity and increasing metal concentrations. At concentrations well below governmental and 

industrial standards for acute toxicity, significant associations between obesity and concentration 

of these heavy metals are evident. The rate at which individuals gain weight is affected by metal 

concentrations and may play a role in the rapid increase in weight in postmenopausal women. 

These results might explain, in part, the missing variability in the increasing obesity pandemic in 

certain population exposed to these environmental toxicants.
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Introduction

Hundreds of millions of dollars are spent to prevent obesity in the United States annually 

(Lanza et al. 2010; Kruger et al. 2004); however, obesity rates over the past 50 years 

continue to climb (Wang et al. 2020). It is estimated that approximately 38% of US adults 

are defined as obese (NCHS 2016). Factors contributing to obesity include lack of physical 

activity and exercise, imbalance of energy intake and expenditure, a high sedentary lifestyle, 

intake of high-caloric foods, stress, genetics, and health/medical conditions (Eunice 

Kennedy Shriver National Institute of Child Health and Human Development 2016; Lopomo 

et al. 2016). The National Institute of Health has concluded that the greatest contributor to 

weight gain is the imbalance between caloric intake and energy expenditure (Eunice 

Kennedy Shriver National Institute of Child Health and Human Development 2016), but 

recent studies demonstrate that these factors do not fully explain the obesity problem (Park 

et al. 2017; Lopomo et al. 2016).

As of 2019, arsenic ranks number one on the Agency for Toxic Substances and Disease 

Registries (ATSDR) list of hazardous substance Priority List (ATSDR 2020). This list is 

created by utilizing an algorithm that takes into account the toxicity, potential for human 

exposure, as well as the frequency of human exposure (ATSDR 2020). Exposure to high 

levels of arsenic can cause skin lesions, cardiovascular disease, neurological effects, 

diabetogenic effects, and various forms of cancer (ATSDR 2011a; IARC 2012a). The effect 

of arsenic exposure in low doses remains controversial in the literature (Schmidt 2014). 

General population exposures to arsenic are largely attributed to contaminated food, water, 

and air ingestion averaging between 20 and 300 µg/day (IARC 2012a). Arsenic (As) is a 

naturally occurring metalloid that is ubiquitous in the environment. Arkansas is among 

several states along the Mississippi Delta region, which reports the highest levels of arsenic 
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in the U.S. (Smith et al. 2017). Individuals residing in the state experience chronic low-dose 

exposures to these metals, and the health effects are not yet clear.

While arsenic is known to have harmful health effects regardless of gender, there are some 

consequences that are unique to women. Numerous studies have shown that pregnant 

women, fetuses, and neonates all suffer adverse pregnancy outcomes when exposed to 

arsenic (Milton et al. 2005, 2017; Rahman et al. 2009; Farzan et al. 2013; Ronco et al. 

2010). Particularly for exposed mothers, hypertensive disorders have been reported at higher 

rates than in the general population. Studies of pregnant women in Chile and Romania have 

identified associations between adverse health outcomes among mothers consumed drinking 

water with arsenic concentrations of 40 μg/L (Hopenhayn et al. 2006; Munoz et al. 2018; 

Surdu et al. 2015). Arsenic has also been identified as an endocrine disrupter in various in 

vivo, in utero, and cell culture models (Chatterjee and Chatterji 2010; Davey et al. 2007; 

Waalkes et al. 2004). These disruptions can cause adverse developmental, reproductive, 

neurological, and immune effects (Alvarado-Cruz et al. 2018; Ashrap et al. 2019; Chen et al. 

2009; Iavicoli et al. 2009; Liu et al. 2015; White et al. 2019). One study reported that an 

increase in arsenic resulted in decreased levels of estradiol that presented in a dose–response 

manner within a rat model (Chatterjee and Chatterji 2010). The study further describes that 

arsenic may mimic the estrogen mechanisms that disrupt the endocrine signaling pathway 

and reproductive failures.

Lesser known consequences of arsenic exposure have been observed in both experimental 

and epidemiological studies regarding the relationship between arsenic and obesity. An in 

vitro study published in 2011 concluded that prolonged inorganic arsenite exposure resulted 

in decreased expression in glucose transporter type 4 (GLUT4) and several adipogenic genes 

(Xue et al. 2011). This study indicates that prolonged exposure to arsenic causes significant 

effects on adipocytes (Xue et al. 2011). Similarly, an in utero study published in 2016 found 

that mice with early life exposure to arsenite resulted in abnormal metabolism, increased 

body weight, as well as other cardiometabolic risk factors (Ditzel et al. 2016). Unlike these 

experimental studies, epidemiological studies are less consistent. High BMI was associated 

with a low percentage of urinary arsenic excreted as monomethylarsonic acid in women 

(Gomez-Rubio et al. 2011). Contrarily, in 2010 a study evaluating if arsenic was associated 

with body composition in reproductive-age women found that there was no association 

between the two after adjusting for food consumption and lifestyle factors (Ronco et al. 

2010).

Cadmium (Cd) has long been recognized as an environmental risk factor for multi-organ 

dysfunction and has been determined to play a role in the pathogenesis of obesity, diabetes, 

and the metabolic syndrome (Tinkov et al. 2017). Like arsenic, cadmium is ubiquitous in the 

environment and is in the top ten environmental chemicals of concern to environmental 

health agencies (Park et al. 2017). There is an abundance of literature focusing on cadmium 

exposure via in utero, perinatal, and infant exposure, but limited data on the relationship 

between adult exposure and obesity exist (Park et al. 2017). Human studies have produced 

conflicting results (Tinkov et al. 2017). Data from the National Health & Nutrition 

Examination Survey (NHANES), reported urine cadmium concentrations were negatively 

associated with BMI, waist circumference, and obesity (Padilla et al. 2010). However, a 
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study utilizing blood cadmium levels reported a positive association between cadmium and 

BMI, as well as cadmium and dyslipidemia (Zhou et al. 2016).

The obesity epidemic has dramatically increased, particularly in the southern region of the 

United States (CDC 2019), including Arkansas. Among women, Arkansas has the highest 

prevalence of obesity compared to all other states (America’s Health Rankings 2020). This 

study conducted in an Arkansas population aimed to identify other putative contributors to 

the growing obesity epidemic. We sought to evaluate the potential association of arsenic and 

cadmium with obesity among women in Arkansas, where obesity and exposure to these 

elements are prevalent.

Methods

Study Population

Data obtained from the Arkansas Rural Community Health (ARCH) Study cohort, formerly 

known as Spit for the Cure (Bondurant et al. 2011; Lee et al. 2014; McElfish et al. 2019) 

was utilized in the present study. All 75 counties in Arkansas are represented in this cohort, 

including an overrepresentation of African Americans. The ARCH population was not 

intended to be representative of the entire female population of Arkansas. In addition to 

being a racially diverse cohort, it is also comprised of individuals with a higher education 

attainment compared to the overall state average. Data were collected at baseline that 

contained information regarding, family and medical history, specific information regarding 

breast cancer history and treatment, reproductive health, physical activity, and 

socioeconomic status. For each participant, a baseline 2 mL self-collection saliva sample 

was collected at the time of study enrollment. Baseline information was collected through 

various community events from a total of 26,347 women between the ages of 18 and 100.

A random sample of 270 subjects (~ 1% of the ARCH cohort) was selected and 

concentrations for arsenic and cadmium were quantified for the present study. This study is 

pilot in nature to explore our hypothesis. Future studies utilizing a larger sample size from 

the cohort with prospective follow-up will be conducted as well as the addition of more 

underlying conditions. Baseline questionnaire data were used for analysis, as well as 400 µL 

of the baseline saliva sample.

Sample Preparation and Quantification by ICP‑MS

Participants were asked to refrain from eating or drinking at least 30 min prior to providing a 

saliva sample. Participants were also discouraged from providing a sputum sample, as mucus 

was not desired. Roughly 200 µL of a spit sample was mixed with equal parts Oragene DNA 

(OG-250) stabilizing solution (DNA Genotek, Ottawa, Ontario, Canada) (Barai et al. 2017), 

inverted 3–4 times to ensure distribution of solution and stored in the dark at room 

temperature until analysis. To obtain arsenic and cadmium concentrations, samples were 

analyzed using a Thermo Fisher Scientific iCAP RQ ICP-MS (Thermo Fisher Scientific, 

Waltham, MA).

Multi-element ICP-MS stock standard and internal standards of 10 µg/mL was purchased 

from Inorganic Ventures, Christiansburg, VA. A second source quality control standard (100 
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µg/mL) was purchased from SPEX CertiPrep, Metuchen, NJ. Nitric acid trace metal grade 

and ethyl alcohol was purchased from Fisher Chemical, Fair Lawn, NJ. The sample diluent 

used to prepare the standards, quality controls, and samples consisted of 2% (v/v) nitric acid 

and ethanol.

Arsenic and cadmium, among other elements, are in the multi-element ICP-MS stock 

standard and quality control standard solutions. The internal standard used for ICP-MS 

analysis was Yttrium (10 µg/L). Saliva samples were homogenized by inverting several 

times prior to analysis. All samples were analyzed in kinetic energy discrimination (KED) 

mode. Blank Oragene DNA stabilizing solution without saliva was tested and confirmed no 

measurable trace element of interest.

To verify that all samples utilized produced valid numbers, samples were compared against 

the Background Equivalent Concentration (BEC) (Wilschefski and Baxter 2019; Thomas 

2004; CASRN E. S. C. E. S. 2014). The BEC is used to assure that the signals used in 

sample quantification are not due to “signal noise” resulting from background interference 

(CASRN E. S. C. E. S. 2014). The literature states that utilization of the BEC is a more 

reliable assessment in real-world sample matrices in regards to instrument performance 

(Thomas 2004), due to the quantification of the background level. In the present study, three 

arsenic concentrations were below its respective BEC value, and one cadmium fell below its 

respective BEC. For purposes of analyses, these values were recorded as “0.00” due to the 

variable being analyzed in tertiles. When reporting the measures of central tendency, these 

values were excluded from the analysis. Less than 1.0% of cadmium concentrations were 

recorded below BEC and 1.1% of arsenic concentrations fell below their respective BEC 

values.

Obesity

At baseline, participants self-reported their height (in.) and weight (lb.), to which the 

participants’ body mass index (BMI) was calculated with the following formula: BMI = 

[weight (kg)/height (m2)]. If a participant had a BMI of greater than or equal to 30, they 

were defined as obese. If the BMI was between 18.5 and less than 30, they were defined as 

non-obese. Individuals with unreliable data, such as outliers or data entry errors, were 

removed from the analysis (n = 4).

The weight gain velocity (WGV) was calculated with the formula below to observe potential 

associations in the rate of weight gain with different concentrations of arsenic and cadmium. 

Individuals were asked to self-report their best approximation of their weight at age 18 

during the baseline survey. If there were missing records for an individual’s weight, age, or 

weight at age 18, their WGV was reported as missing (n = 1):

W eigℎt Gain V elocity = W eigℎt at enrollment − W eigℎt at age 18
Age at enrollment − 8

Other Covariates

Sociodemographic information provided in the baseline survey such as race, hormone use, 

region of residence, education, breastfeeding/parity, alcohol use, age, physical activity, and 
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age at last menstrual cycle were included to identify confounding effects and effect 

modification. The variables race, hormone use, region, education, breastfeeding/parity, and 

alcohol use were analyzed as categorical variables, while the variables age, physical activity, 

and age at last menstrual cycle were analyzed as continuous variables. Physical activity was 

a composite variable that varied from walking to vigorous activity, resulting in total hours 

per week. Race was analyzed as a categorical variable, white/European American (EA), 

black/African American (AA), and other. In the final stratified models, other racial groups 

were excluded from the analysis due to insufficient sample size (n = 12) and race was 

analyzed as a dichotomous variable, EA and AA. Hormone use was analyzed as a 

dichotomous variable (yes/no), relating to the participants’ menstrual cycle. Region was 

analyzed as a dichotomous variable as either Rural or Urban, classified by the subjects’ zip 

code at baseline using the rural–urban commuting area (RUCA) codes. Participants’ parity 

and breastfeeding practices were combined to create a composite variable with the following 

three possible outcomes: Nulliparous and never breastfed, given birth to at least one child 

and never breastfed, or given birth to at least one child and breastfed. This composite was 

created to avoid multicollinearity being introduced into the statistical models.

Exclusions

Participants were excluded from the study to eliminate potential bias. Individuals that 

recorded non-reliable or missing value for height or weight, or a record of a BMI < 18.5 or > 

60 were excluded from the analysis (n = 11). When analyzing the adjusted models, 

individuals were excluded in the analysis if a covariate utilized in the specific model was 

recorded as missing (n = 14). As previously described, data obtained for the current study 

were obtained from the existing ARCH study cohort. The ARCH cohort was established to 

study the risk and effects of breast cancer. In the current study, breast cancer cases were 

excluded (n = 8), to omit any potential bias that were associated with any treatment, 

lifestyle, or genetic factors.

Statistical Analyses

Differences in patient characteristics between non-obese and obese individuals were 

evaluated using X2 test for categorical variables and t-tests for continuous variables. Both 

arsenic and cadmium concentrations were categorized into three levels based on the overall 

cohort distribution; the first level belonging to individuals with the lowest third of the 

specific element concentration, the second level comprised of the middle 33% of the 

concentrations, and the highest tertile contains the highest third of the specific element 

concentrations. Distributions of both arsenic and cadmium were determined by evaluating 

the measures of central tendency.

Linear regression models were attempted to observe the relationship between arsenic and 

cadmium and their association to obesity, while using BMI as the continuous outcome. Due 

to majority of participants had very low concentrations of these heavy metals, the data were 

heavily skewed such that normalization could not be achieved (data not shown). However, 

after producing stratified models, a l og10 normalization was attempted and successful for 

postmenopausal women and two regression models examining arsenic and cadmium as 

continuous exposures with the outcome of obesity was performed producing odds ratios 
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(ORs) and 95% confidence intervals (95% CI). Heavy metal data of premenopausal women 

were unable to be adequately normalized, and therefore linear regression was not possible at 

the time, this is likely due to the small sample size.

Unconditional logistic regression was used to estimate unadjusted and multivariable-

adjusted ORs and 95% CIs to estimate associations between increased likelihood for obesity 

and each metal concentration category. Tests for trend were performed by assessing median 

of arsenic and cadmium concentration tertiles as ordinal variables in the logistic regression 

model to observe their associations with obesity. These models were created due to the low 

concentrations of both arsenic and cadmium, to better observe a difference between relative 

“low”, “medium”, and “high” values.

Potential confounding variables for the association between obesity and arsenic and 

cadmium concentrations were included in the multivariable logistic regression models. 

Confounding variables were selected based on a priori knowledge, as well as a 10% change 

in the beta coefficient. The most parsimonious model was used for each analysis to estimate 

associations with obesity and arsenic and cadmium concentrations. The following covariates 

were used in at least one of the models presented: age, ethnicity, menopausal status, parity/

breastfeeding history, age at last menstrual cycle, and alcohol use. Stratified models were 

used to analyze obesity with arsenic and cadmium concentrations for both premenopausal 

and postmenopausal women, using two different models. Generalized linear models were 

used to examine the regression between WGV and various metal quartiles, and comparisons 

were made using the lowest quartile as a reference. WGV was analyzed utilizing arsenic and 

cadmium quartiles rather than tertiles due to the larger sample size allowing for further 

categorizations to better investigate the relationship.

Interaction was assessed between arsenic and cadmium using a multiplicative model 

utilizing 75% cutoff points to determine the effects of “high” and “low” concentrations of 

each heavy metal. The test for interaction did not produce significant results; however, high 

arsenic values appear to enhance the associations. Therefore, we produced separate final 

models for arsenic and cadmium.

Each analysis performed was two-sided with p values of α less than 0.05. All analyses were 

performed using SAS version 9.3.

Results

Demographic information stratified by both obesity and menopausal status is shown in Table 

1. The cohort overall was split evenly between non-obese and obese women (51.9% vs. 

48.1%, respectively). The study population consists of 78 women who identified as being 

premenopausal and 192 postmenopausal women. Among non-obese premenopausal women, 

the majority self-identified as European American (EA) (77.8%), whereas the majority of 

the obese premenopausal women self-identified as African American (AA) (59.5%). In the 

postmenopausal group, a large percentage of both non-obese and obese individuals 

identified as EA (69.2% and 60.2%, respectively). Regardless of obesity status, the majority 

of study participants live in rural regions of Arkansas. No premenopausal women reported 
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using hormone therapy. Among postmenopausal women, similar percentages reported using 

hormones for both non-obese and obese individuals (11.5% and 11.4%, respectively). 

Premenopausal women differed in education status when separated by obesity. The majority 

of non-obese individuals attended some college or technical school, whereas obese 

individuals primarily completed a high school degree or GED. The majority of 

postmenopausal women, regardless of obesity status, completed a high school degree or 

GED as their highest form of education obtained. The distribution of age since menopause 

among postmenopausal women is rather uniform, regardless of obesity status, with roughly 

30% in each category. When the variable of parity and breastfeeding were combined into 

one composite variable, premenopausal non-obese women mainly gave birth to children and 

did breastfeed (52.8%) compared to the other categories, whereas premenopausal obese 

women, as well as all postmenopausal women primarily gave birth to children and did not 

participate in breastfeeding (50.0%, 54.8%, and 48.9% respectively). The majority of 

women in the study, both non-obese and obese, premenopausal and postmenopausal women 

reported their alcohol consumption as never to once a year.

The distribution of BMI was similar among premenopausal and postmenopausal women. 

Among premenopausal women, the non-obese women had a mean BMI of 24 kg/m2, 

whereas obese women had a mean BMI of 38 kg/m2. Similarly, postmenopausal non-obese 

women had a BMI of 27 kg/m2, and obese women recorded a higher BMI of 37 kg/m2. 

Premenopausal women displayed an almost 23-lb difference between non-obese and obese 

self-reported weight at age 18, whereas postmenopausal women reported a smaller gap of 

7.4 lb. Regardless of the menopausal group, the non-obese women reported lower weights at 

age 18 compared to obese women. The mean ages for each group of women ranged from 44 

years of age to 59 years of age. Premenopausal women recorded more hours per week 

participating in physical activity compared to postmenopausal women. The age at which 

women underwent menarche was consistent across all groups.

Distributions of both arsenic and cadmium are detailed in Table 2. All concentrations, 

regardless of element, are below the safety limits set by the Centers for Disease Control and 

Prevention (CDC), World Health Organization (WHO), Food and Drug Administration 

(FDA), and the Agency for Toxic Substances and Disease Registry (ATSDR) (ATSDR 

2011a, b). The mean arsenic values for both premenopausal and postmenopausal women are 

higher for obese women compared to non-obese women (0.028 µg/L, 0.023 µg/L vs. 0.022 

µg/L, 0.020 µg/L, respectively). When cadmium concentrations were considered, mean 

distributions differed by menopausal status. Premenopausal women had higher mean 

cadmium concentrations among non-obese women compared to obese (0.026 µg/L and 

0.019 µg/L, respectively). Among postmenopausal women, those that were obese had a 

higher mean cadmium concentration compared to those who identified as non-obese (0.110 

µg/L and 0.020 µg/L, respectively). It should be noted that one individual in the study 

population had a significantly higher cadmium concentration that the rest of the participants; 

however, when excluding this participant, the relationships between obese and non-obese 

individuals remain (results not shown).

Table 3 displays the associations between obesity and metal concentrations. No models 

comprised of premenopausal women produced significant relationships or trends regarding 
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metal concentration and obesity. Among postmenopausal women, relationships between 

obese and heavy metals were evident. A significant association was observed for increasing 

concentrations of arsenic and risk for obesity, including a significant trend (P for trend < 

0.01). Although the relationship with obesity was less robust, cadmium concentrations 

followed a similar direction. A significant increase in risk for obesity can be seen with 

increasing cadmium concentrations, as well as a significant trend (P for trend = 0.01). These 

trends suggest a dose–response for both arsenic and cadmium, and their relationship with an 

increased risk for obesity. Observing arsenic as a continuous variable for postmenopausal 

women was also produced and yielded statistically significant results similar to results of the 

logistic regression models. For every 10 unit increase in arsenic, the odds of being obese 

increase by a factor of 19.01. Similarly, for every 10 unit increase in cadmium, the odds of 

being obese increase by a factor of 2.64. Models were only ran among postmenopausal 

women, as premenopausal women did not fit a normal distribution among heavy metals. 

Weight gain velocity was calculated to identify potential associations between metal 

concentrations and the rate of weight gain since 18 years of age. Figure 1 displays the 

comparison of mean metal concentrations displayed in quartiles compared to their respective 

weight gain velocities. While only the first and fourth arsenic quartile show a statistically 

significant difference (p < 0.05), the overall positive trend can be seen for increasing metal 

concentration and increasing weight gain velocity for both cadmium and arsenic that suggest 

dose–response relationships.

Discussion

Associations between both salivary arsenic and cadmium concentrations and obesity were 

examined in a pilot study using data from a cohort of Arkansan women. The associations 

found in this study relating to obesity were evident only among postmenopausal women. 

While it is known that weight gain is a common result after menopause (Al-Safi and 

Polotsky 2015; Lovejoy 2003), a change in fat distribution also occurs (Lovejoy 2003; Al-

Safi and Polotsky 2015). While the mechanism is unclear, there are several factors that 

influence this distribution, such as hormone replacement therapy, age, and body composition 

(Lovejoy 2003). Another factor that should be recognized are estrogen levels. While there is 

sparse epidemiologic data regarding the relationship between estrogen and arsenic, the 

results produced from the current study support the existing evidence. The relationship seen 

between arsenic and obesity among postmenopausal women in the current study supports 

the relationship of a decrease in estrogens as a result of increased arsenic concentrations 

seen in other publications (Chatterjee and Chatterji 2010).

While these results are promising, the mechanisms of these relationships have yet to be 

ascertained.

Furthermore, there are several biologically plausible hypotheses of the associations between 

arsenic and obesity seen in this study.

Arsenic is typically measured in urine, blood, hair, and fingernails/toenails as appropriate 

biospecimens for exposure, while saliva is not as commonly used. Cadmium is more 

commonly measured in blood, urine, and kidney samples. A study published in West 

Stahr et al. Page 9

Expo Health. Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bengal, India, analyzed saliva and concluded that salivary arsenic could be used as a 

potential biomarker of arsenic exposure, compared to urine arsenic concentrations (r = 0.60) 

(Bhowmick et al. 2013). A similar study published in Environmental Health and 
Preventative Medicine concluded that saliva might be utilized as a biological monitoring tool 

for arsenic, due to their correlation analysis finding significant positive correlations between 

total arsenic in urine and saliva (r = 0.794, p < 0.01) (Wang et al. 2017). We also found a 

significantly correlation in our pilot study of 100 volunteers for the concentration of arsenic 

between saliva and urine (r = 0.60, p < 0.01) after adjusting for age, race, sex, BMI, and 

smoking status (not published). Positive aspects of utilizing saliva as a biospecimen are that 

it is a relatively stable matrix compared to blood and urine, the processing and storage of the 

sample is less tedious compared to other biofluids, as well as the noninvasive procurement 

(Bhowmick et al. 2013; Wang et al. 2017). Limitations of the use of saliva are related to the 

fact that the matrix has a different chemical composition compared to blood or urine, the 

concentrations are considerably lower in saliva compared to traditional biological samples 

used (often 1 to 2 orders of magnitude lower than blood), and a lack of Standard Reference 

Material set by the US National Institute of Standards and Technology (Bhowmick et al. 

2013; Wang et al. 2017).

The relationship between urinary arsenic concentration and BMI remains inconsistent in the 

exiting published reports. A study published in Toxicology and Applied Pharmacology in 

2011 found that a decrease in urinary arsenic concentration is associated with an increase in 

BMI (Gomez-Rubio et al. 2011). One hypothesized explanation for this relationship is that 

arsenic is stored and accumulates in adipose tissue. In the current study, postmenopausal 

women had a significant correlation with increasing arsenic concentrations and obesity. Fat 

distribution in women changes with menopausal status, where central/abdominal obesity is 

more prevalent among postmenopausal women, as are various hormone stores within this 

white adipose tissue (Garaulet et al. 2002; Ferrara et al. 2002; Hodson et al. 2015; Lovejoy, 

2003; Ceja-Galicia et al. 2017). The decreased urinary arsenic concentration associated with 

an increase in BMI could possibly be explained by the urinary quantification. With the 

arsenic being stored in adipose tissues and only a marginal amount being excreted in the 

urine, it is possible that a low amount of arsenic is associated with a high BMI. In reality, 

these results are due to a large concentration of arsenic present, but it is stored in the adipose 

tissue, thus causing a bias moving away from the null value, and could explain a number of 

study findings in the literature.

In contrast, fewer results published have concluded that an increase in urinary arsenic 

concentration is associated with a decrease in BMI (Ronco et al. 2010); however, the inverse 

relationship can still be explained by the same mechanism as described above. With a low 

BMI, there is not an abundance of adipose tissue to be utilized for arsenic storage, and 

therefore the majority is excreted in the urine. These results can inaccurately depict that high 

urinary arsenic is associated with a low BMI, where, in reality, there is no arsenic being 

stored in the body and is all excreted, thus biasing the results.

By utilizing saliva, these potential biases can be avoided, as saliva does not undergo the 

same biological processes as urine. A paper published in Environmental Health Perspectives 
in 2017 suggested that the relationship between arsenic and obesity measured in urine can 
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have drastically different results, depending upon the urine dilution adjustment method used 

(Bulka et al. 2017). In the present study, we report a more accurate representation of the 

arsenic-BMI relationship by the use of saliva as a biospecimen with less variation due to 

physiological factors.

Figure 1 depicts the results from the regression analysis of weight gain velocity. The study 

identified a positive association between the rate of weight gain since 18 years of age and 

elevated concentrations of salivary arsenic and cadmium. As shown in Table 3, a clear 

relationship between these metals and obesity is evident. Further analysis of this relative 

weight gain suggests that low amounts of metal concentrations affect the rate at which 

weight gain occurs in the lifespan. While the current study reports concentrations of As and 

Cd well below the governmental guidelines, a more diverse sample size with a larger range 

of concentrations could identify a more robust relationship between WGV and metal 

concentration. It is known that rapid weight gain causes nutritional deficiencies, excess 

adipose tissue accumulation, and increased pressure on various organ systems. With the 

concentrations of metals in the current study all below 1 ppb, these low concentrations could 

contribute to meaningful differences in WGV, thus further investigations into these 

relationships are needed.

It should also be noted that the literature identifies that arsenic concentrations in saliva are 

considerably lower when compared to blood and urine (Wang et al. 2017; Bhowmick et al. 

2013; Yuan et al. 2008), which was a major technical issue a few decades ago because the 

lower detection limit of Atomic Absorption Spectroscopy or earlier version of ICP-MS was 

at part per million (ppm) or part per billion (ppb) level. The newer version of ICP-MS, as 

used in this study, is capable of detecting concentrations as low as parts per trillion (ppt). 

This allows us to reach extremely low detection limits within our population who were 

exposed to trace amounts of arsenic and cadmium that previous generation of instruments 

could not achieve. While arsenic and cadmium produce concentrations lower in saliva 

compared to blood and urine, their exposures remain the same, and with this study, we wish 

to identify the potential use of saliva as a biomarker for various metal exposures. 

Additionally, another primary advantage of this study is the ability to quantify both arsenic 

and cadmium concentrations simultaneously, allowing the concurrent observation of 

multiple elements and their relationship with obesity, with independent analyses per each 

element of interest.

This study has several limitations. First, there are covariates that were not recorded at 

baseline, such as smoking status and occupation, which would preferably be included in the 

analyses. Smoking and the effects on heavy metal concentrations are controversial in the 

literature (Garhammer et al. 2004). A separate pilot study consisting of 100 individuals did 

not provide any significant association between arsenic and cadmium concentration with 

smoking status (results not shown). Different occupational exposures can be related to 

elevated levels of arsenic and cadmium (IARC 2012a; b), as well as the risk for obesity 

(Church et al. 2011). Smoking is also an established cause of increased arsenic and cadmium 

concentrations in the body (Pappas 2011) and is associated with various occupational 

exposures (Sterling and Weinkam 1990). Another concern at baseline, several essential 

variables, such as height, weight, and weight at age 18 were collected as self-report data. 
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These data were collected at the same interview as the saliva sample, which is a limitation of 

cross-sectional studies. We are unable to confirm the temporal relationship between the 

arsenic and cadmium concentrations with obesity. Another restriction is that the number of 

subjects included in subset analyses, particularly among premenopausal subjects, was 

relatively low. In the current study, the significant findings were among the postmenopausal 

women, while the premenopausal category failed to establish any significant correlations. 

With the sample size of 77 participants, we are unable to produce precise results, compared 

to that of the postmenopausal results where the sample sizes are more than doubled. 

However, a study published in Biological Trace Element Research produced similar results. 

Women aged 18–35 of childbearing-age were analyzed for relationships between urinary 

arsenic concentrations and BMI as well as the fat mass percentage (Ronco et al. 2010). The 

results concluded that no significant relationships could be obtained. Therefore, while the 

current study has a smaller sample size for the stratification of premenopausal women, the 

results are consistent with the current literature.

In conclusion, the relationship between arsenic and obesity, as well as cadmium and obesity 

were observed in postmenopausal women, both with an evident dose–response relationship. 

The relationship is not evident among premenopausal women for either element. 

Measurement in saliva, rather than in blood or urine, produced meaningful results. While 

these concentrations are below the regulatory and governmental limits, they still show a 

significant association with obesity. The data presented in this study regarding low levels of 

arsenic and cadmium can inform governmental limits and guidelines regarding appropriate 

levels of human exposure. Information presented in the current study has revealed other 

possible explanations to the growing obesity epidemic. Additional research is needed to 

further examine the magnitude of effect arsenic and cadmium have on obesity. This study 

has demonstrated that saliva can be an appropriate biospecimen for various elements and 

should be further investigated. Future research including smoking habits to more specifically 

analyze metal concentrations as well as any potential confounders is necessary; ambient air 

pollution measurements to assess the sources of exposure to these metals is also needed.
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Fig. 1. 
Regression between the weight gain velocity LS-means and arsenic quartiles and between 

the weight gain velocity LS-mean and cadmium quartiles determined using simple linear 

regression
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