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Abstract
In the last month of 2019, a new virus emerged in China, spreading rapidly and affecting the whole world. This virus,

which is called corona, is the most contagious type of virus that humanity has ever encountered. The virus has caused a

huge crisis worldwide as it leads to severe infections and eventually death in humans. On March 11, 2020, it was

announced by the World Health Organization that a COVID-19 outbreak has occurred. Computer-aided digital tech-

nologies, which eliminate many problems and provide convenience in people’s lives, did not leave humanity alone in this

regard and rushed to provide a solution for this unfortunate event. One of the important aspects in which computer-aided

digital technologies can be effective is the diagnosis of the disease. Reverse transcription-polymerase chain reaction (RT-

PCR), which is a standard and precise technique for diagnosing the disease, is an expensive and time-consuming method.

Moreover, its availability is not the same all over the world. For this reason, it can be very attractive and important to

distinguish the COVID-19 disease from a cold or flu through a cough sound analysis via smartphones which have entered

into the lives of many people in recent years. In this study, we proposed a machine learning-based system to distinguish

patients with COVID-19 from non-COVID-19 patients by analyzing only a single cough sound. Two different data sets

were used, one accessible for the public and the other available on request. After combining the data sets, the features were

obtained from the cough sounds using the mel-frequency cepstral coefficients (MFCCs) method, and then, they were

classified with seven different machine learning classifiers. To determine the optimum values of hyperparameters for

MFCCs and classifiers, the leave-one-out cross-validation (LOO-CV) strategy was implemented. Based on the results, the

k-nearest neighbors classifier based on the Euclidean distance (kNN Euclidean) with the accuracy rate, sensitivity of

COVID-19, sensitivity of non-COVID-19, F-measure, and area under the ROC curve (AUC) of 0.9833, 1.0000, 0.9720,

0.9799, and 0.9860, respectively, is more successful than other classifiers. Finally, the best and most effective features were

determined for each classifier using the sequential forward selection (SFS) method. According to the results, the proposed

system is excellent compared with similar studies in the literature and can be easily used in smartphones and facilitate the

diagnosis of COVID-19 patients. In addition, since the used data set includes reflex and unconscious coughs, the results

showed that conscious or unconscious coughing has no effect on the diagnosis of COVID-19 patients based on the cough

sound.

Keywords Cough sound � Classification � Machine learning � COVID-19 � Coronavirus � Computer-aided digital

technologies

1 Introduction

A pandemic was declared by the World Health Organiza-

tion on March 11, 2020. The cause of the disease was

stated to be the new coronavirus 2 (SARS-CoV-2), which

causes severe acute respiratory syndrome [1]. This epi-

demic disease, called COVID-19, affected the lifestyle,

economy, social life, and education of billions of people.

This disease, which is highly contagious and has no fully

This paper is dedicated to the memory of the late Dr. Mohsen

MALEKI, who passed away from COVID-19 in November

2020.

& Mesut Melek

masoud.maleki1361@gmail.com;

mesutmelek@gumushane.edu.tr

1 Department of Electronics and Automation, Gumushane

University, 29100 Gumushane, Turkey

123

Neural Computing and Applications (2021) 33:17621–17632
https://doi.org/10.1007/s00521-021-06346-3(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7152-7788
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06346-3&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06346-3


medically proven cure, has caused more than 1.94 M

deaths worldwide by January 2021. The symptoms in

patients with COVID-19 vary significantly depending on

the individual, and it may take up to 14 days for the

symptoms to appear [2]. Fever, fatigue, and dry cough are

the most common symptoms [3] which can easily be

mistaken for a cold or flu [2].

Since the day the pandemic started, healthcare teams

around the world have been working on the diagnosis,

follow-up, and treatment of patients. Moreover, most of the

researchers are trying to help humans to go through these

difficult days more easily by examining this event in their

field [4–7]. In this case, studies on COVID-19 are expected

from artificial intelligence (AI) and machine/deep learning

(ML/DL) techniques. These techniques, which are gener-

ally known as computer-aided digital technologies, have

affected and changed human life, especially in recent years.

A system based on machine learning techniques is an

intelligent system that gains experience from past occur-

rences and adapts to new situations without the need for

explicit programming [8, 9]. These systems are used to

solve a variety of computer science problems, from bio-

informatics to image processing [10]. Therefore, machine

learning systems and computer-aided digital technologies,

in general, can be used on many fronts to combat COVID-

19 [11, 12].

Early diagnosis of COVID-19 is important as many

other diseases. The standard and definitive diagnosis of the

COVID-19 is made via the reverse transcription-poly-

merase chain reaction (RT-PCR) test of the infected

secretions from the nasal or throat cavity [13]. The results

of this test can sometimes take up to 48 hours to come out.

In addition, in order for the test to be effective, patients

must remain isolated during this time. RT-PCR test is not

only time-consuming but also expensive, and problems

occur in large-scale deployments [14]. The cost of each test

in the USA is approximately 23 dollars [15]. The govern-

ments try to test as much as they can every day, as they do

not have the chance to test and control the whole country

on one day. Moreover, the availability of the RT-PCR test

is not the same all over the world. Therefore, it is of great

importance to have a fast, simple, accurate, cheap, and

easily accessible test.

One of the aspects in which machine learning can be

effective is the early diagnosis of COVID-19. As men-

tioned previously, one of the most common and early

symptoms of COVID-19 is coughing [2]. If non-coron-

avirus-induced coughs are distinguished from coronavirus-

induced coughs through machine learning techniques, a

cost-effective, easy, fast, and early diagnosis system can be

offered. Since these systems can be installed on smart-

phones as an application or presented to users in a web-

based environment, can be easily made available to

everyone. In this case, in addition to the low cost, sus-

pected candidates can record the cough sounds on their

smartphones whenever they want and perform a prelimi-

nary determination for their status. Thus, great convenience

will be provided in the early diagnosis of the disease. It can

also reduce the burden of healthcare teams by effectively

reducing the congestion in hospitals. This system, which is

based on cough sounds, can also be used as a scanning

method in airports, buses, waiting rooms of hospitals,

nursing homes, and similar crowded environments [16].

In humans, different viruses, bacteria, or other acute and

chronic health conditions, or even substances such as

smoke and dust entering the lungs can cause coughing. In

medicine, it is important for physicians to know whether

the cough is wet, dry, or a wheezing, and whooping cough,

in addition to how often and how severely the patient

coughs [16]. Machine learning-based systems can detect

the type of coughs (wet, dry, wheezing, and whooping

cough) by providing medical professionals with more

accurate clinical information about the frequency and

severity of cough episodes. For this reason, even before the

COVID-19 outbreak, studies on these issues were

implemented.

Studies on cough sound can be divided into three cate-

gories. In the first group of studies, the aim is to distinguish

cough sounds from other sounds. A preprocessing method

was proposed for the detection of coughs in a noisy envi-

ronment [17]. They used a fourth order Butterworth high

pass filter in the pre-processing stage. Next, a methodology

for automated analysis of cough sounds using support

vector machines (SVM) was presented. In [18], a cough

detection system that utilizes an acoustic onset detector in

the preprocessing stage was proposed. This system, which

is based on Long Short-Term Memory deep neural network

architecture, has 90% sensitivity and 99% specificity.

Barata et al. [19] conducted a study to ensure the scalability

of existing cough detection models on various mobile

devices. The authors investigated the performance of dif-

ferent methods across devices by recording 6737 cough

samples and 8854 control sounds with 5 different recorders

in a laboratory study with 43 subjects. Using an efficient

convolutional neural network architecture and an ensem-

ble-based classifier to reduce cross-device conflict, they

achieved average accuracies between 85.9 and 90.9%. The

proposed methods have demonstrated consistency across

devices and the ubiquity of ubiquitous, scalable, and

device-independent cough detection.

In the second group of studies, the aim is cough type

classification (such as dry/wet). In a study [20], which was

performed in 2011, two features that can be used to analyze

cough sounds and distinguish between dry and wet cough

sounds were identified. These features are the number of

peaks of the energy envelope and the power ratio of two
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frequency bands of the second phase of the cough signal.

However, a clear distinction was observed by using only

eight dry and eight wet cough sounds. In recent study [21],

an objective approach based on the acoustic features of the

cough sound collected by smartphones from 131 subjects

was proposed. For classification between wet and dry

coughs, sensitivity and specificity of the system were cal-

culated as 88% and 86%, respectively. They obtained these

values by classifying the features that they extracted from

the time and frequency domain with a random forest

classifier.

The third group of studies are the most comprehensive

studies in this field. In these studies, cough sounds are first

detected from other sounds and then classified into differ-

ent types of coughs by the system. Pramono et al. [22]

presented a system for diagnosing whooping cough in

young children, which can be fatal if untreated. In their

study, audio recordings from 38 patients were used for

automatic diagnosis of pertussis by analyzing the cough

and whooping sounds. The algorithm was able to suc-

cessfully detect whooping cough from sound recordings

and automatically detect individual cough sounds with

92% accuracy by using a logistic regression model. In [23],

deep neural networks were used for cough detection based

on the convolutional neural network and the recurrent

neural network. The accuracy rate of the system was

reported to be 82.5% for the three classes defined, namely,

cough, speech, and other.

Since the start of the pandemic, researchers working on

computer-aided digital technologies have offered different

ideas, solutions, and methods based on previous experi-

ences. This covers a range from the analysis of the CT

scans and X-ray images [24–28] for the diagnosis of

COVID-19 to emotional and sentiment analysis from social

media [29–31]. Among these studies, it appears in studies

based on sound analysis and especially cough sound. One

of the parameters that has the greatest impact on machine

learning studies is the data set. Since COVID-19 is a newly

emerging disease and more importantly considering the

status of the COVID-19 patients, it is very difficult to

collect and access data sets. However, despite all these

difficulties, studies on sound and especially on cough

sound appear in the literature. Although most of these

studies are not peer-reviewed yet, they can be obtained

from different preprint banks. In [32], data obtained from

lung auscultation with digital stethoscope were used for the

diagnosis of covid-19. In [33], changes in the vocal pat-

terns of Covid-19 patients were analyzed. In a similar study

[34], audio recordings of COVID-19 patients were used to

express the severity of the disease. Alsabek et al. [35]

examined the speech signals of COVID-19 and non-

COVID-19 patients by calculating the Mel-frequency

cepstral coefficients (MFCCs). They used Pearson’s

correlation coefficients to show the relationship between

the two signals.

In the literature, it is encountered in studies on the

analysis of the cough sound. In [36], respiratory sounds of

COVID-19 patients, with the help of a binary classifier,

were distinguished from respiratory sounds of healthy

people with an area under the curve (AUC) exceeding 0.80.

The authors used the support vector machine (SVM)

classifier in the classification stage. The used data set was

gathered using a web-based app and an Android app. Ali

et al. [37] presented a mobile application that records and

analyzes 3-second cough sounds through an application

called AI4COVID-19. A total of 328 cough sounds of four

different types including COVID-19, asthma, bronchitis,

and healthy from 150 people were recorded and classified.

The authors used the MFCCs method in the feature

extraction stage, and the accuracy rate of the system was

calculated as 92.85%. In a study [38] on Coswara and

Virufy data sets, features extracted from the frequency and

time domain were classified using machine learning

methods. The results were compared with the recurrent

neural network (RNN) method, which is common in deep

learning methods. The system’s accuracy rate was calcu-

lated as 81.25% for RNN when two different databases

were used for the training and testing set. In [39], the

authors classified 81 cough sound recordings (8 COVID-

19, 28 pneumonia, 15 pertussis, and 30 healthy) through

machine learning and deep learning. In this four-class

study, an overall accuracy rate of 94% was given for the

SVM classifier. A total of 328 cough sounds collected from

200 patients at a hospital in New Delhi, India, were clas-

sified into four classes (COVID-19, Asthma, Bronchitis,

and Healthy) via the Deep neural network (DNN) [40]. In

this data set, in addition to cough sounds of 100 COVID-19

patients, breathing sounds, counting from 1 to 10, sustained

phonation of ’a’, ’e’, ’o’ sounds, demographic, fever,

headache, sore throat were given. By using only cough

sounds, in binary classification (COVID-19 vs. non-

COVID-19), the system’s accuracy rate, sensitivity, and

specificity were calculated as 90.8%, 90.1%, and 90.3%,

respectively. When cough data and symptoms data are used

together, the accuracy rate of the system was computed as

96.5%. In [41], cough sounds that were collected from

3621 people via mobile phones were classified with 0.72

AUC by using deep convolutional neural networks

(CNNs). In [42], cough sounds were classified with a

95.86% accuracy rate with SVM’s RBF kernel function

classifier by obtaining features by the MFCCs method. The

sensitivity of the system to COVID-19 cough sounds was

calculated as 98.6%, and the sensitivity was obtained as

91.7%.

In summary, classifying Covid-19 patients from non-

Covid-19 patients by using cough sounds is a new area of
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research. As it is said, when the literature is reviewed, we

come across a small number of studies in this area. This

shows that we are just at the beginning of this road. Most of

the available works have either been submitted for con-

ferences or have not yet been peer-reviewed. However, the

main purpose of these studies, as stated in most of them, is

to show that it is possible to distinguish COVID-19 patients

from non-COVID-19 patients through cough sound analy-

sis. These studies show that it is possible and meaningful to

analyze the data recorded by different phones and micro-

phones and in different environments on the same system.

In our proposed study, it shows that the analysis of cough

sounds is useful in the non-contact detection of COVID-19

and it is possible to distinguish COVID-19 and non-

COVID-19 patients. Deep learning models were used in

many of the mentioned studies. However, datasets con-

taining Covid-19 coughs are small, and deep learning

models for such small datasets are often overfitted [36].

Therefore, to avoid this problem, common machine learn-

ing methods were used in the proposed study. The features

were obtained by the MFCCs method on the data set

acquired by combining these two data sets and classified

with seven different classifiers. The optimum values of the

hyperparameters of the system were determined based on

the LOO-CV strategy. Finally, effective features were

determined separately for each classifier using the

sequential forward selection (SFS) method.

Also, most of the studies conducted have been based on

recordings involving a few coughs. That is, for example, a

9-second recording has 3 or 4 coughs. In addition, all of the

studies have been conducted on mandatory and conscious

cough sounds. In this study, considering these two impor-

tant points, two different datasets were combined and used.

The virufy [43] data set is a public data set and contains

121 single cough records. The novel coronavirus cough

database (NoCoCoDa) [16] is available to researchers free

of charge upon request. This data set contains 73 single

coughs that include reflex COVID-19 cough sounds and are

not mandatory. In this way, mandatory and conscious

single cough sounds, in addition to reflex single cough

sounds of COVID-19 patients, were successfully distin-

guished from single cough sounds of non-COVID-19

patients in the present study. The results showed that the

proposed system is more successful than other systems. In

addition, the results revealed that conscious or unconscious

coughs have no effect on the diagnosis of COVID-19

patients with cough sounds. In other words, our study

proved that the diagnosis of Covid-19 patients can occur

without the need for unconscious coughs.

In the following section, materials and methods are

explained. In the third section, the results are given and in

the fourth section, the results are discussed. Section 5

presents the conclusion.

2 Materials and methods

2.1 Data set description

2.1.1 Virufy COVID-19 open cough data set

The virufy COVID-19 open cough data set is the first free,

publicly available data set containing COVID-19 cough

sounds [43]. COVID-19 PCR test results were also given

along with the demographics of all the patients in the data

set. After obtaining informed patient consent, the data were

collected from patients in a hospital and under surveillance

and verified by physicians, following standard operating

procedures (SOPs). Some patients have no symptoms,

while others have symptoms such as fever, chills, or

sweating, shortness of breath, new or worsening cough,

sore throat, loss of taste, loss of smell. These cough sounds,

which were collected from 16 patients, were recorded at a

sampling frequency of 48 kHz. Then, each recording was

split so that it contained only one cough with the duration

of 1.645 seconds. Thus, the data set consists of 121 single

cough records, 48 of which were reported to have a positive

PCR test result, and 73 were reported to have a negative

test result. The original format of the records (before

splitting) is also given in the data set.

2.1.2 NoCoCoDa

In [16], public media interviews with COVID-19 patients

were manually reviewed and the cough sounds were sep-

arated one by one and recorded. These interviews were

broadcasted online by news sources. This database, called

the NoCoCoDa, contains a total of 73 single cough sounds

and is available to researchers free of charge upon request.

This data set, with a total of 13 interviews attended by 10

people, includes reflex COVID-19 cough sounds. The

cough sounds were recorded as a .WAV file with a sam-

pling frequency of 44.1 kHz. In addition to the data,

information about the patients is given in an additional file.

Since NoCoCoDa is derived from reports and news pro-

grams, other sounds such as speech or music are heard in

the background in some cough recordings. In a few, a

mixture of throat clearing and coughing was also found. All

this is specified in the additional file.

In the present study, these noisy and suspicious coughs

were removed from the NoCoCoDa data set and the

remaining 59 coughs were used. After combining these two

data sets, the distribution of cough sounds between the two

classes is given in Table 1. As can be seen, a total of 180

cough sounds from 107 COVID-19 patients to 73 cough

sounds from non-COVID-19 patients were used in this

study.
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2.2 Mel-frequency cepstral coefficients (MFCCs)

MFCCs are one of the popular and successful methods for

obtaining features in voice analysis and automatic speech

recognition systems [44]. MFCCs is a digital technical

analysis that simulates the perception of human ears and is

calculated on the basis of Fast Fourier Transform (FFT).

Since the characteristics of speech signals remain stable in

a very small time interval (about 20–30 ms), they are

processed in very short time intervals [45, 46]. This short

interval is called the frame. Frames are usually chosen to

overlap to make transitions between frames smoother.

Similar to the calculation of spectrogram, here, the win-

dowing process takes place to avoid a discontinuity at the

beginning and end of the frames. The commonly used

window structure is Hamming. After windowing, FFT is

applied to transform each frame from the time domain to

the frequency domain. The mel unit is a unit designed to

imitate the perceptual feature of the human ear. Conversion

between the mel scale and the frequency scale is provided

by the equation given below.

mel fð Þ ¼ 2595 � log 1 þ f

700

� �
ð1Þ

In this way, MFCCs are the expression of the short-time

power spectrum of the sound signal on the mel scale

[47, 48]. When MFCCs are calculated for a cough sound, a

matrix is obtained in the M � N matrix, where M is the

number of MFCCs and N is the number of segments (the

number of frames).

In the literature, MFCCs was used for the classification

of cough sounds. For example, in [20], the features were

extracted by the MFCCs method for the classification of

dry and wet coughs. In order to obtain features with the

MFCCs method, attention should be paid to important

factors, called hyperparameters, which include the type of

window used, frame length, frame overlap length, number

of segments used for feature extraction, and number of

MFCCs. In this study, the chosen window type was

Hamming, and the frame overlap length was half of the

frame length. The optimum values of the other three

hyperparameters (the frame length, number of MFCCs, and

number of segments used for feature extraction) were

chosen using the LOO-CV strategy.

2.3 Classification

Today, classification is used in various fields, from medical

or genomic predictions to systems such as spam detection

and face recognition, and even in finance [49]. In the

classification process, a classifier is trained with samples

with certain labels and a model is created. Then, the model

is used to guess the label of unknown samples [50]. Many

classifiers based on machine/deep learning methods were

used in the classification of cough sounds. For example, in

[51], logistic regression (LR), support vector machines

(SVM), multilayer perceptrons (MLP), convolutional neu-

ral networks (CNN), long short-term memory (LSTM), and

residual-based neural network architecture (Resnet50) were

used.

In this study, popular classifiers in machine learning

systems were used to classify COVID-19 and non-COVID-

19 cough sounds. These are SVM, linear discriminant

analysis (LDA), k-nearest neighbors (kNN), and partial

least squares regression (PLSR). In SVM, LDA, and kNN

classifiers, two different structures of the model were

implemented. In SVM, two different nonlinear kernels,

namely radial basis function and polynomial kernels, were

used. In kNN, Euclidean and Chebyshev distance metrics,

and in LDA, linear and quadratic decision surfaces were

tested. By adding PLSR to these six classifiers, a total of

seven different classifiers were created and the results of

each classifier were calculated. To determine the values of

the hyperparameters in each classifier, the LOO-CV strat-

egy was used.

2.4 Measuring the performance of the system

The performance of a classification system can be mea-

sured with different metrics. In this study, the accuracy

rate, AUC, F-measure, sensitivity, and specificity were

used to measure the performance of the system. There are

different strategies for calculating these metrics. One of the

popular strategies is LOO-CV [52]. The LOO-CV strategy

is adopted in a system when the number of samples in the

data set or even just the number of samples in a class is low

[53]. In this strategy, the data set containing N samples is

divided into two sections. The N-1 sample is used for

training the classifier, and the single remaining sample is

used for testing the model. All the samples are used for

testing only once, so the process is repeated N times and, in

this way, different metrics can be computed. In this study,

the LOO-CV strategy was used to calculate the metrics,

taking into account the total number of samples (180

samples) in the two classes.

Table 1 Distribution of cough sounds between the two classes

Data set COVID-19 Non-COVID-19 Total

Virufy 48 73 107

NoCoCoDa 59 0 59

Total 107 73 180
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3 Results

A method was proposed based on machine learning to

diagnose COVID-19 patients from non-COVID-19 patients

by cough sounds. The proposed method was tested on a

data set that includes virufy and NoCoCoDa data sets. The

features were extracted from cough sounds using the

MFCCs method and classified with seven different classi-

fiers. To select values of hyperparameters in feature

extraction and classification processes, the accuracy rate

metric was calculated according to the LOO-CV strategy.

In searching for the optimum value of a hyperparameter, all

the other hyperparameters were kept constant. The value

reaching the highest accuracy rate in the searched range

was selected as the optimum value of that hyperparameter.

In all of the steps of the study, for the MFCCs method, the

window type was chosen as Hamming, and the frame

overlap length was half of the frame length.

3.1 Determination of the values
of hyperparameters in the feature extraction
phase

As mentioned earlier, in the MFCCs method, three

hyperparameters were taken into account. These are the

frame length, number of MFCCs, and number of segments

used for feature extraction. Frames lengths of 512, 1024,

2048, and 4096 samples were tested to determine the

optimum frame length. In this case, the number of MFCCs

was selected as 13, and the number of segments used for

feature extraction was selected as N. That is, for each

cough, a 13xN matrix was obtained, and by averaging in all

N segments, a 13x1 feature vector was obtained. Then, the

feature vectors were transferred to the classifiers and

classified. The accuracy rate obtained for each frame length

based on the LOO-CV strategy is separately presented for

each classifier in Table 2. The hyperparameters of the

selected classifiers also appear in the table. As can be seen,

the Chebychev-kNN classifier successfully classified the

cough sounds recorded from COVID-19 and non-COVID-

19 patients for the 2048 frame length with an accuracy rate

of 0.9389, followed by the Euclidean-kNN classifier with

an accuracy of 0.9167. By looking at the results in general,

all the classifiers achieved higher accuracy for the 2048

frame lengths. Therefore, for the continuation of the study,

the optimum value of the frame length hyperparameter was

chosen as 2048 samples.

To determine the optimum number of MFCCs, a scan-

ning between 2 and 39 was performed. For this, as in the

previous step, the number of segments used for feature

extraction was selected as N. In this way, for example,

when the number of MFCCs is 2, two features, and when it

is 39, 39 features are extracted. The performance of all the

classifiers was measured by the accuracy rate metric using

the LOO-CV strategy. The classifiers’ hyperparameter was

adjusted as in the previous step. The results are given in

Fig. 1. As it turns out, Euclidean-kNN achieved the best

performance using 19 MFCCs with an accuracy rate of

0.9500 followed by Chebychev-kNN and polynomial-SVM

with an accuracy rate of 0.9389. These ratios were obtained

using 13 and 17 MFCCs, respectively. Therefore, the

number of MFCCs was determined as 19 for the continu-

ation of the study.

The last hyperparameter in the feature extraction phase

is the number of segments used for this phase. In order to

obtain the optimum segment number, numbers from 1 to 50

were used and the averages were obtained. For this pur-

pose, only the first segment of the first 19-MFCCs was used

as the feature vector and classified by classifiers. Then, 19

features obtained by the average of the first two segments

of 19-MFCCs were classified. This process continued until

50. The hyperparameters of the classifiers were chosen as

in the previous steps. The results are shown in Fig. 2.

Euclidean-kNN appears to be the most successful classifier

in using 17 segments, with an accuracy rate of 0.9833.

After determining the optimum values of the hyperpa-

rameters in the feature extraction phase, the striking point

is the approximately 7% increase in the accuracy of the

Euclidean-kNN classifier.

3.2 Determination of the values
of hyperparameters in the classification
phase

To determine the optimum hyperparameter values of the

classifiers, the accuracy rate metric obtained by the LOO-

CV strategy was used. In the RBF-SVM classifier, the

range of 0 to 3 was screened by steps 0.1 to determine

sigma. The results are given in Fig. 3. When sigma=1.3, the

accuracy rates reached 0.9611. In the polynomial-SVM

classifier, the order hyperparameter was searched between

1 and 4. The highest accuracy rate (0.9556) was achieved

when the third-order kernel function was used.

Different gammas from 0 to 1 were tested by steps 0.1 to

determine gamma in the linear-LDA classifier. The results

showed that the highest accuracy was at gamma = 0.6, as

given in Fig. 4. The gamma was changed to 0 and 1 in the

quadratic-LDA classifier, and the accuracy rate was cal-

culated. A higher accuracy rate (0.9056) was calculated at

gamma = 0.

In order to determine k in both types of kNN classifiers,

the classification accuracy rate was calculated from 1 to 25

by steps 1. The results are given in Fig. 5. The highest

accuracy rates at k = 1 were calculated for both classifiers.

Thus, the accuracy rates did not change for these classifiers.
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Table 2 Classification results for different frame lengths

Frame lengths

(samples)

Polynomial-

SVM

Order=2

RBF-

SVM

Sigma =1

Linear-

LDA

Gamma=0

Quadratic-

LDA

Gamma=0

Chebychev-

kNN

K=1

Euclidean -

kNN

K=1

PLSR

component=13

512 0.8667 0.8944 0.8944 0.8278 0.9056 0.9111 0.8278

1024 0.8722 0.8944 0.9000 0.8389 0.9222 0.9111 0.8444

2048 0.8722 0.8944 0.9056 0.8556 0.9389 0.9167 0.8556

4096 0.8667 0.8944 0.9000 0.8500 0.9056 0.9167 0.8500

The highest value is indicated in boldface
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Different components were tested by steps 1 from 2 to

19 in order to determine the component in the PLSR

classifier. The results show that the highest accuracy rate

was when the component = 4, as given in Fig. 6. Thus, the

PLSR classifier classified the cough sounds of COVID-19

and non-COVID-19 patients with an accuracy rate of

0.8111, such as the linear-LDA.

In order to see the system performance more clearly,

after determining the optimum hyperparameter values of

the classifiers, in addition to the accuracy rate, four more

metrics were calculated. The determined hyperparameter

values and calculated metrics are given in Table 3. As it

turns out, Euclidean-kNN is more successful than the other

classifiers in all the metrics. The Euclidean-kNN classifier

showed 0.9720 and 1.0000 sensitivity to the COVID-19

and non-COVID-19 class, respectively.

3.3 Feature selection based on SFS

In the last step of the study, the feature selection process

based on the SFS method was performed separately for

each classifier. The results of this step are given in Table 4.

In order to see whether the SFS method has any effect, the

accuracy rates calculated in the previous step are also

Table 3 The results of

classification by tuning

hyperparameters in classifiers

Classifier Hyperparameter ACC Sen.

Non-COVID-19

Sen. COVID-19 F-measure AUC

Polynomial-SVM Order=3 0.9556 0.9452 0.9626 0.9452 0.9539

RBF-SVM Sigma=1.3 0.9611 0.9583 0.9630 0.9517 0.9606

Linear-LDA Gamma=0.6 0.8111 0.7808 0.8318 0.7703 0.8063

Quadratic-LDA Gamma=0 0.9056 0.8082 0.9720 0.8741 0.8901

Euclidean-kNN K=1 0.9833 1.0000 0.9720 0.9799 0.9860

Chebychev-kNN K=1 0.9056 0.8904 0.9159 0.8844 0.9031

PLSR Component =4 0.8111 0.7808 0.8318 0.7703 0.8063

The highest value in each metric is indicated in boldface

Table 4 Effect of the SFS

method on classification results
Classifier Used Features ACC

(after used SFS)

ACC

(before used SFS)

Polynomial-SVM 19 0.9556 0.9556

RBF-SVM 18 0.9667 0.9611

Linear-LDA 11 0.8388 0.8111

Quadratic-LDA 15 0.9111 0.9056

Euclidean-kNN 19 0.9833 0.9833

Chebychev-kNN 13 0.9444 0.9056

PLSR 17 0.8277 0.8111

The highest value in each classifier is indicated in boldface

Table 5 Comparison of the

results of the proposed study

with the results of other studies

Study \ metrics ACC Sen.

Non-COVID-19

Sen.

COVID-19

F-measure AUC

[40] 0.9080 0.9010 0.9030 0.9060 —

[51] — — — — 0.7200

[36] – – – – 0.8200

[38] 0.8125 – – – 0.8000

[37] 0.9285 0.9114 0.9457 0.9297 —

[42] 0.9586 0.9863 0.9167 — —

[51] 0.9501 0.9800 0.9300 — 0.9632

Proposed method 0.9833 1.0000 0.9720 0.9799 0.9860

The highest value in each metric is indicated in boldface
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shown in the table. As seen, there appears to be an increase

for all the other classifiers, with the exception of the

Polynomial-SVM and Euclidean-kNN classifiers.

4 Discussion

In this study, for the first time, the cough sounds of con-

scious and unconscious COVID-19 patients (in the same

class) were classified against the cough sounds of non-

COVID-19 patients. The results showed that this process

was successful by the Euclidean-kNN classifier with an

accuracy rate of 0.9833. Thus, it was observed that con-

scious or unconscious cough sounds did not have any

significance in the diagnosis of COVID-19. Because if

there were a difference between conscious coughs and

unconscious coughs, this difference would have been

reflected in the frequency components of the cough sounds

and would have an effect at the classification stage, thus

causing a decrease in the classification results. So, our

study proved that the diagnosis of Covid-19 patients can

occur without the need for unconscious coughs.

As said earlier, few studies have been conducted to

distinguish between COVID-19 and non-COVID-19

patients based on cough sounds in the literature. Most of

the available works have either been submitted for con-

ferences or have not yet been peer-reviewed. In Table 5,

the results of these studies and the results of the proposed

study are presented for comparison. Except for [36] and

[42], other studies used deep learning methods for classi-

fication. Datasets containing Covid-19 coughs (as this is a

new area of research) are small, and deep learning models

for such small datasets are often overfitted [36]. Although

popular machine learning methods were used in this study,

as can be seen, all the metrics of the proposed study were

higher than those of the other studies. An important issue to

note is the sensitivity of the system in the diagnosis of

COVID-19 patients. The proposed study is more successful

than other studies with a sensitivity of 0.9720 to COVID-

19 patients.

The proposed system can be installed on smartphones as

an application or presented to users in a web-based envi-

ronment. While presenting health technology app to the

application stores, important issues such as application

health, data security, and user safety should be considered

[54]. Both Apple and Google have specific requirements

that must be met when publishing apps. Stricter guidelines

apply when it comes to healthcare practices, but there are

no serious limitations or barriers in the use and publishing

of these systems. Google Play generally provides a faster

response and simpler guidelines in the approval process

compared to the App Store [55]. While Android health app

requirements are limited compared to other apps, it is your

responsibility to comply with health regulations such as

Health Insurance Portability and Accountability Act

(HIPAA) compliance. More information on this topic can

be obtained from [54]55.

Another important issue to be considered is the number

of samples in the data set. The more samples used in

machine learning-based systems, the more reliable the

system will be, and generally, the larger the dataset, the

greater statistical power for pattern recognition [56]. Since

COVID-19 is a newly emerging disease, it is very difficult

to collect and access data sets. However, there is no limit

on this issue. There are only different validation strategies.

In our study, we used the leave-one-out cross-validation

strategy, which evaluates all possibilities.

5 Conclusion

To diagnosis the COVID-19 disease, it is essential to have

a cost-effective, fast, easy, and accurate method, consid-

ering the high cost of clinical tests, long turnaround time,

and lack of equal access around the world. Therefore, it is

quite interesting and essential to distinguish COVID-19

patients from non-COVID-19 ones by evaluating their

cough sound via a mobile application based on computer-

aided digital technologies. In this way, the user can

undergo constant self-surveillance wherever and whenever

they want, which leads to infrequent medical visits as well

as reducing the crowd in hospitals and the burden of

healthcare teams. In this study, a method based on machine

learning systems was presented to diagnose COVID-19 and

non-COVID-19 patients with a single cough sound. The

features were obtained by the MFCCs method from cough

sounds and classified with seven different classifiers. The

optimum hyperparameters of the system were selected

according to the accuracy rate calculated with the LOO-CV

strategy. In this way, COVID-19 and non-COVID-19

patients were classified with an accuracy rate of 0.9833,

observing an increase in the accuracy of the most suc-

cessful classifier (Euclidean-kNN) by around 7%. The

system showed no error in the diagnosis of non-COVID-19

patients; however, it exhibited a sensitivity of 0.9720 for

COVID-19 patients, which shows that it is quite successful

compared with the systems available in the literature.

Moreover, in this study, the used data set includes the

unconscious and reflex cough sounds of COVID-19

patients. The results showed that conscious or unconscious

cough sounds did not have any significance in the diagnosis

of COVID-19. As mentioned, these systems can be

installed on smartphones as an application or presented to

users in a web-based environment. Today, mobile devices

can be used as scalable, easy-to-use, and cost-effective

health monitoring systems. Thus, for future studies, it is
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planned to test the system on a larger number of samples

and an online platform by adding serious preprocessing

steps such as systems to distinguish cough sound from

other sounds. In addition, only the PCR test was performed

on the candidates in the data sets used in the study, and the

label of the coughs was determined according to the result

of this test. For this, unfortunately, comparing the results of

the study with the results of different tests such as the

antigen test is not possible. In the virufy dataset, there are

people who are positive and do not have any symptoms.

We believe that more comprehensive studies will emerge

by considering these issues.

Appendix

See Figs. 3, 4, 5 and 6.
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