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ABSTRACT

Objective: The United States is experiencing an opioid epidemic. In recent years, there were more than 10 mil-

lion opioid misusers aged 12 years or older annually. Identifying patients at high risk of opioid use disorder

(OUD) can help to make early clinical interventions to reduce the risk of OUD. Our goal is to develop and evalu-

ate models to predict OUD for patients on opioid medications using electronic health records and deep learning

methods. The resulting models help us to better understand OUD, providing new insights on the opioid epi-

demic. Further, these models provide a foundation for clinical tools to predict OUD before it occurs, permitting

early interventions.

Methods: Electronic health records of patients who have been prescribed with medications containing active

opioid ingredients were extracted from Cerner’s Health Facts database for encounters between January 1, 2008,

and December 31, 2017. Long short-term memory models were applied to predict OUD risk based on five recent

prior encounters before the target encounter and compared with logistic regression, random forest, decision

tree, and dense neural network. Prediction performance was assessed using F1 score, precision, recall, and

area under the receiver-operating characteristic curve.

Results: The long short-term memory (LSTM) model provided promising prediction results which outperformed

other methods, with an F1 score of 0.8023 (about 0.016 higher than dense neural network (DNN)) and an area

under the receiver-operating characteristic curve (AUROC) of 0.9369 (about 0.145 higher than DNN).

Conclusions: LSTM–based sequential deep learning models can accurately predict OUD using a patient’s his-

tory of electronic health records, with minimal prior domain knowledge. This tool has the potential to improve

clinical decision support for early intervention and prevention to combat the opioid epidemic.
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INTRODUCTION

Opioid use disorder (OUD), including opioid dependence and opioid

addiction, is a physical or psychological reliance on opioids, which

are a class of substances found in certain prescription pain medica-

tions and illegal drugs such as heroin.1 Misuse and abuse of opioids

are attributable to the deaths of more than 130 Americans daily,2
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making them a leading cause of accidental death in the United

States.3 Opioid prescribing has increased due to its effectiveness in

treating acute pain.4 According to Han et al,5 91.8 million (37.8%)

civilian noninstitutionalized adults in the United States consumed

prescription opioids in 2015. Among them, 11.5 million (4.7%) mis-

used them and 1.9 million (0.8%) had a use disorder. Overdose

from prescription opioids has risen from over 4000 to over 16 000

in 2010, making it the fastest-growing cause of overdose deaths.6

OUD among individuals on prescription opioids has become a sig-

nificant public health concern.

Early intervention in the developmental trajectory of OUD has

the potential to reduce morbidity and mortality. Interventions, such

as reducing opioid dosage or suggesting alternative options for

chronic pain management, can potentially reduce the risk of OUD.

The Centers for Disease Control and Prevention has also provided

recommendations for safer use of opioid prescriptions in chronic

pain care.7 Predicting OUD risk for specific patients or patient

groups can help target these interventions.

Electronic health records (EHRs) have been widely adopted with

the introduction of the Health Information Technology for Economic

and Clinical Health Act of 2009.8 Besides EHR data managed by

healthcare providers, large-scale EHR data are also made available

through commercial EHR vendors for research purpose. For exam-

ple, Cerner’s Health Facts9 is a large multi-institutional de-identified

database derived from EHRs and administrative systems. Given the

availability of vast EHR data, we can build predictive models, which

assess the risk of OUD and provide top risk factors as explanations.

Therefore, meaningful clinical decision support tools are possible.10

Traditional statistical and machine learning based models for

OUD prediction have been proposed in previous works.11–14 For ex-

ample, the Cox regression method was applied to extract the most

relevant features and then to build a multivariate regression model

to fit those features to predict 2-year risk of opioid overdose.15 Ellis

et al16 studied Gini importance, effect size, and the Wilcoxon rank

sum test to measure the importance of different features and applied

a random forest classifier to predict opioid dependence. In addition

to random forests, decision trees and logistic regression were also

proposed by Wadekar et al17 for OUD prediction using demo-

graphic, socioeconomic, physical, and psychological features, which

revealed first use of marijuana before 18 years of age as the greatest

risk factor. Lo-Ciganic et al18,19 applied gradient boosting machine

(GBM) and dense neural network models for opioid overdose pre-

diction using a set of handcrafted features, including demographics,

medical codes, and other aggregated features such as daily morphine

milligram equivalents (MME). Calcaterra et al20 applied logistic re-

gression on laboratory tests, demographics, and diagnosis codes to

predict future chronic opioid use in 30 days.

Recently, deep learning methods have gained popularity in EHR

based predictive modeling. For instance, Rajkomar et al21 performed

a large-scale study on multiple medical event prediction based on

EHR data using deep learning, which achieved high prediction accu-

racy. Another study employed a fully connected deep neural network

to suggest candidates for palliative care.22 Sequential deep learning

models were also applied to tackle problems relevant to opioids. For

instance, recurrent neural networks (RNNs) were proposed by Che et

al23 to classify opioid users into long-term users, short-term users, and

opioid-dependent patients, with diagnoses, procedures and medica-

tions as features. Another study explored the application of RNNs for

chronic disease prediction using medical notes.24 Our recent work

also applied fully connected networks for predicting diseases and im-

proving coding25,26 and opioid overdose prediction.27

In this article, we propose a sequential deep learning model built

on long short-term memory (LSTM) to predict OUD among patients

prescribed with opioid medications in their past health records. This

sequential model can better represent the progression of diseases

and identify the most important features as potential risk factors for

the diseases. We used patients’ past medical history including diag-

nosis codes, procedure codes, laboratory test results, medications,

clinical events, and demographics to train the model. We also com-

pared our method with traditional machine learning algorithms and

dense neural networks. Our results demonstrate that with compre-

hensive EHR data, our sequential deep learning model can provide

highly accurate predictions, with a higher F1 score than the other

methods. We also identified OUD-related diagnoses and medica-

tions as important features for prediction.

MATERIALS AND METHODS

Data source
Cerner’s Health Facts database includes de-identified EHR data

from over 600 participating Cerner client hospitals and clinics in the

United States. In addition to encounters, diagnoses, procedures, and

patients’ demographics that are typically available in claims data,

Health Facts also includes medication dosage and administration in-

formation, vital signs, laboratory test results, surgical case informa-

tion, other clinical observations, and health systems attributes.28

Data selection
As patients with opioid prescriptions were the target cohort of this

study, we extracted all the patients who had been prescribed with

medications containing opioid related ingredients according to their

medical records. For retrieval of those ingredients, we used the Ana-

tomical Therapeutic Chemical (ATC) level 3 code “N02A” and cate-

gories description ‘opioid’ to retrieve all relevant active ingredients

from DrugBank 5.1.4.29 Selected opioid related ingredients include

butorphanol, diamorphine, eluxadoline, oxycodone, oxymorphone,

naloxone, tramadol, levacetylmethadol, pentazocine, hydromor-

phone, levorphanol, remifentanil, normethadone, opium, sufentanil,

piritramide, tapentadol, morphine, codeine, dezocine, fentanyl, nal-

buphine, meperidine, naltrexone, buprenorphine, methadone,

hydrocodone, alfentanil, dihydrocodeine, and diphenoxylate.

Following procedures from Moore et al,30 we selected a group of

International Classification of Diseases–Ninth Revision (ICD-9) and

ICD–Tenth Revision (ICD-10) codes to define OUD diagnosis. We

excluded opioid poisoning ICD codes for OUD patient identifica-

tion, as opioid poisoning can be fatal and prompt medication inter-

ventions are needed. Our work targets OUD patients for potential

early intervention at the trajectory from OUD to overdose, with a

similar idea as in Lo-Ciganic et al.18 The summary of the codes can

be found in Supplementary Appendix S1. Patients with one or more

of these codes were considered OUD patients.

Because opioid medications have proven successful in treatment

of cancer pain,31 cancer patients may receive many more opioid pre-

scriptions than other patients. This fact may lead the model to mis-

classify these patients as having OUD, so we removed all patients

with cancer diagnosis. To identify patients with cancer, we used the

ICD-932 and ICD-10 codes.33 The summary of these ICD codes can

be found in Supplementary Appendix S2.

The majority of OUD patients (91.08%) were between 18 and

66 years of age. The portion of patients older than 66 years of age

and younger than 18 years of age between OUD and non-OUD
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patients differed significantly. To make positive and negative cases

consistent and prevent potential bias on age, we extracted both

OUD and non-OUD patients based on their age of first exposure to

opioid medications between 18 and 66 years of age. The age distri-

bution of first opioid medication exposure for OUD patients is

shown in Figure 1.

The patient selection process is illustrated in Supplementary Fig-

ure 1S. After age filtering, there were 111 456 positive (OUD)

patients and 5 072 110 negative patients. For positive patients, we

identified the target encounter as the encounter with the earliest di-

agnosis of OUD (label “1”). We then selected the five encounters

prior to the target encounter to use as the input features (Supplemen-

tary Figure S2a). For negative patients, we selected the last available

encounter as the target encounter (label “0”) and then selected the 5

prior encounters as the input data (Supplementary Figure S2b).

Encounter selection
We used the 5 prior encounters before the target encounter to build

the feature matrix. The choice of 5 encounters was based on two

considerations. First, the median number of encounters for all

patients was close to 5. Second, we tested the model with 5 to 10

encounters and the result showed that the prediction with 5 prior

encounters had optimal performance. Note that some patients had

fewer than 5 prior encounters. If a patient did not have 5 prior

encounters, we replicated the last encounter before the target en-

counter to fill the gap. For example, if a patient had 7 prior encoun-

ters (1-7), encounters 3 to 7 would be used; if a patient had 3 prior

encounters (1-3), encounter 3 would be replicated to generate a se-

quence of 5 encounters (1,2,3,3,3). The selection of encounters is il-

lustrated in (Supplementary Figure S2a).

Feature selection
Information used for the feature matrix included diagnosis codes,

procedure codes, laboratory tests, medications, clinical events, and

demographic information.

Diagnosis codes specify patients’ diseases and symptoms. This

history of diseases is critical information for predicting the future. In

Health Facts, both ICD-9 codes (before October 1, 2015) and ICD-

10 codes (after October 1, 2015) exist. We converted all ICD-9

codes to ICD-10 codes to avoid dispersion of predictability for each

diagnosis feature34 and used the first 3 digits of the ICD-10 codes to

reduce granularity and accelerate the training process.

Medications are recorded by National Drug Code (NDC) codes

in Health Facts, which give labeler, product, and package informa-

tion. For a more clinically meaningful representation, we converted

all NDC codes to ATC codes. ATC codes indicate active ingredients

and are organized hierarchically by the system/organ they act on

and their therapeutic or pharmacological class. Moreover, by using

ATC codes, we reduced the number of medication features while

retaining meaningful information about the active ingredients. ATC

level 3 codes were chosen35 to represent all medications. For each

medication, the total medication quantity prescribed to each patient

was taken as a feature for the medication. In addition to the total

medication quantity, we also calculated the amount of opioid ingre-

dients contained in each medication and converted it to MME as an

aggregate feature, which represents the dosing strengths of prescrip-

tion opioids based on their relative potencies compared with mor-

phine.36,37 MME was then used to determine a patient’s cumulative

intake of opioids.

The numeric value for each laboratory test is recorded in Health

Facts as well as the standardized interpretation of the value (i.e., in-

dicating whether it is high, low, or normal). We calculated the num-

ber of high, low, and normal values that a patient received for each

test, as well as the total number of laboratory tests that the patient

received.

Clinical events are related symptoms, procedures, and personal

situations that are not formally classified into any of the previous

codes, for instance, the pain level of patients, smoking history,

height, weight, and travel information. Since 79.21% of hospitals in

Health Facts report clinical events, we included clinical events in the

feature space.

Demographic information includes age, gender, and race or eth-

nicity. These variables were also included in the feature space.

We extracted 1468 features to predict future OUD based on a

patient’s EHR history, including 457 diagnosis features, 530 labora-

tory test features, 3 demographic features, 251 clinical event fea-

tures, and 227 medication features, as summarized in Table 1.

Features of low co-occurrence with OUD were removed to prevent

overfitting and sparsity problems; if a feature was present in less

Figure 1. Age distribution of first opioid medication exposure for patients with opioid use disorder.
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than 1% of all OUD patients, that feature was not included in the

feature space.

Feature matrix construction
We used a binary representation to denote the presence or absence

of a diagnosis code in a patient’s EHR history. Ages were segmented

into groups: the first age group was 18 to 27 years of age, followed

by groups spanning 10 years each (28-37 years of age and so on).

Race or ethnicity was encoded using one-hot encoding, the most

common coding scheme for categorical variables. One-hot encoding

transforms a single variable with n distinct possible values into n bi-

nary variables indicating presence (1) or absence (0). Numeric fea-

tures, such as medication dosage, blood pressure, height, and pain

score, were assigned with numeric values in corresponding units in

the database, such as height measured in cm, and blood pressure

measured in mm Hg. For patients without any value for a given lab-

oratory test, we imputed a value. In addition, for some clinical

events, there were multiple values in one encounter, such as body

temperature taken multiple times in the encounter. We therefore

recorded the highest, lowest and median values of the feature in that

encounter. We replaced missing values with median values for nu-

meric features, or majority values for binary features. Figure 2

shows feature matrix construction from feature vectors.

Missing values
Missing values may impact prediction tasks. In our work, missing

values were more challenging to address in the numeric data types in

the clinical events and laboratory tests. Table 2 shows the basic sta-

tistics about the missing value proportion in laboratory tests and

clinical events. The proportion of missing values was higher than

10% in both cases, so the issue is considerable. In our model, we

used median imputation methods to handle missing values. We also

compared median imputation with other common imputation meth-

ods including mean imputation, KNN38 and MICE.39 For patients

with a missing value, KNN imputation finds the k patients with

closest values to that patient based on known values, and then

imputes the missing value with the weighted average value of that

feature for all the k patients. We applied KNN imputation with a k

value of 100. MICE imputation models each feature as a function of

other features, trains a regressor based on known values, and then

imputes missing values with the trained regressor. We used scikit-

learn to implement these methods.

Dense neural networks baseline
Deep neural networks (DNNs) have been proven effective in many

healthcare prediction applications21–24 due to their ability to handle

large numbers of features, making them well suited for our problem.

We took the DNN as a baseline for comparison. Since the perfor-

mance of the DNN may vary due to its flexible structure, for a fair

comparison, we tuned the DNN for optimal performance. We tested

different structures of DNNs, with different numbers of layers (2, 3,

4, 5, 6), different dimensions (64, 128, 256, 512) and different drop-

out rates (0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5). We also took com-

plexity into consideration. The optimized DNN model for

comparison was composed of 6 fully connected layers, with each of

the first 5 layers having a dimension of 512, with ReLU as the acti-

vation function, and with a dropout of 0.3. The last layer had a di-

mension of 8 and was connected to the output layer with binary

cross-entropy loss function and Adam optimizer, whose learning

rate was 0.01. The dropout layer randomly drops out a portion of

outputs from the previous fully connected layer at each training ep-

och to prevent overfitting. The framework of our network is illus-

trated in Figure 3.

Figure 2. Construction of the feature matrix. ICD: International Classification of Diseases; MME: morphine milligram equivalents.

Table 1. Summary of features

Category Number of features Description

Diagnoses 457 First three digits of ICD-10 codes (ICD-19 codes were first converted to ICD-10 codes)

Medications 227 The total quantity of a medication a patient received

Clinical events 251 The highest, lowest and median values for each event if there are multiple values in one encounter

Laboratory tests 530 The numbers of high, low and normal values and the total number for each test

Demographics 3 Gender, age, race/ethnicity

ICD-9: International Classification of Diseases–Ninth Revision; ICD-10: International Classification of Diseases–Tenth Revision.
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Proposed LSTM based model
Our proposed model is based on the LSTM network, a class of

RNN architecture in which connections between nodes form a di-

rected graph along a temporal sequence. This structure makes the

RNN model well suited to make predictions from time series data.

LSTM networks are a version of RNNs, modified to better store

past data in memory. Additionally, LSTMs can solve the vanishing

gradient problem common in RNN models.40 We implemented an

LSTM based network composed of 2 LSTM layers of 512 units. The

framework of our LSTM based neural network is illustrated in Fig-

ure 4. The feature vector for each encounter was treated as a time

step for LSTM, and the number of time steps equaled the number of

encounters (5). Our LSTM was trained with a binary cross-entropy

loss function and Adam optimizer whose learning rate was 0.01.

Variants of the LSTM model
There are various techniques that can be employed by an LSTM

model for potentially enhancing the performance. For comparison,

we implemented widely used techniques including attention mecha-

nism41 and bidirectional structure42 and compared their perfor-

mance experimentally. The attention mechanism is an input

processing technique that allows a model to focus on a specific as-

pect of a complex input, mimicking how humans solve problems. Bi-

directional structure is commonly applied together with RNNs. The

principle is to train a regular RNN model in 2 directions, so that the

output layer can gain information from backward and forward

states simultaneously. It has the advantage of capturing long-term

dependencies. We compared performance across the LSTM model,

the LSTM with the attention model (LSTMþAttention), the LSTM

with bidirectional structure (Bi-LSTM), and the LSTM with both

mechanisms (Bi-LSTMþAttention).

Further, we also considered the BERT model43 for our problem.

BERT is a transformer-based44 machine learning technique for natu-

ral language processing application, which gained popularity re-

cently in sequential model applications. To adapt the BERT model

to our problem, we constructed the number of encounters, feature

name, and value together as a token for BERT. Our model was

implemented with keras-bert45 in Python (Python Software Founda-

tion, Wilmington, DE). Because there was no pretrained model for

similar problems, we trained the model from scratch.

Other baseline methods
In addition to DNN and LSTM models, we also applied traditional

machine learning methods including decision tree, random forest,

and logistic regression. Another popular model for consideration is

the convolutional neural network (CNN). However, for CNN mod-

els to have an advantage, the elements in the input matrix should be

related to their surrounding elements. In our problem, the order of

our features is interconvertible, therefore CNNs may not have an

advantage over other models. Nevertheless, we tested CNNs with

different settings, including different numbers of layers (2, 3, 4),

sizes of kernel (3 � 3, 2 � 2) and pooling (max, min, average). Even

with the best settings, the prediction performance was poor, with an

F1 score around 0.4. Thus, CNN was not included for further analy-

sis in the following experiments. Detailed description of those meth-

ods can be found in Supplementary Table S6.

We implemented our models and performed experiments using

the programming language Python (version 2.7). Traditional ma-

chine learning methods were implemented with the Python Scikit-

Learn package.46 Deep learning was implemented with Python Ten-

sorFlow47 and Python Keras.48 Other libraries used include Python

NumPy49 and Python Pandas.50 The training was performed on one

NVIDIA Tesla V100 GPU (16GB RAM; NVIDIA, Santa Clara, CA).

Data availability statement
The original data underlying this article were provided by Cerner

(https://www.cerner.com/) under an institutional agreement. Data

sharing of the original data is prohibited. However, all result data,

models, and codes are publicly available (https://github.com/Stony-

BrookDB/oudprediction). The Stony Brook University Institutional

Review Board determined that the de-identified Cerner Health Facts

database is not human subjects data (#170753_MODCR001).

RESULTS

In our experiments, we randomly assigned 80% of patients to the

training set and the rest to the test set. For each method, we repeated

the training process 10 times to calculate an average value for each

Table 2. Statistics on missing values in the datasets

Non-OUD patients OUD patients P value

Total number of patients 5 072 110 111 456

Clinical events

Average number of clinical events per patient 335.46 539.28 .0046

Portion of clinical events with missing values 37.89 (11.30) 71.27 (13.21)

Laboratory tests

Average number of laboratory tests per patient 184.02 356.65 .0696

Portion of laboratory tests with missing values 40.57 (22.05) 85.37 (23.94)

Values are n (%), unless otherwise indicated.

OUD: opioid use disorder.

Figure 3. Structure of the dense neural network model.
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performance metric. In our experiments, we portioned the total co-

hort of negative patients into 10 parts of 507 211 negative patients

each. We trained each part with positive patients separately and ran-

domly selected 80% as a training set and the remaining 20% as the

test set. For each metric to evaluate a model’s performance, we cal-

culated the average for all 10 parts.

To comprehensively evaluate the models, we computed all com-

mon metrics including precision, recall, F1 score, and area under the

receiver-operating characteristic curve (AUROC). We note that for

imbalanced datasets, AUROC can be misleading.51 Recall is a criti-

cal factor, as it indicates the fraction of future OUD patients we can

identify, but high recall is not useful without high precision (for in-

stance, if all patients were marked positive, recall would be perfect,

but the model would not be informative). Because the F1 score con-

siders both precision and recall, we regard it as the best aggregated

assessment of the overall prediction performance. The average and

standard deviation of each metric for each method are shown in

Table 3. The best results for each metric are highlighted.

Across the models, the LSTM model achieved the highest F1

score and the highest recall. The random forest achieved the highest

precision. The LSTM with attention mechanism achieved the highest

AUROC, with a score of 0.9369, which indicates a good perfor-

mance for clinical psychology applications, for which AUROC

scores are recommended to exceed 0.747.52 Figure 5 shows the

ROC curves for all 8 methods. Curves of random forest, logistic re-

gression, decision tree, DNN, and LSTM are shown in Figure 5A,

and curves of the LSTM model and the 3 LSTM variants are shown

in Figure 5B. We used a t test to compare the performance of the

DNN and the LSTM and found that the LSTM significantly outper-

formed the DNN in each metric (2-tailed P< .0001). Details are

shown in Supplementary Table S3.

Compared with the LSTM models, the BERT model performed

only modestly. One explanation may be that the size of our dataset

was not big enough for BERT’s complex architecture. The two origi-

nal versions of BERT were trained with 800 million and 2500 mil-

lion words accordingly and had more than 100 million parameters.

Without a pretrained model applicable to our work, BERT’s perfor-

mance may have been suboptimal, facing issues such as overfitting.

While LSTM variants outperformed BERT, they also suffered from

the overfitting problem.

In order to evaluate various imputation methods, we compared

performance of the best-performing model, the LSTM model, with

different imputation methods. The results are shown in Table 4.

The results showed that the imputation methods did not make a

tangible difference on the performance. This is in concert with simi-

lar studies, which found no significant differences in results when

comparing different imputation methods in noisy and large-scale

EHR data.25,26

Ablation study
To support researchers or clinicians to exploit potential causes or

trajectories of diseases, it is necessary to understand the importance

of different features for prediction. Deep learning models are espe-

Figure 4. Structure of the LSTM model.

Table 3. Summary of prediction performance of different models

Model Precision Recall F1 score AUROC

Random forest 0.8565 6 0.0014a 0.6871 6 0.0027 0.7545 6 0.0022 0.9112 6 0.0014

Decision tree 0.7592 6 0.0084 0.7281 6 0.0059 0.7453 6 0.0030 0.8823 6 0.0019

Logistic regression 0.7507 6 0.0095 0.6020 6 0.0089 0.6722 6 0.0035 0.7933 6 0.0036

Dense neural network 0.8019 6 0.0108 0.7694 6 0.0027 0.7855 6 0.0049 0.9224 6 0.012

LSTM 0.8184 6 0.0085 0.7865 6 0.0058a 0.8023 6 0.0020a 0.9369 6 0.0038

Bi-LSTM 0.7779 6 0.0013 0.7615 6 0.0012 0.7696 6 0.0012 0.9377 6 0.0065

LSTM1Attention 0.8131 6 0.0081 0.7814 6 0.0071 0.7969 6 0.0035 0.9491 6 0.0023a

Bi-LSTM1Attention 0.7710 6 0.0086 0.7804 6 0.0109 0.7759 6 0.0019 0.9463 6 0.0006

BERT 0.7709 6 0.0123 0.6709 6 0.0056 0.7174 6 0.0079 0.8687 6 0.0060

AUROC: area under the receiver-operating characteristic curve; Bi-LSTM: bidirectional long short-term memory; LSTM: long short-term memory.
aBest result for the metric.
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cially difficult to interpret because of their complex structures and

millions of parameters. To evaluate the importance of features in

our deep learning models, we employed the permutation importance

method. It measures the importance of a feature as the size of the de-

crease in performance after blinding the model to that feature.53 We

used the AUROC as the performance metric. This method can be ap-

plied to a wide variety of models, including both traditional machine

learning models and deep learning methods. We used the Python

package eli5 to perform the permutations.54 We report the 50 most

important features for our best-performing method, the LSTM

model, in Figure 6 and Supplementary Table S4. We also report the

top 20 features for four different models in Supplementary Table S5.

We found some patterns among the top 50 features. Opioid re-

lated medications had high rankings, including dose quantity of opi-

oid medications (ATC Level 3 code N02A*) and MME. Other pain

treatment related medications (N02B: Other analgesics and antipy-

retics; N01A: Anesthetics, general; N01B: Anesthetics, local) were

also among the top features across different methods. Several highly

ranked diagnosis features were also related to pain, such as dorsalgia

(ICD-10 codes M54.*), which includes chronic back pain, as well as

pain not elsewhere classified (ICD-10 codes G89.*), acute abdomi-

nal and pelvic pain (ICD-10 codes R10.*), and joint or tissue disor-

der (ICD-10 codes M25.* and M79.*). Pain disorders could

represent the cause of opioid use initiation. Other substances also

appeared as highly ranked features, including tobacco use and alco-

hol use (recorded as clinical events), and administration of anxio-

lytics (ATC code N05B). One explanation for the relevance of

anxiolytics is that anxiety is common in patients with OUD, and

anxiety sensitivity is a significant predictor for addiction severity.55

In summary, most of the top 50 top features seemed conceptually re-

lated to OUD, which indicates that our LSTM based model captured

meaningful relationships between the features and OUD.

DISCUSSION

Data-driven studies hold high potential for studying the opioid epi-

demic in the United States. With the wide availability of EHR, pre-

dictive modeling provides a powerful approach to automatically

predict the risks of OUD for patients who used prescription opioids.

The LSTM model achieved a promising result with the best F1

score. Top important features generated from our model by permu-

tation importance methods also revealed interesting relationships.

Chronic pain management and treatment of acute pain are among

the top factors leading to OUD.4 While we focused on a specific dis-

ease case (OUD), the methodology and pipeline are general and can

Figure 5. Receiver-operating characteristic (ROC) curves for each method. (A) ROC curves for LSTM and common machine learning models; (B) ROC curves for

LSTM and LSTM variants. Bi-LSTM: bidirectional long short-term memory; LSTM: long short-term memory; ML: machine learning.

Table 4. Summary of LSTM prediction performance on different imputation methods

Precision Recall F1 score AUROC

Median 0.8184 6 0.0085a 0.7865 6 0.0058 0.8023 6 0.0020 0.9369 6 0.0038a

Mean 0.8183 6 0.0073 0.7851 6 0.0036 0.8014 6 0.0031 0.8977 6 0.0048

MICE 0.8128 6 0.0082 0.8017 6 0.0070 0.8072 6 0.0037a 0.9002 6 0.0042

KNN 0.7984 6 0.0094 0.8034 6 0.0073a 0.8009 6 0.0039 0.8854 6 0.0032

AUROC: area under the receiver-operating characteristic curve.
aBest result for the metric.
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be applied to other chronic diseases for early detection through a se-

quence based predictive model. The pipeline can easily plug into

other variants of sequential based models, as demonstrated in our

experiments.

Comparison with previous work
In Wadekar’s work17 for OUD prediction, they applied random for-

est and other traditional methods on hand-crafted features. Our

AUROC scores represent a significant improvement from their

work, which achieved an AUROC score of 0.8938. Lo-Ciganic

et al18,19 applied GBMs and dense neural network models to predict

opioid overdose using a set of 268 handcrafted features, achieving

an AUROC score around 0.90, which is also lower than our best re-

sult. These methods used a limited set of features and lacked the

modeling of temporal progression with state-of-the-art methods.

Our approach can take advantage of as much information as possi-

ble to discover hidden relationships.

There are also sequential deep learning models designed for dis-

ease prediction like Dipole56 and BHERT.57 Dipole is an attention

based bidirectional recurrent neural network that aims to overcome

the problem of performance loss when the length of sequences is

large. The Dipole model employs a bidirectional RNN with atten-

tion mechanism, which is similar to our proposed Bi-

LSTMþAttention model. The main difference is that we applied a

more advanced LSTM instead of a traditional RNN cell. As for in-

put, the Dipole work only included medical code features that can

be encoded as binary values (presence or absence), while our model

Figure 6. Top 50 important predictors for opioid use disorder selected by the long short-term memory model.
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also processes numeric value features like laboratory tests and clini-

cal events. BHERT57 is a sequence transduction model for EHR

data with multitask prediction and disease trajectory mapping.

BHERT has an architecture built with a transformer like BERT. It is

powerful in multiple disease prediction, but performance varies on

different diseases, with the average precision score ranging from 0.1

to 0.7. Thus, for the prediction of a single disease like OUD, we con-

sider it preferable to use designed features processing.

Benefits of the model
Compared with previous works, our study has several advantages.

First, our study employed more comprehensive information, in

which previous studies only included a limited set of features—diag-

noses, medications, or demographics, all of which are included in

our model. Second, many previous works required clinical knowl-

edge to make hand-crafted features. Our models require minimal

domain knowledge, making them more generalizable. Third, while a

disease is often a progressive process, traditional methods do not

model time series data. Our LSTM-based model can use temporal

relationships to capture meaningful patterns in trajectory. Fourth,

the LSTM model has an advantage over basic RNN models, which

can face vanishing gradient problems and insensitivity to gap

length.40

Clinical significance
Understanding what is involved in the development of OUD is criti-

cal for understanding how to construct a prevention response that

may curtail the progression from incidental nonmedical use of pre-

scription opioids to habitual or compulsive use in OUD. In many

studies, pain is reported as the most common motivation for opioid

use in adults who developed OUD. Such pain treatment may involve

prescribed or nonprescribed opioids. Nonprescribed opioid use his-

tory is hard to track, but related symptoms and risk factors may still

appear in the EHR data. Our model can identify such factors not

only to help find patients at risk of OUD, but also to assist the devel-

opment of knowledge and understanding of such relationships.

Limitations
The population of the study is derived from patients based on struc-

tured EHR records, and it does not capture nonprescribed opioids

or unrecorded use disorders. The Health Facts database does not dif-

ferentiate between primary and secondary diagnoses, and the impli-

cation to the results from the choice of primary diagnosis versus all

diagnoses cannot be evaluated. Interpretation of deep learning mod-

els is a challenging task. While our work on feature ranking provides

important knowledge for clinical decision support, further research

on understanding LSTM models is still needed.

Future work
One future work is to include clinical notes as additional knowledge

to improve the model, as notes may provide additional information

that may not be captured in structured EHR records. LSTM models

have potential limitations such as use of extensive resources and

overfitting. More advanced deep learning techniques will be ex-

plored to work with sequential models to overcome these limita-

tions. Deep learning visualization tools will be explored to help

improve interpretability of results for clinical decision support.

CONCLUSION

The opioid epidemic has become a national emergency for public

health in the United States. Predicting risk of OUD for patients tak-

ing prescription opioids can provide targeted, focused early inter-

ventions for smarter and safer clinical decision support. Our LSTM-

based deep learning predictive model of OUD using the history of

EHR data demonstrates promising results. The sequential deep

learning model is capable of identifying patients who will develop

OUD in the future and can provide critical insight on risk factors.

Our approach can potentially reduce OUD through earlier interven-

tion in the developmental trajectory.
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