Skip to main content
. 2021 Apr 30;28(8):1683–1693. doi: 10.1093/jamia/ocab043

Table 3.

Summary of prediction performance of different models

Model Precision Recall F1 score AUROC
Random forest 0.8565 ± 0.0014a 0.6871 ± 0.0027 0.7545 ± 0.0022 0.9112 ± 0.0014
Decision tree 0.7592 ± 0.0084 0.7281 ± 0.0059 0.7453 ± 0.0030 0.8823 ± 0.0019
Logistic regression 0.7507 ± 0.0095 0.6020 ± 0.0089 0.6722 ± 0.0035 0.7933 ± 0.0036
Dense neural network 0.8019 ± 0.0108 0.7694 ± 0.0027 0.7855 ± 0.0049 0.9224 ± 0.012
LSTM 0.8184 ± 0.0085 0.7865 ± 0.0058a 0.8023 ± 0.0020a 0.9369 ± 0.0038
Bi-LSTM 0.7779 ± 0.0013 0.7615 ± 0.0012 0.7696 ± 0.0012 0.9377 ± 0.0065
LSTM+Attention 0.8131 ± 0.0081 0.7814 ± 0.0071 0.7969 ± 0.0035 0.9491 ± 0.0023a
Bi-LSTM+Attention 0.7710 ± 0.0086 0.7804 ± 0.0109 0.7759 ± 0.0019 0.9463 ± 0.0006
BERT 0.7709 ± 0.0123 0.6709 ± 0.0056 0.7174 ± 0.0079 0.8687 ± 0.0060

AUROC: area under the receiver-operating characteristic curve; Bi-LSTM: bidirectional long short-term memory; LSTM: long short-term memory.

a

Best result for the metric.