Table 3.
Model | Precision | Recall | F1 score | AUROC |
---|---|---|---|---|
Random forest | 0.8565 ± 0.0014a | 0.6871 ± 0.0027 | 0.7545 ± 0.0022 | 0.9112 ± 0.0014 |
Decision tree | 0.7592 ± 0.0084 | 0.7281 ± 0.0059 | 0.7453 ± 0.0030 | 0.8823 ± 0.0019 |
Logistic regression | 0.7507 ± 0.0095 | 0.6020 ± 0.0089 | 0.6722 ± 0.0035 | 0.7933 ± 0.0036 |
Dense neural network | 0.8019 ± 0.0108 | 0.7694 ± 0.0027 | 0.7855 ± 0.0049 | 0.9224 ± 0.012 |
LSTM | 0.8184 ± 0.0085 | 0.7865 ± 0.0058a | 0.8023 ± 0.0020a | 0.9369 ± 0.0038 |
Bi-LSTM | 0.7779 ± 0.0013 | 0.7615 ± 0.0012 | 0.7696 ± 0.0012 | 0.9377 ± 0.0065 |
LSTM+Attention | 0.8131 ± 0.0081 | 0.7814 ± 0.0071 | 0.7969 ± 0.0035 | 0.9491 ± 0.0023a |
Bi-LSTM+Attention | 0.7710 ± 0.0086 | 0.7804 ± 0.0109 | 0.7759 ± 0.0019 | 0.9463 ± 0.0006 |
BERT | 0.7709 ± 0.0123 | 0.6709 ± 0.0056 | 0.7174 ± 0.0079 | 0.8687 ± 0.0060 |
AUROC: area under the receiver-operating characteristic curve; Bi-LSTM: bidirectional long short-term memory; LSTM: long short-term memory.
Best result for the metric.