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Abstract

Background: A reliable biomarker to identify cortical tissue responsible for generating epileptic 

seizures is required to guide prognosis and treatment in epilepsy. Combined spike ripple events are 

a promising biomarker for epileptogenic tissue that currently require expert review for accurate 

identification. This expert review is time consuming and subjective, limiting reproducibility and 

high-throughput applications.

New Method: To address this limitation, we develop a fully-automated method for spike ripple 

detection. The method consists of a convolutional neural network trained to compute the 

probability that a spectrogram image contains a spike ripple.

Results: We validate the proposed spike ripple detector on expert-labeled data and show that this 

detector accurately separates subjects with low and high seizure risks.
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Comparison with Existing Method: The proposed method performs as well as existing 

methods that require manual validation of candidate spike ripple events. The introduction of a 

fully automated method reduces subjectivity and increases rigor and reproducibility of this 

epilepsy biomarker.

Conclusion: We introduce and validate a fully-automated spike ripple detector to support 

utilization of this epilepsy biomarker in clinical and translational work.
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1. Introduction

A reliable biomarker to identify cortical tissue responsible for generating epileptic seizures 

is required to guide prognosis and treatment in epilepsy (Engel, 2011). Ripples - low 

amplitude (~0.1 μV), high frequency (80-250 Hz), short (~10 ms), focal (~1 cm2) events - 

have emerged as a promising biomarker of epileptogenic brain tissue (Frauscher et al., 

2017). Clinical investigations in patients with epilepsy have shown that ripples occur more 

frequently inside the seizure onset zone (Andrade-Valença et al., 2012, p.; Cimbalnik et al., 

2018; Dümpelmann et al., 2015; Guragain et al., 2018; Jacobs et al., 2008; Liu et al., 2018; 

G. A. Worrell et al., 2008), and that removing brain tissue generating ripples improves 

surgical outcome (Jacobs et al., 2008, 2010; Modur et al., 2011; Okanishi et al., 2014; 

Otárula et al., 2019; van Klink et al., 2014; Wang et al., 2013; Wu et al., 2010). 

Electrophysiological experiments and computational studies provide mechanistic context for 

these clinical results, identifying the cellular and network properties that produce – and 

potentially disrupt – ripples (Jiruska et al., 2017; Köhling & Staley, 2011; Stacey et al., 

2009; Traub et al., 2001).

Despite the promise of this biomarker, at least two important challenges prevent widespread 

application of ripples in clinical practice. First, the current gold standard for detection of 

ripples is manual review of electroencephalogram (EEG) recordings (e.g., through direct 

visualization of the EEG (Cepeda et al., 2020; Klotz et al., 2021; Nariai et al., 2019) or as 

validation following an automated procedure (Boran et al., 2019)). However, this manual 

inspection is difficult, subjective, and prohibitively time consuming; manual review of 10 

minutes of data can take an expert reviewer up to 15 hours per electrode channel 

(Urrestarazu et al., 2007). This existing gold-standard both introduces reviewer bias and 

prevents more widespread clinical investigation. To address these limitations, many 

automated and semi-automated ripple detection methods have been developed (Blanco et al., 

2010; Charupanit & Lopour, 2017; Gardner et al., 2007; Gliske et al., 2016; Jacobs et al., 

2018; Zelmann et al., 2012). However, technical challenges remain in the application of 

these methods, including limiting false positive detections (Amiri et al., 2016; Bénar et al., 

2010; Gliske et al., 2020), and calibrating detectors for optimal performance (Sindhu et al., 

2020).

Whether manual or automated ripple detection methods improve clinical treatment of 

patients with epilepsy also remains unclear. A recent multicenter prospective trial, applying 
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both manual and automated ripple detections to identify tissue with high rates of ripple 

activity, did not find an improved outcome at the individual level (Jacobs et al., 2018). The 

failure of this prospective trial was at least partially attributed to a second challenge: 

accurately separating physiologic from pathologic ripples. Physiologic ripples appear in 

human cortical tissue and are thought to be necessary for normal memory processes 

(Buzsáki & Silva, 2012; Joo & Frank, 2018; Kucewicz et al., 2014; Matsumoto et al., 2013). 

These physiologic ripples are indistinguishable from pathologic ripples in spectral 

frequency, amplitude and duration (Alkawadri et al., 2014; Ellenrieder et al., 2016; Liu et al., 

2018; Malinowska et al., 2015; Matsumoto et al., 2013). Thus, separating pathologic ripples 

from physiologic ripples remains a significant - and clinically important - challenge (Bénar 

et al., 2010; Cimbalnik et al., 2018; Jacobs & Schönberger, 2019; Matsumoto et al., 2013; 

Ren et al., 2019).

One strategy to address these challenges is to focus on ripples that co-occur with 

epileptiform spikes, a hallmark of epilepsy with high disease specificity (Ayala et al., 1973; 

Engel, 2012; Sabolek et al., 2012; Staley & Dudek, 2006; G. Worrell & Gotman, 2011; Chu 

et al., 2017, Kramer et al., 2019). Spikes are large amplitude (~100 μV), long lasting (~100 

ms) deviations in brain voltage activity that, like ripples, occur between seizures. Although 

spikes and ripples are understood to represent separate neurophysiological events, in spiking 

channels the majority of ripples co-occur with spikes (Frauscher et al., 2017). Observations 

from both non-invasive (Kramer et al., 2019; van Klink, van t Klooster, et al., 2016) and 

invasive (Gliske et al., 2018; Jacobs et al., 2018; Wang et al., 2013, 2017) recordings suggest 

that ripples co-occurring with spikes provide a more focal and specific biomarker for 

seizures than spikes or ripples alone. A focus on synchronous spike and ripple events, “spike 

ripples”, addresses both of the major issues limiting progress in ripple research. First, by 

selecting ripples that coincide with interictal spikes, pathologic ripples are disentangled from 

physiologic ripples (Thomschewski et al., 2019). Second, compared to detection of ripples 

alone, the combined spike ripple events provide additional features for automated detection, 

enabling better detector performance. Current approaches to identify spike ripple events 

require manual categorization by expert reviewers (Chu et al., 2017; Kobayashi et al., 2010; 

Kramer et al., 2019; van Klink, Frauscher, et al., 2016; van Klink, van t Klooster, et al., 

2016). An accurate fully-automated method, which operates directly on observed brain 

voltage recordings, would avoid subjectivity and inefficiency, further enhance 

reproducibility and facilitate rapid, high-throughput analysis of this promising biomarker in 

large data sets.

In this manuscript, we introduce a fully-automated spike ripple detection method. To do so, 

we create a neural network model that leverages a pre-trained convolutional neural network 

for image data. We apply this method to scalp voltage recordings from patients with epilepsy 

and show that this method is fast, accurate, and flexible; and that this method accurately 

separates subjects with active epilepsy from those with a low risk of future seizures and 

healthy controls.
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2. Materials and Methods

2.1 Human subject data

In this work, we re-use the human subject data described in (Kramer et al., 2019); the 

subject recruitment, EEG acquisition, and EEG preparation match the procedures described 

in (Kramer et al., 2019). Briefly, we utilize EEG data (2035 Hz sampling rate) from 34 

subjects: 21 children diagnosed with a self-limited epilepsy syndrome, childhood epilepsy 

with centrotemporal spikes (CECTS, aged 4.9–16.8 years, 17 males), and 13 control subjects 

(aged 8.7–14.3 years, five males). We divide the subjects with epilepsy into two groups: 

those with high seizure risk (active CECTS, A-CECTS, defined as having had a seizure 

within the last 12 months); and (ii) low seizure risk (resolved CECTS, R-CECTS, defined as 

seizure-free for at least 12 months) (Ross et al., 2019). Two children with CECTS returned 

after a minimum of 12 months for repeat evaluations. For each subject, one EEG channel 

was selected from each hemisphere for analysis. If interictal spikes were present, then the 

channel in which the spike amplitude was maximal was selected. If no spikes were observed, 

the C3 and C4 electrodes were selected, as these electrodes are most commonly involved in 

this focal epilepsy syndrome (Koutroumanidis et al., 2017). See Table 1 of (Kramer et al., 

2019) for a description of detailed clinical data for each subject.

2.2 Manual spike ripple detection

For manually marked spike ripples, we utilized a dataset of 10 subjects analyzed in (Chu et 

al., 2017). For each subject, an expert (CJC) manually inspected 10 minutes of data from 

one EEG channel, and identified 151 spike ripple events in total; see (Chu et al., 2017) for 

details.

2.3 Semi-automated spike ripple detection

In (Chu et al., 2017), a semi-automated method was proposed to detect ripples that co-occur 

with spikes. Given a brain voltage signal (e.g., the scalp EEG) the method first identifies 

candidate time intervals of increased high-frequency activity, then computes seven features 

for each candidate event. These features require that the candidate event contain high-

frequency fluctuations approximately sinusoidal in shape, with at least three cycles, that co-

occur with a large amplitude discharge, consistent with existing notions of a regular and 

persistent high frequency oscillation initiating on the ascent of an interictal spike (van Klink, 

van t Klooster, et al., 2016; von Ellenrieder et al., 2014; Zelmann et al., 2009; Zijlmans et 

al., 2009). The method successfully detects spike ripple events, with high positive predictive 

value, low false positive rate, and high intra-rater reliability (Chu et al., 2017). Application 

of this method to scalp EEG recordings from subjects with focal childhood epilepsy showed 

that spike ripples are more spatially restricted than spikes, and that reduced spike ripple rates 

correlate with epilepsy resolution (Kramer et al., 2019). While this semi-automated method 

is less time consuming (requiring approximately 2 minutes of manual analysis per 10 minute 

recording) than most existing ripple detection procedures, the method still requires 

validation by a human expert. In this manuscript, we utilize the data and expert 

classifications in (Kramer et al., 2019) to train and validate a fully-automated spike ripple 

detector. In contrast to the semi-automated detector, this new fully-automated detector does 
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not require subsequent expert validation of results, as we show the results are on par with 

expert classifications.

2.4 Spectral analysis

To compute spectrograms, we implement the following procedure. For each 1 s of EEG data, 

we compute the spectrum in 0.2 s sliding subintervals (overlap 0.195 s). Within each 

subinterval, we subtract the signal mean, apply the Hanning taper, and then compute the 

spectrum. We smooth the resulting spectrogram in time using a Gaussian lowpass filter of 

size ± 25 ms. We display the two-dimensional spectrogram as an image of size 163 x 44, 

corresponding to times 0.1 s to 0.9 s (spacing 0.0049 s), and frequencies 30 Hz to 245 Hz 

(spacing 5 Hz) using the default jet colormap in MATLAB.

2.5 Convolutional neural network

To identify spectrograms consistent with spike ripples we develop a spike ripple detector 

from a convolutional neural network (CNN). We note that spike ripples are well-

characterized by their spectrograms: typically, they consist of an island of power in the high 

frequency range for a duration of about 0.1 s, along with high power in the low frequency 

range over the entire course of the spectrogram (example in Figure 1A, see also (Amiri et al., 

2016; Kobayashi et al., 2010; Kramer et al., 2019; van Klink, van t Klooster, et al., 2016)). 

Classifying spike ripples via their spectrogram images motivates the use of a CNN, a natural 

choice for image data (LeCun et al., 2015). We note that while other methods, such as 

support vector machines, could be applied, these methods require explicit feature 

specification. In contrast, a CNN requires no feature specification, instead learning the 

features of interest from the data. We opt here for the CNN method, as the features that 

define a spike ripple remain incompletely understood. As these characteristic islands of 

power resemble natural images, we use the architecture ResNet (He et al., 2016), previously 

trained on ImageNet data (ImageNet, 2020).

We use transfer learning to train the CNN (i.e., we retrain layers of this existing architecture 

on the spectrogram image training data). This allows us to leverage the increased 

performance from a CNN with many layers without requiring the time and computing power 

to learn these weights from scratch. We maintain all convolutional layers from ResNet, and 

modify the final linear layers for binary classification. In the first round of training, we fix 

the parameters of the convolutional layers and tune only the final linear layers. For the 

remaining duration of training, we tune parameters of all layers (Kornblith et al., 2019; 

Vision.Learner ∣ Fastai, 2020). To illustrate the computational advantage of transfer learning, 

we randomly initialize all weights in the network and train the entire network using the 

labeled spectrograms for 1000 epochs on an 8 GB GPU (30 GB RAM). Doing so required 2 

hours and 13 minutes, and failed to achieve a validation loss below 0.1. In contrast, using 

transfer learning for the same set of labeled spectrograms on the same machine, we achieve 

a validation loss of 0.04 in 4 minutes, after 18 epochs. We conclude that transfer learning 

considerably decreases computation time and increases performance.

The CNN uses gradient descent to minimize the loss, which we take to be cross-entropy, a 

typical choice for binary classification problems. We train with a batch size of 8 images, and 
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use differential learning rates for different groups of layers in the ResNet architecture: we 

use 1e-4 as the learning rate for the initial layers, 1e-3 for the middle layers, and 1e-2 for the 

final layers. In this way, we use a smaller learning rate for the earlier layers, which pick out 

simple shapes and edges, and a larger learning rate for the later layers, which pick out more 

complicated visual features. We additionally use stochastic gradient descent with restarts 

(SGDR) in training, wherein we gradually decrease the learning rate over the course of a 

cycle with cosine annealing, and increase the length of this cycle by a factor of 2 as training 

continues. This prevents solutions from becoming trapped in local minima. At the end of 

each training epoch, if the validation loss has not improved in the past 6 epochs, we stop 

training and use the weights from the epoch with the lowest validation loss in our final 

model.

In training, ¼ of the training data is set aside for validation, and training is stopped early 

when the validation loss fails to decrease, which prevents overfitting. The training data is 

augmented to artificially expand the size of the training set via random horizontal flips and 

random scaling by a factor of up to 1.2. The input images are 44x44 pixels.The resulting 

CNN receives as input a spectrogram from a 1 s segment of EEG data and outputs the 

probability of that segment containing a spike ripple. This probability is obtained by taking 

the softmax function of the final 2 output nodes of the network.

2.6 Training, validation, and testing datasets

The data consist of spectrograms computed from 1 s segments of EEG data from two 

electrodes for each subject. We use leave-one-out cross-validation to assess the ability of the 

proposed method to detect spike ripples. That is, for each subject i, we create a training set 

composed of spectrograms from all subjects excluding i, and a test set composed of 

spectrograms exclusively from subject i.

For each patient, we divide the EEG signal(s) into 1 s segments with 0.5 s overlap, and 

compute the spectrogram of each segment. We choose the segment and overlap durations for 

two reasons. First, the segment is long enough to encompass the approximate duration of a 

spike (approximately 200 ms). Second, the segment is short enough to contain at most one 

spike ripple (maximum rate < 0.33 Hz) (Kramer et al., 2019). Half of the training set are 

these spectrograms from time segments identified as candidate spike ripples by the semi-

automated detector and validated by two human experts; these spectrograms are assigned a 

“yes” label in the training set. One quarter of the training set are spectrograms from time 

segments identified as candidate spike ripples by the semi-automated detector and rejected 

by both experts; these spectrograms are assigned a “no” label in the training set. We proceed 

in this way, rather than using the original centered spectrograms from the semi-automated 

detector as our training data, so that the algorithm learns to detect spike ripples at all time 

points in the spectrogram, rather than only identifying spike-ripples centered in the 

spectrogram. The remaining 25% of the training set are spectrograms from time segments 

undetected by the semi-automated detector, validated by an expert to not contain a spike 

ripple, and assigned a “no” label. In this way, we create a balanced training set of 

spectrograms: 50% “yes” labels and 50% “no” labels.
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The test set for each subject i consists of the subset of time segments for subject i detected 

by the semi-automated detector and validated by both experts (“yes” label), rejected by both 

experts (“no” label), or undetected by the semi-automated detector and verified not to 

contain a spike ripple (“no” label).

On average, for each subject, the training data consists of 1664 images (minimum 953, 

maximum 1729). The test data consists of an average of 93 images (minimum 51, maximum 

441). In total, the test data from all expert labeled spectrograms from all subjects consists of 

2243 images.

For analysis of manually marked spike ripples, we first train the CNN spike ripple detector 

using the expert classified spectrograms detected and undetected by the semi-automated 

detector, as described above, excluding subject i. We then divide the entire EEG recording 

from patient i into 1 s segments (0.5 s overlap), compute the spectrogram for each segment, 

and input these spectrograms to the trained CNN. We compare the output probabilities to the 

manually marked spike ripple events, and repeat this process for each subject.

The trained CNN, and the procedure to train the CNN, is available for reuse and further 

development at: https://github.com/Eden-Kramer-Lab/CNN_Spectrogram_Algorithm

2.7 Statistical analysis

We compare the outputs of the test set data to the expert classifications and compute 

measures of detector performance: sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), false positive rate, the F1 score (i.e., the harmonic mean of 

the precision and recall), and the area under the curve (AUC) for the receiver operating 

characteristics (ROC) curve over all subjects. The false positive rate is defined as the number 

of false positive spike ripple detections per second. We compute confidence intervals for the 

sensitivity, specificity, PPV, and NPV using the R-package DTComPair (Stock and 

Hielscher, 2015).

2.8. Assessment of classifier performance

To assess classifier performance, we perform a randomized labels test (Ojala et al., 2009), in 

which we randomly permute the labels of the data 1000 times (i.e., we permute the “yes” 

and “no” labels assigned to each spectrogram). We then evaluate the detector performance 

using these randomized labels in comparison to the detector performance using the original, 

nonpermuted labels.

3. Results

3.1 The fully automated spike ripple detector performs well on expert-labeled data

We propose an automated procedure to detect spike ripples in scalp EEG recordings. Our 

goal is to replace the time-consuming procedure of visual inspection with an automated 

approach that has comparable classification performance to expert validation. To do so, we 

train a convolutional neural network (CNN) to identify the unique spectral signatures of a 

spike ripple. In general, a spectrogram of a spike ripple consists of two components: (i) 

increased power across a broad range of low frequencies due to the spike, and (ii) increased 
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power across a narrow interval of high frequencies due to the ripple - a “spectral island” 

(Figure 1). To train and evaluate the detector, we analyze scalp EEG data recorded from M = 

34 subjects (21 subjects with epilepsy and 13 control subjects, see Materials and Methods: 

Human subject data). Each subject has a set of labeled spectrograms, visually marked by two 

experts to either contain a spike ripple, or not (see Materials and Methods: Training, 

validation, and testing datasets).

To test the performance of the CNN, we utilize these data to perform leave-one-out cross-

validation: for each subject i, we set aside the corresponding Ni expert labeled spectrograms 

{si1, … , si
Ni} as the test data, and use the expert labeled data from all other subjects {s1

1, … , 

s1
N1, … , si − 1

1 , … , si − 1
Ni − 1, si + 1

1 , … , si + 1
Ni + 1, … , sM

1 , … , sM
NM} as the training data. We 

train the spike ripple detector, and from this trained classifier obtain probabilities for the test 

data {pi1, … , pi
Ni}, where pik is the probability of spectrogram sik containing a spike ripple 

(Figure 1).

Repeating this process for each subject, we obtain a collection of probabilities {p1
1, … , p1

N1, 

… , pM
1 , … , pM

NM} for all spectrograms from each subject. To assess detector performance, 

we first compute the area under the ROC curve (AUC, Figure 2); the AUC is large (0.99) 

consistent with excellent classification performance. Performing a randomized labels test 

(Ojala et al., 2009)(see Materials and Methods: Assessment of classifier performance), we 

find p=0.001, suggesting high significance for this result. We then choose a decision 

threshold ds such that if pik < ds, we conclude that spectrogram k from subject i does not 

contain a spike ripple, and if pik ≥ ds, we conclude that spectrogram k from subject i does 

contain a spike ripple. The choice of ds is based on the relative importance of limiting false 

positives or false negatives. A higher value of ds yields a more conservative estimate, 

limiting detections to those with high probabilities, and hence decreasing false positives. 

Alternatively, a lower value yields a more liberal estimate and decreases the number of false 

negatives.

To illustrate detector performance, we consider two decision thresholds ds and compute four 

measures of detector performance: positive predictive value (PPV), negative predictive value 

(NPV), specificity, and sensitivity. Using the optimal value from the ROC curve, ds = 0.298, 

we find excellent detector performance: high values (≥ 0.86) for all four measures (Table 1). 

Alternatively, we may desire detections that utilize a stricter interpretation of spike ripples, 

i.e., only time segments with very high probabilities are classified as spike ripples. 

Repeating this analysis with a higher decision threshold (ds = 0.95, green dot in Figure 2), 

we find consistent results (Table 1).

Though disagreements between expert and automated classifications comprise the minority 

of cases (Table 1), these cases provide insights into factors that contribute to the CNN 

classification. As expected, when the CNN and experts agree on the presence of a spike 

ripple (examples in Figure 3 A,B), we find a well-characterized spectral island in the 

spectrogram and large amplitude spike in the unfiltered EEG signal. Similarly, when the 
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CNN and experts agree on the absence of a spike ripple (examples Figure 3 C,D), we find no 

evidence for a spike ripple in either the spectrogram or EEG signal. In examples where the 

CNN fails to detect a spike ripple identified by experts (Figure 3 E,F), we observe weak 

evidence of a spectral island (i.e., the power is low in the ripple frequency range). In an 

example where the CNN erroneously detects a spike ripple, the spectral island is clear but 

the large amplitude deviation in the EEG signal is too wide to be considered a spike (Figure 

3G). We also show a rare case consistent with an error in expert classification (Figure 3H); 

here the CNN identifies a spike ripple missed in expert classification.

We conclude that the proposed automated CNN spike ripple detector accurately classifies 

spectrograms computed from EEG data. Given examples classified by expert reviewers as 

containing a spike ripple or not, the detector performs with high sensitivity and specificity. 

This high performance occurs for both a low and high decision threshold.

3.2 The automated spike ripple detector performs well against manual markings

In the previous section, we trained and analyzed the CNN spike ripple detector using 

examples identified by the semi-automated method in (Kramer et al., 2019), and then 

validated by human experts. As a second test of detector performance, we compare the fully-

automated detections to the current gold standard approach - manual review. Manual, visual 

inspection, in which an expert reviews the entire recording and evaluates all spikes in 0.6 s 

increments in three different visualizations (raw time series, filtered time series, 

spectrogram) is highly time consuming, but more sensitive to detect spike ripple events than 

the semi-automated approach (Chu et al., 2017), and therefore provides a more accurate 

estimate of detector performance. We apply the trained CNN spike ripple detector to EEG 

data from 10 subjects with manually marked spike ripples (see Materials and Methods: 

Manual spike ripple detection), and compute the probability of each 1 s time segment 

containing a spike ripple. We then use the precision-recall curve to choose a decision 

threshold where precision approximately equals recall (ds = 0.78), and classify each 1 s time 

segment k as having a spike ripple if pk ≥ ds or not having a spike ripple if pk < ds. 

Comparing these classifications to the expert manual detections, we find a sensitivity of 

0.627 (CI [0.56, 0.69]), positive predictive value (PPV) of 0.630 (CI [0.57, 0.69]), and false 

positive rate of 0.007. We note that these values are consistent with the performance of the 

existing semi-automated method in (Chu et al., 2017). However, the automated CNN spike 

ripple detector requires no manual validation by expert reviewers. We conclude that the 

automated detector performs well - comparable to human experts - while eliminating the 

time consuming and subjective process of visual inspection and classification.

3.3 The automated spike ripple detector differentiates between subjects with high and 
low seizure risk

We now consider application of the automated CNN spike ripple detector to a specific 

clinical goal: classification of disease severity. Here, motivated by clinical utility, we restrict 

consideration to children with CECTS divided into two groups: low risk of a future seizure 

(e.g., resolving epilepsy, R-CECTS) or high risk of a future seizure (e.g., active epilepsy, A-

CECTS). We now test whether the CNN spike ripple detector differentiates between the high 

and low risk seizure groups.
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To do so, we apply the trained CNN spike ripple detector to the EEG data of each CECTS 

subject i, and use the optimal decision threshold ds = 0.298 to classify each segment as 

having a spike ripple or not. From this classified dataset, for each subject i we evaluate the 

spike ripple proportion: the number of spike ripples detected divided by the total number of 

1 s segments analyzed for subject i. Visual inspection suggests that the spike ripple 

proportion tends to be higher in subjects with high seizure risk (Figure 5).

We then categorize each patient using the optimal ROC value as the threshold to find 

performance consistent with the existing naive automated spike ripple detector reported in 

(Kramer et al., 2019); excellent PPV and specificity, and high NPV and sensitivity. 

Repeating this analysis with an increased spike ripple decision threshold (ds = 0.95), we find 

improved classification performance (Table 2); excellent specificity and PPV, and improved 

sensitivity and NPV compared to the CNN spike ripple detector with lower decision 

threshold (ds = 0.298), and the naive automated spike ripple detector reported in (Kramer et 

al., 2019). To summarize detector performance, we compute the F1 score and find the 

highest value using the CNN spike ripple detector with strict decision threshold (F1 = 0.94) 

compared to the other methods (CNN with lower decision threshold, F1 = 0.80; naive 

automated detector, F1 = 0.89; semi-automated detector, F1=0.91). We conclude that a strict 

classification of spike ripples, wherein only high-probability time segments are classified as 

positive, provides excellent performance in classifying subjects into low versus high risk 

seizure groups.

3.4 Spike ripple proportion decreases with duration seizure-free

As a second assessment of the detector’s clinical utility, we compare the results of the CNN 

spike ripple detector to an existing measure of disease severity: duration seizure-free. The 

longer a patient remains seizure-free, the less likely that patient will have a subsequent 

seizure, independent of medication use (Berg et al., 2001; Ross et al., 2020; Sillanpää et al., 

2017). Using the optimal decision threshold (ds = 0.298), we find a negative relationship 

between the log spike ripple proportion and time since last seizure (p = 2.7e-6, slope = 

−0.15, 95% CI [−0.20, −0.10], Figure 6). Consistent with the results in (Kramer et al., 2019), 

we conclude that a negative relationship exists between spike ripple proportion and duration 

seizure-free; the longer duration seizure-free, the lower the spike ripple proportion.

3.5 The automated spike ripple detector is robust to added image noise

To evaluate the effect of noise on the CNN spike ripple detector, we construct new test sets 

for each patient by taking the original test set (Section 3.1) and adding Gaussian image 

noise. More specifically, for each image in the test set for all patients, we add Gaussian 

image noise with mean 0 and 20 different values of standard deviation σ = {0, 0.01, 0.02, 

… , 0.1, 0.2, 0.3, … , 1.0}, constructing 20 different test sets for each patient. Example 

noised images are shown in Figure 7A. We then evaluate the resulting AUC for the ROC 

curve, as in Section 3.1, for the test sets at each level of σ (Figure 7B) across all patients. We 

find that, as expected, detector performance decreases with increasing noise. However, the 

detector performs well when the noise is small (AUC > 0.9 for σ ≤ 0.1), and maintains AUC 

> 0.686 even when the test image is considerably distorted by the image noise. We conclude 

that the automated CNN spike ripple detector is robust to noise in the spectrogram images.
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3.6 Impact of sampling rate on detector performance

To evaluate how the sampling rate of the original EEG signal impacts the CNN spike ripple 

detector, we analyze the manually marked EEG data (Section 3.2) sampled at different 

frequencies (2035 Hz, the original sampling frequency; 1017.5 Hz, 407 Hz, and 254.375 Hz 

computed using the function decimate in MATLAB). As in Section 3.2, we create 1 s 

spectrograms from these signals, use these spectrograms as input to the CNN spike ripple 

detector, and compute the probability of each spectrogram containing a spike ripple. We 

calculate the optimized decision threshold ds for each sampling frequency via the precision-

recall curve, as in Section 3.2, and use ds to predict the presence of spike ripples. Comparing 

these classifications to the expert manual detections, we compute the PPV, sensitivity, and 

FPR (Table 3) for each sampling frequency. While we find similar performance for data 

sampled at 2035 Hz and 1017.5 Hz, the performance worsens for the lower sampling 

frequencies 407 Hz and 254.375 Hz, as expected (Chu et al., 2017). We conclude that the 

CNN spike ripple detector performs best on data collected at sampling rates above 1000 Hz.

4. Discussion

In this manuscript, we introduced a new method to automatically detect an emerging 

electrographic biomarker for epilepsy, spike ripples. To do so, we trained a convolutional 

neural network to identify spectrogram images with the unique features of a spike ripple. We 

showed that the spike ripple detector performed well against expert-labeled data, and 

accurately predicted seizure risk. The method is fully-automated, removing the subjective 

and time-consuming visual inspection required by existing spike ripple detection methods. 

Expert validation is no longer required on the output from the detector, as we have shown 

the performance from the detector alone is comparable to this expert validation. Further, the 

method requires no further labeled data, as the model has been pre-trained on the data 

described here, and can be simply applied to future unlabeled data.

The spike ripple detector presented here differs from existing approaches in the following 

ways. First, we focus on automated classification of spike ripples, rather than ripples (or 

high-frequency oscillations) alone; for example, many machine learning algorithms exist - 

each analyzing a select feature set - to identify ripples (Amiri et al., 2016; Blanco et al., 

2010; Migliorelli et al., 2020; Sciaraffa et al., 2020). While selecting specific features for 

ripple detection improves interpretability, doing so may also limit performance. To address 

this, neural networks have been recently developed to detect ripples without requiring 

explicit feature selection. In (Zuo et al., 2019), the authors developed a CNN to identify 

ripples, training the network on a small number of filtered EEG signals, stacked to create 

two-dimensional images. In (Lai et al., 2019), the authors use a CNN to classify two-

dimensional time-frequency maps, and find improved detector performance. In (Hagen et al., 

2020), the authors implement a recurrent neural network to detect sharp-wave ripples, 

training the network on the raw local field potential. In the method presented here, we use 

the spectrograms of EEG data as input to the CNN; rather than requiring explicit time and 

frequency characteristics to classify spike ripples, the model learns these characteristics from 

the spectrogram images.
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The methodology of the spike ripple detector proposed here is most similar to the ripple 

detector developed in (Lai et al., 2019). In that work, a CNN classifies 2D time-frequency 

maps to identify ripples. While similar, the spike ripple detector developed here differs from 

the ripple detector in (Lai et al., 2019) in three ways. First, we focus on detection of the 

composite electrographic phenomena of spike ripples, not ripples alone. With this difference, 

we expect our method to overcome the challenges in separating pathologic from physiologic 

ripples (Thomschewski et al., 2019). Second, in (Lai et al., 2019) an initial detection, 

utilizing the data filtered into high-frequency bands, is performed to identify times of 

candidate ripples. Then, only the time-frequency maps at these candidate times are input to 

the CNN and classified. Here, we perform no initial step to identify candidate spike ripples; 

instead, the spectrograms for each 1 s interval (0.5 s overlap) are input to the CNN. Third, in 

(Lai et al., 2019) the CNN architecture is built and trained from scratch, and is limited to two 

convolutional and two pooling layers. In contrast, we use transfer learning, which allows us 

to utilize the performance of a complex 34-layer CNN without requiring the time and 

computing power to learn these weights from scratch. We note that CNNs have been applied 

in other contexts to assess spectrogram images of neural data, e.g., for rapid eye movement 

behavior disorder (Ruffini et al., 2019), and epileptiform spike detection (Johansen et al., 

2016). Again, our methodology differs from these examples in that we utilize transfer 

learning to leverage the power of a CNN trained on millions of natural images for our 

model.

While the automated detection of spike ripples motivated the detector developed here, we 

note that the framework presented is highly flexible: theoretically, the detector could be 

repurposed to detect any signal pattern well-characterized by its spectrogram, with a 

reasonable amount of training data (on the order of 1000 labeled images). With the 

architecture completely intact, one would simply provide new training data to re-train the 

model using the same approach described here. We expect this approach would work best 

for spectrograms with distinct features resembling natural images (in our case, isolated 

regions of increased power formed simple, connected shapes). For example, with training 

data that identified ripples in different frequency bands, the spike ripple detector could be 

extended to distinguish between the spectral islands of ripples (80-250 Hz) and fast-ripples 

(250-500 Hz) (Blanco et al., 2010; Sciaraffa et al., 2020; Zuo et al., 2019). For more 

complex spectra, e.g., from audio data, it may be better to use an underlying architecture 

trained on non-natural images such as satellite imagery, rather than the ResNet architecture 

employed here.

While the spike ripple detector performed well in the application to EEG data considered 

here, we note the following limitations. First, we trained the detector using spike ripple (and 

non-spike ripple) events classified by two human experts. We treated these human expert 

classifications as true, despite the necessarily subjective nature of these classifications 

through visual inspection. We note that additional spike ripple classifications - performed by 

other human experts on different data sets - may be used to retrain the spike ripple detector. 

Doing so may further improve detector performance and limit the impact of subjective 

classifications by different human experts. More generally, the spike ripple detector supports 

a feedback approach to increase performance of the model: experts can analyze and validate 
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or edit the output labels of test spectrograms, and include these newly labeled spectrograms 

in the training data for future iterations of the model.

Second, the spike ripple classification is not perfect. For example, we observed that sharp 

artifacts in the signal were sometimes incorrectly classified as spike ripples. A sharp event 

increases power at all frequencies, producing vertical streaks in the spectrogram. In some 

cases, these vertical streaks qualitatively resemble the islands of power in spectrograms of 

spike ripples (Amiri et al., 2016). To address this, future work could pre-process the data to 

remove common artifacts, and hence decrease the false positive rate. Alternatively, the 

model could be re-trained using the spectrograms of these artifacts, assigned a “no” label.

Third, in training and applying the CNN spike ripple detector, we made numerous choices; 

we utilized data sampled at a specific rate (2035 Hz), with a specific reference montage 

(average reference), and during a specific sleep stage (non-REM sleep) (Kramer et al., 

2019). In previous work, the semi-automated spike ripple detector was shown to perform 

consistently across different sampling rates, reference montages, and states of consciousness 

(Chu et al., 2017). We showed here that automated CNN spike ripple detections persist when 

the sampling rate is high enough (above 1000 Hz, Table 3), and despite noise in the 

spectrogram images (Figure 7). However, how these choices and others - alone and in 

combination - impact performance of the automated CNN spike ripple detector remains a 

topic for further investigation. We recommend analyzing data at the highest sampling rate 

available (i.e., without downsampling) during non-REM sleep, when muscle artifacts are 

less common.

Fourth, we note that any classification method utilizing neural networks is subject to the 

black box problem: it is particularly difficult to interpret the millions of trained parameters 

in the network. While we assume that the model is identifying spectral islands in the 

spectrograms to classify spike ripples, we cannot verify this claim. An understanding of 

precisely what the detector identifies in spectrograms could provide insight into mechanisms 

supporting the pathology. Much research exists on the interpretation of neural networks 

(Benitez et al., 1997; Ghorbani et al., 2018; Montavon et al., 2018), and future work could 

focus on interpreting the trained CNN spike ripple detector. For example, feature 

visualization (Yosinski et al., 2015), which seeks to visualize the activations in different 

layers, may perhaps identify the activations of some layers that specifically target islands of 

power in the spectrogram. Additionally, saliency maps could be used to identify which 

regions of the spectrogram, and correspondingly which patterns in time-frequency space, 

have the largest impact on classification (Mundhenk et al., 2020). We expect saliency maps 

to identify the brief, spectral island at high frequencies, and broad increase in power at low 

frequencies, as regions that strongly impact classification. However, saliency maps may also 

reveal other features in the spectrogram important for classification. Understanding these 

features may improve detector performance, and provide additional insight into the spectral 

features of spike ripples.

Here we present a reliable, fully automated method to detect a promising biomarker of 

seizure risk, spike ripples. The method has a single, intuitive parameter to adjust - the 

decision threshold - resulting in higher positive predictive value or sensitivity. We showed 

Nadalin et al. Page 13

J Neurosci Methods. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the spike ripple proportion produced by the detector separates subjects with low and 

high seizure risk. Such a diagnostic tool has the potential to aid clinicians in their 

determination of disease severity and treatment, and support high-throughput analysis of 

large data sets.
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Highlights:

• A neural network can reliably detect spike ripples in the scalp EEG.

• The detector analyzes spectrogram images without requiring feature selection.

• The detector performs as well as human experts to separate subjects with low 

and high seizure risk.

• The detector supports rapid identification of spike ripples for high-throughput 

screening.
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Figure 1: The CNN outputs probabilities for candidate spectra in agreement with expert labels.
Example spectra and corresponding CNN output probabilities (P) for candidate events (A) 
mutually labeled “yes” by both experts, with a spectral island evident at ~150 Hz (B) 
mutually labeled “no” by both experts, and (C) undetected by an existing semi-automated 

spike ripple detector and expert validated with a “no” label. All three examples calculated 

for the same subject with active epilepsy. The spectrograms display power (in decibels, 

scaled 0 to 1 separately for each image) as a function of frequency and time; scale bar 

indicates 0.1 s.
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Figure 2: The ROC curve shows strong diagnostic capability of the automated CNN spike ripple 
detector.
The ROC curve for different decision thresholds ds has an area under the curve (AUC) of 
0.99. The optimal decision threshold (ds = 0.298, blue circle) occurs at a false positive rate 
of 0.048 and true positive rate of 0.950. A decision threshold of 0.95 (green circle) reduces 
the true and false positive rates.
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Figure 3: Examples of agreement and disagreement between the CNN spike ripple detector and 
expert classifications.
Example spectrograms (top), unfiltered EEG signals (middle), and filtered high frequency 

signals (bottom, highpass filtered to 100-300 Hz) from EEG excerpts classified by the CNN 

spike ripple detector. (A,B) The detector and expert classifications agree on the presence of a 

spike ripple (detector output probabilities P > 0.99), (C,D) The detector and expert 

classifications agree on the absence of a spike ripple (P < 1e-12). (E-H) Examples of 

detector and expert classification disagreement. (E,F) Example false negatives; the spike 

ripple is not detected ( P < 1e-2). (G,H) Example false positives; a spike ripple is detected (P 

> 0.99). In all figures, the horizontal scale bars indicate 0.1 s, and the vertical dashed lines 

indicate the 1 s time intervals classified by the CNN spike ripple detector.
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Figure 4: Example spectra computed from the EEG of a subject, and the corresponding outputs 
from the spike ripple detector.
(A) Example raw (blue) and high frequency (orange, 100-300 Hz) signals from the subject’s 

EEG signal, and (B) the corresponding 1 s spectra with 0.5 s overlap, with probability 

outputs (P) from the spike ripple detector.
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Figure 5: The spike ripple proportion is higher in subjects with high seizure risk.
The proportion of 1 s segments containing a spike ripple for high and low risk seizure 
groups with ds = 0.298.
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Figure 6: The spike ripple proportion decreases with time since last seizure.
Circles indicate patients with A-CECTS (blue) and R-CECTS (green). The blue line 

indicates the model fit with mean (solid) and 95% CIs (shaded).

Nadalin et al. Page 25

J Neurosci Methods. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Automated detections persist for noisy spectrogram images.
(A) An example spectrogram distorted with different Gaussian image noise (standard 

deviation σ). (B) Detector performance (AUC for the ROC curve) versus noise level (σ).
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Table 1:
Low and high decision thresholds result in high classification performance.

The positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity for the 
automated spike ripple detector, and 95% confidence intervals. These values represent cumulative results from 
each subject i as test data, where the CNN is trained and validated on all patients excluding subject i. Both the 
optimal decision threshold from the ROC curve (ds = 0.298) and higher decision threshold (ds = 0.95) produce 

consistent results.

Decision threshold Low [optimal
ROC]
(ds =
0.298)

High
(ds
=0.95)

PPV (95% CI) 0.86 (0.841, 0.890) 0.96 (0.947, 0.980)

NPV (95% CI) 0.98 (0.977, 0.988) 0.92 (0.910, 0.932)

Sensitivity (95% CI) 0.95 (0.932, 0.965) 0.74 (0.704, 0.770)

Specificity (95% CI) 0.95 (0.943, 0.962) 0.99 (0.987, 0.995)
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Table 2:
Subject-level diagnostic characteristics for different spike ripple decision thresholds and 
detectors.

The CNN spike ripple detector with a strict decision threshold improves classification of subjects with high 

and low seizure risk. Results for the naive automated detector and semi-automated detector from (Kramer et 

al., 2019).

Spike ripple
detector

CNN,
Low
(ds = 0.298)

CNN,
High
(ds =0.95)

Naive
automated
detector

Semi-
automated
detector

PPV (95% CI) 1 (1.0, 1.0) 1 (1.0,1.0) 1 (1.0, 1.0) 0.83 (0.62, 1.0)

NPV (95% CI) 0.77 (0.54, 1.0) 0.91 (0.74, 1.0) 0.87 (0.70, 1.0) 1 (1.0, 1.0)

Sensitivity (95% CI) 0.67 (0.36,1.0) 0.89 (0.69,1.0) 0.8 (0.55, 1.0) 1 (1.0, 1.0)

Specificity (95% CI) 1 (1.0,1.0) 1 (1.0, 1.0) 1 (1.0, 1.0) 0.85 (0.65, 1.0)
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Table 3:
Performance of the CNN spike ripple detector is high at higher sampling frequencies, and 
low at lower sampling frequencies.

Positive predictive value (PPV), sensitivity, and false positive rate (FPR) on test sets from identical signals 

sampled at different frequencies.

Sampling Frequency (Hz) PPV Sensitivity FPR

2035 0.790 [0.736, 0.844] 0.786 [0.732, 0.840] 0.088

1017.5 0.781 [0.726, 0.836] 0.777 [0.722, 0.832] 0.092

407 0.656 [0.592, 0.719] 0.653 [0.589, 0.716] 0.142

254.375 0.341 [0.277, 0.406] 0.340 [0.275, 0.404] 0.258
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