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Abstract

Background: Changes in choroidal thickness are associated with various ocular diseases, and the 

choroid can be imaged using spectral-domain optical coherence tomography (SD-OCT) and 

enhanced depth imaging OCT (EDI-OCT).

New Method: Eighty macular SD-OCT volumes from 80 patients were obtained using the Zeiss 

Cirrus machine. Eleven additional control subjects had two Cirrus scans done in one visit along 

with enhanced depth imaging (EDI-OCT) using the Heidelberg Spectralis machine. To 

automatically segment choroidal layers from the OCT volumes, our graph-theoretic approach was 

utilized. The segmentation results were compared with reference standards from two independent 
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graders, and the accuracy of automated segmentation was calculated using unsigned/signed border 

positioning/thickness errors and Dice similarity coefficient (DSC). The repeatability and 

reproducibility of our choroidal thicknesses were determined by intraclass correlation coefficient 

(ICC), coefficient of variation (CV), and repeatability coefficient (RC).

Results: The mean unsigned/signed border positioning errors for the choroidal inner and outer 

surfaces are 3.39 ± 1.26 μm (mean ± standard deviation)/−1.52 ± 1.63 μm and 16.09 ± 6.21 μm/

4.73 ± 9.53 μm, respectively. The mean unsigned/signed choroidal thickness errors are 16.54 ± 

6.47 μm/6.25 ± 9.91 μm, and the mean DSC is 0.949 ± 0.025. The ICC (95% confidence interval), 

CV, RC values are 0.991 (0.977–0.997), 2.48%, 14.25 μm for the repeatability and 0.991 (0.977–

0.997), 2.49%, 14.30 μm for the reproducibility studies, respectively.

Comparison with Existing Method(s): The proposed method outperformed our previous 

method using choroidal vessel segmentation and inter-grader variability.

Conclusions: This automated segmentation method can reliably measure choroidal thickness 

using different OCT platforms.

1. Introduction

The choroid is the vascular layer between the retina and the sclera that provides oxygen and 

nourishment to the outer layers of the retina (Chirco et al., 2017; Sohn et al., 2014). 

Spectral-domain optical coherence tomography (SD-OCT) provides rapid, non-invasive, 

cross-sectional images of the retina and choroid with high axial resolution and has become a 

standard clinical and research tool (Mrejen and Spaide, 2013; Whitmore et al., 2015; 

Wojtkowski et al., 2012). Visualization of the choroid can be optimized using enhanced 

depth imaging OCT (EDI-OCT) (Ikuno et al., 2011), which is acquired by placing an 

imaging focal point known as a zero-delay line, to the choroid, or swept-source OCT (SS-

OCT) which uses a tunable, longer wavelength laser that enables deeper tissue penetration 

(Chen et al., 2016). Changes in choroidal thickness are associated with various ocular 

diseases such as age-related macular degeneration (AMD) (Bakall et al., 2013; Manjunath et 

al., 2011; Tozer et al., 2013; Whitmore et al., 2015), high myopia (Fujiwara et al., 2009), and 

central serous chorioretinopathy (Chin et al., 2015; Imamura et al., 2009; Kim et al., 2011; 

Maruko et al., 2010).

Previous studies have demonstrated the feasibility of manual choroidal layer segmentation of 

OCT scans (Sacconi et al., 2017; Yin et al., 2010; Zhang et al., 2012), but manual 

segmentation is labor intensive and susceptible to effects due to subjectivity of the graders. 

To overcome these issues, automated methods have been developed using various image 

processing techniques. Several groups have proposed 2D segmentation methods for 

choroidal layers of EDI-OCT or SS-OCT scans. The 2D approaches are appropriate for 2D 

OCT scans consisting of a single B-scan (a 2D image in the XZ plane, e.g., Fig. 1A), but 

they are not suitable for 3D OCT scans consisting of multiple B-scans since the 2D 

approaches identify choroidal boundaries on each individual B-scan separately, which have 

the potential to segment discontinuous choroidal layers between adjacent B-scans (Hussain 

et al., 2018; Masood et al., 2019; Vupparaboina et al., 2015; Zhang et al., 2020). Wang et al. 

reported an automated 3D segmentation method, which takes into account choroidal layers 
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on adjacent B-scans, but this requires long computational time (43.29 minutes) for each SS-

OCT scan (Wang et al., 2017).

Previously, our research group reported an automated 3D choroidal layer segmentation 

method (Zhang et al., 2012) using choroidal vessel segmentation, but it was prone to 

relatively large segmentation errors since the vessel segmentation is not reliable in low 

signal choroidal OCT images. Thus, we developed a novel, reliable, memory-efficient, 

automated 3D choroidal layer segmentation method for macular SD-OCT scans and 

evaluated it in terms of accuracy, repeatability, and reproducibility.

2. Materials and Methods

2.1. Human Subjects and Data Acquisition

This study received approval from the institutional review board of the University of Iowa 

and adhered to the tenets of the Declaration of Helsinki.

To develop this algorithm, subjects were recruited from the glaucoma clinics at the 

University of Iowa Hospitals and Clinics. Both eyes of all patients had SD-OCT scans but 

only one eye was randomly chosen from each subject for analysis in this study. Fovea-

centered SD-OCT image volumes (200 × 200 × 1024 voxels, 6.0 × 6.0 × 2.0 mm) were 

acquired from a Cirrus OCT instrument (Cirrus™ HD-OCT, Carl Zeiss Meditec, Inc., 

Dublin, CA) and exported as raw files (.img) using Cirrus Research Browser software.

To evaluate our choroidal layer segmentation method in terms of accuracy, our results were 

compared with reference standards created by averaging, in the axial direction, manual 

tracings (z-values in the pixel domain) obtained from two independent graders (AKW, KL). 

The manual tracings were performed in three B-scan images (horizontal line scans number 

50, 100, 150) for each volumetric OCT scan using our custom software which can draw a 

2D B-spline using several control points marked by a grader.

Additionally, eleven young subjects without any ocular disease had macular Cirrus SD-OCT 

scan performed twice in one visit as well as 61 line scan Spectralis (Heidelberg Engineering, 

Heidelberg, Germany) EDI-OCT scan (768 × 61 × 496 voxels, 9.2 × 7.8 × 1.9 mm) to 

evaluate our novel segmentation method in terms of repeatability and reproducibility.

2.2. Automated Segmentation of Choroidal Layers

The choroidal layer is bounded anteriorly by Bruch’s membrane (BM) and posteriorly by the 

choroid-sclera interface (CSI). To automatically segment the choroidal layer from a macular 

SD-OCT image volume, we utilized our layered optimal graph image segmentation for 

multiple objects and surfaces (LOGISMOS) method (Li et al., 2006; Sonka and Abramoff, 

2016; Yin et al., 2010) using a multiresolution approach, during which choroidal layer 

surfaces are sequentially detected at 5 levels of resolution in a coarse-to-fine manner. The 

analysis starts with level 4 (coarsest, low resolution) and progresses to the finest full 

resolution level 0. The LOGISMOS method can simultaneously segment multiple surfaces 

by finding the minimum s - t cut of the weighted graph which is composed of the nodes 

corresponding to image voxels and the arcs associating graph nodes with costs. Graph nodes 
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are an integral element of the graph-theoretic approach (Li et al., 2006). Our method starts 

by segmenting the inner limiting membrane (ILM) and the boundary of myoid and ellipsoid 

of inner segments (BMEIS) from the macular OCT image volume (level 4) down-sampled in 

the z-direction by a factor of 16 (Fig. 1B). To simultaneously detect these surfaces, a double 

surface 3D graph search approach (Li et al., 2006; Sonka and Abramoff, 2016; Yin et al., 

2010) was applied using edge-based cost functions of the dark-to-bright transition from top 

to bottom of the down-sampled OCT image volume. The cost functions are the z-directional 

inverted gradient magnitudes of the OCT voxel intensities, which are smoothed in the x-, z-

directions by a 2D Gaussian filter (σ = 1 voxel). Segmentation of the BMEIS, BM, and CSI 

in level 3 was performed from the sub-OCT image volume region (dotted green lines of Fig. 

1C), ranging from 30 μm (2 voxels) above the BMEIS in level 4 up-scaled by a factor of 2 to 

400 μm (26 voxels) below the BMEIS. A triple surface 3D graph search approach (Li et al., 

2006; Sonka and Abramoff, 2016; Yin et al., 2010) was employed using edge-based cost 

functions of the dark-to-bright transition for the BMEIS, CSI and that of the bright-to-dark 

transition for the BM. The z-directional first derivatives of the vesselness values obtained by 

a Hessian matrix analysis (Sato et al., 1998) were added to the CSI cost function since the 

CSI is located below choroid blood vessels. Segmentation of the BM and CSI in level 2 was 

performed from the sub-OCT image volumes with a height of 86 μm (11 voxels) (dotted red 

and orange lines of Fig. 1D) based on the BM and CSI segmented in level 3 up-scaled by a 

factor of 2 using a single surface 3D graph search method (Li et al., 2006; Sonka and 

Abramoff, 2016; Yin et al., 2010). The BM and CSI in levels 1, 0 were consequently 

detected using the same manner. Finally, the choroidal layer in the full-resolution OCT 

image volume was obtained by smoothing the CSI using thin plate spline fitting (Donato and 

Belongie, 2002) (Figs. 1E, 1F). The point (green dot) indicating the thickest location 

between the BM and CSI surfaces in the patch of 600 μm (20 voxels) by 600 μm (20 voxels) 

was selected, and 100 control points in total were used to create a thin plate spline.

After detecting binary choroidal vessels using a multiscale Hessian matrix analysis followed 

by vessel probability thresholding, our previous method (Zhang et al., 2012) automatically 

segmented 3D choroidal layers by enveloping the binary choroidal vessels. In addition to 

now incorporating an edge-based cost function for the 3D graph search approach, our newly 

proposed method utilizes vessel probability values as a vesselness-based cost function to 

directly segment choroidal layers.

2.3. Statistical Analysis

To evaluate our automated choroidal layer segmentation method, our results were compared 

with the reference standards created by averaging in the z-direction the manual tracings 

obtained from two independent graders. The accuracy of our segmentation results was 

estimated by unsigned/signed border positioning/thickness errors and Dice similarity 

coefficient (DSC) (Zou et al., 2004). The unsigned/signed border positioning/thickness 

errors are calculated by measuring the z-directional unsigned/signed Euclidean distances 

between our segmentation results and the reference standards. If our segmented surface is 

located above the reference standard, the signed border positioning error is negative, 

otherwise positive. If our choroidal thickness is thinner than the reference standard, the 

signed thickness error is negative, otherwise positive. The DSC is calculated by measuring 
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the spatial overlap between our segmented choroidal layer (A) and the reference standard 

(B), which is defined as DSC(A, B) = 2(A ∩ B) / (A + B). To validate our choroidal layer 

segmentation method, the unsigned/signed border positioning/thickness errors and DSCs 

were compared with the unsigned/signed border positioning/thickness differences and DSCs 

between the two manual tracings. A paired t-test was used in the 95% confidence interval to 

compare the two measurements, and a Bland-Altman plot was utilized to analyze the 

agreement between the two measurements (Bland and Altman, 1986).

The repeatability (between repeated Cirrus SD-OCT scans) and the reproducibility (between 

Spectralis EDI-OCT and Cirrus SD-OCT scans) of choroidal thicknesses were determined 

by intraclass correlation coefficient (ICC), coefficient of variation (CV), and repeatability 

coefficient (RC). The ICC is a statistic representing agreements between two measurements, 

which is calculated on the basis of a two-way random model for analysis of variance 

(ANOVA) using statistical software (R version 4.0.0, The R Foundation for Statistical 

Computing) (Shrout and Fleiss, 1979). The CV is defined as a normalized measure of 

dispersion of two measurements, which is calculated by dividing the standard deviation of 

two measurements by the mean of the two measurements (Mwanza et al., 2010). The RC is 

defined as the value of an interval within which 95% of the differences of two measurements 

lie, which is measured by multiplying the standard deviation of the differences of the two 

measurements by 1.96 (Bland and Altman, 1986).

3. Results

One hundred Cirrus macular SD-OCT image volumes from 100 patients were randomly 

obtained from our database system, but 20 volumes were excluded since two independent 

graders (AKW, KL) could not adequately delineate Bruch’s membrane (BM) or choroid-

sclera interface (CSI) because of choroidal neovascularization (CNV), large drusen, and/or 

fluid. Thus, 80 Cirrus macular SD-OCT image volumes (38 right eyes, 42 left eyes) without 

significant pathological change in the retina and choroid were used for measurement of the 

accuracy of our proposed method. The mean age of the cohort was 71.8 ± 10.9 (mean ± 

standard deviation) years, and 34 subjects were male (42.5%). For measurement of 

repeatability and reproducibility using our proposed method, two macular Cirrus SD-OCT 

scans were obtained at the same visit along with Spectralis EDI-OCTs from an additional 

cohort of 11 young subjects (10 female) with a mean age of 31.3 years.

The mean choroidal thicknesses from graders 1, 2, reference standard, our previous (Zhang 

et al., 2012) and proposed methods are 208.75 ± 54.31 μm, 206.43 ± 58.73 μm, 207.60 ± 

56.00 μm, 128.18 ± 49.35 μm, and 208.85 ± 54.88 μm, respectively. There was no 

significant difference between the two graders (p = 0.19) or between the reference standard 

and our proposed method (p = 0.26). The choroidal thickness from our proposed method 

was significantly thicker than that from our previous method (p < 0.01).

Table 1 shows mean unsigned/signed border positioning/thickness errors and mean DSCs 

between our previous vs. proposed choroidal layer segmentations and the reference 

standards, and between the manual tracings of two graders. Our proposed approach showed 

significantly better performance (p < 0.01) than our previous method in all error metrics 
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except the unsigned/signed border positioning errors of BM. There was no significant 

difference for the unsigned border positioning error of BM (p = 0.20), and the previous 

method showed a significantly smaller signed border positioning error of BM (p < 0.01). 

While the unsigned border positioning errors of BM, CSI, and unsigned thickness error from 

our proposed approach are significantly smaller than those from the manual tracings of two 

graders (p < 0.01), the signed border positioning errors of BM, CSI, signed thickness error, 

and DSC from our proposed approach are significantly larger (p < 0.01).

As shown in the Bland-Altman plots (Fig. 2), the choroidal thicknesses obtained by our 

previous method are thinner than the reference standards with a larger variation. While the 

choroidal thickness differences between our proposed method and the reference standard are 

slightly larger than those between two graders, the proposed method has less variation.

To demonstrate the range of segmentation accuracy across the previous method, proposed 

method, two graders, and reference standard, Fig. 3 shows three cropped B-scan images of 

macular SD-OCT volumes overlaid with our best and worst choroidal layer segmentations 

having the minimum (4.45 μm) and maximum (19.30 μm) sums of the mean unsigned border 

positioning errors of BM and CSI.

The mean choroidal thicknesses of the circular region (radius r ≤ 3.0 mm) originated on the 

fovea for the repeated SD-OCT and EDI-OCT scans are 292.73 ± 53.37 μm/294.34 ± 54.89 

μm and 292.46 ± 53.80 μm (Fig. 4). The mean choroidal thicknesses of the repeated SD-

OCT scans are not significantly different (p = 0.35), and those of the first/second repeated 

SD-OCT scans and EDI-OCT scans are not significantly different either (p = 0.87, 0.36). 

Table 2 and Fig. 5 show the ICC, CV, RC values and Bland-Altman plots of our choroidal 

thicknesses between the repeated macular SD-OCT scans for the repeatability and between 

the macular SD-OCT and EDI-OCT scans for the reproducibility (Giavarina, 2015; Bland 

and Altman, 1986).

While our previous method required 6.58 ± 0.61 minutes of running time and 18.5 GB of 

computer memory (RAM) per single OCT volume on the PC (OS: Microsoft Windows 10 

×64, CPU: Intel® Core™ i7-4790, RAM: 32.0 GB), our proposed method required 1.22 ± 

0.36 minutes and 2.0 GB, notable processing time speedup and decrease of computer 

memory demands. The computer memory usage was measured by checking the peak 

memory while running the algorithm.

4. Discussion and Conclusions

Measurement of choroidal thickness, whose changes are associated with various ocular 

diseases, is clinically important. In this study, we have proposed a novel, reliable, memory-

efficient, automated 3D choroidal layer segmentation method for macular SD-OCT scans 

and evaluated it in terms of accuracy, repeatability, and reproducibility. Our proposed 

automated choroidal layer segmentation method for 3D macular SD-OCT scans significantly 

outperformed our previously published method (Zhang et al., 2012) using choroid vessel 

segmentation in terms of mean unsigned/signed border positioning errors of CSI, mean 

unsigned/signed thickness errors, and mean DSC (p < 0.01). There was no significant 
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difference in the BM unsigned border positioning error between our proposed and previous 

methods (p = 0.20), which is not surprising as BM has a clear boundary; thus, even our 

previous method could detect this well. Compared with BM, the boundary for CSI is less 

clear, especially on Cirrus scans without dedicated EDI imaging; thus, segmentation of CSI 

had larger unsigned/signed border positioning errors using our previous method but was 

substantially improved with the proposed method. As shown in the Bland-Altman plots of 

Fig. 2, the choroidal thicknesses obtained with our proposed method performed better 

compared with our previous method and also performed well compared with the inter-grader 

variability of manual segmentations.

Our proposed choroidal layer segmentation method also worked well for macular EDI-OCT 

scans from a different machine on an additional cohort of young, normal subjects. The ICC, 

CV, RC values of Table 2 and the Bland-Altman plots of Fig. 5 showed excellent agreements 

of our choroidal thicknesses between repeated macular SD-OCT scans for repeatability and 

between macular Zeiss SD-OCT and Heidelberg EDI-OCT scans for reproducibility.

Our proposed automated choroidal layer segmentation method was compared with published 

2D/3D segmentation methods using EDI-OCT or SS-OCT based on the error metric values 

provided by their papers. Masood et al. introduced a deep learning-based segmentation 

method using morphological operations and convolutional neural networks from Spectralis 

EDI-OCT scans (Masood et al., 2019). The mean unsigned/signed border positioning errors 

were 5.42 ± 0.98 μm/1.68 ± 3.94 μm for BM and 11.27 ± 4.10 μm/10.92 ± 5.85 μm for CSI, 

and the mean DSC was 0.974 ± 0.023. While our proposed method showed a better 

performance than this method in terms of the unsigned/signed border positioning errors of 

BM and the signed border positioning error of CSI, the deep learning-based method 

exhibited lower unsigned border positioning error of CSI and the DSC compared with our 

proposed approach, which is not surprising since the Spectralis EDI-OCT scans depict 

choroidal layers with less speckle noise and higher contrast than Cirrus SD-OCT scans. 

Unsigned errors describe local border inaccuracies whereas signed errors attest to consistent 

border positioning offsets. Zhang et al. introduced another deep learning-based segmentation 

method using a biomarker infused global-to-local network from DRI OCT-1 Atlantis SS-

OCT scans (Topcon, Tokyo, Japan) (Zhang et al., 2020). The deep learning-based method 

worked well for automated segmentation of complex choroidal layers. The mean unsigned 

border positioning error of combined BM and CSI was 18.84 μm, and the mean DSC was 

0.908. Our proposed method showed a better performance for both error metrics than this 

method. Hussain et al. proposed an automated choroidal layer segmentation method using 

the Dijkstra shortest path algorithm from Spectralis EDI-OCT scans (Hussain et al., 2018). 

Its mean BM, CSI unsigned border positioning errors, unsigned thickness error, and DSC are 

7.29 ± 2.93 μm, 30.07 ± 24.53 μm, 31.51 ± 22.97 μm, and 0.929, respectively. Our proposed 

method outperformed this method for all error metrics. The Hussain’s method is a 2D 

segmentation method having a limitation on segmentation of 3D choroidal layers since it 

does not include the contextual information between adjacent B-scans. Vupparaboina et al. 

reported another 2D choroidal layer segmentation method from Spectralis EDI-OCT scans 

by measuring the structural dissimilarity between choroid and sclera by structural similarity 

(SSIM) index followed by enveloping the thresholded index region (Vupparaboina et al., 

2015). Its mean unsigned/signed border positioning errors of CSI and DSC are 19.15 ± 
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15.98 μm, −15.31 ± 17.97 μm, and 0.955 ± 0.017. While this method showed a slightly 

larger DSC value, our proposed method showed smaller unsigned/signed border positioning 

errors of CSI. The Vupparaboina’s method used only 5 EDI-OCT scans for validation and 

required 6–12 minutes per scan of running time, which is 4.9–9.8 times slower than our 

proposed method. Want et al. presented an automated 3D segmentation method using the 

level set framework from DRI OCT-1 Atlantis SS-OCT scans (Wang et al., 2017). Its mean 

unsigned/signed border positioning errors of CSI and DSC are 5.64 ± 4.60 μm, 4.13 ± 4.29 

μm, and 0.90 ± 0.04. While this method showed smaller unsigned/signed border positioning 

errors of CSI, our proposed method showed a larger DSC value. The SS-OCT scans also 

depict choroidal layers with higher-than-Cirrus contrast, similar to the EDI-OCT scans. The 

drawback of this method is its long computational time (43.29 minutes) compared with our 

proposed method (1.22 ± 0.36 minutes).

There are several limitations of the proposed method for automated segmentation of 

choroidal layers from macular SD-OCT scans. The first is that a relatively small number of 

OCT scans were used for this study. More OCT scans with the manual tracings of more than 

3 B-scans per volume scan from multiple graders are required for more reliable validation of 

our proposed method. The second one is that the proposed method does not work well for 

the OCT scans with weak signal in the choroid for which the CSI is not clearly visible by 

retinal specialists. A study on the association between the SD-OCT signal strength in the 

choroid and the accuracy of our proposed method would be beneficial. The third is that the 

proposed method does not work well for OCT scans with large retinal and/or choroidal 

alterations such as pigment epithelial detachment (Fig. 6), choroidal neovascularization, or 

large drusen. Fortunately, this method can be still used in studies without these pathologies, 

e.g., comparisons of different populations, genetic-based correlations, early stage non-

exudative AMD patients, and those with other diseases such as diabetes and glaucoma when 

there is no significant alteration of the outer retina/RPE layers. This is a considerable 

improvement over our previously published method (Zhang et al., 2012), which now has 

relatively limited value as the new method generates choroidal thickness substantially closer 

to those of the manual graders. In addition to edge-based and vesselness-based cost 

functions for our proposed method, deep learning-based cost functions would be helpful for 

segmentation of the complex choroidal layers, and future work will compare AI-based 

algorithms to the one proposed here.

We have proposed a new, automated choroidal layer segmentation method of 3D macular 

SD-OCT scans and validated it by measuring various error metrics and comparing with the 

inter-grader variability of two independent, manual graders. For this study, the proposed 

method showed better performance than our previous method and the inter-grader 

variability. The proposed method provides a rapid, convenient, automated way of 

segmenting the choroid from SD-OCT scans, which may be clinically useful for analysis 

and monitoring of various choroidal diseases.
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HIGHLIGHTS

• Novel, memory-efficient, 3D automated choroidal layer segmentation method 

for OCTs

• Multiscale segmentation from macular scans using LOGIMOS method

• Works on Cirrus and Heidelberg machines (good results observed with 

images from other OCT machines)

• High reliability/reproducibilty demonstrates significant superiority to previous 

method

• Could be useful clinically for analysis and monitoring of choroidal diseases, 

e.g. AMD
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Fig. 1. 
Automated multiscale segmentation of the choroidal layer from a 3D macular SD-OCT scan 

using the LOGISMOS method. (A) Full-resolution central B-scan image (level 0, height: 

1024 voxels). (B) Segmentation of the inner limiting membrane (ILM, yellow line) and the 

boundary of myoid and ellipsoid of inner segments (BMEIS, green line) from the OCT 

volume (level 4, height: 64 voxels) down-sampled in the z-direction by a factor of 16. (C) 

Segmentation of the BMEIS (green line) and the choroidal layer (red, orange lines) from the 

OCT volume (level 3, height: 128 voxels) down-sampled by a factor of 8 using the sub-OCT 

volume (dotted green lines) determined by the BMEIS in level 4 up-scaled by a factor of 2. 

(D) Segmentation of the choroidal layer from the OCT volume (level 2, height: 256 voxels) 

down-sampled by a factor of 4 using 2 sub-OCT volumes (dotted red, orange lines) defined 

by the choroidal layer in level 3 up-scaled by a factor of 2. (E) Segmentation of the 

choroidal layer from the full-resolution OCT volume (level 0). The green dots show control 

points for thin plate spline fitting. (F) Image (A) overlaid with the final, smoothed choroidal 

layer segmentation.
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Fig. 2. 
Bland-Altman plots of choroidal thicknesses between our previous vs. proposed choroidal 

layer segmentations and the reference standard (RS) and between the manual tracings of two 

independent graders for 80 macular SD-OCT scans.
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Fig. 3. 
Three cropped B-scan images of macular SD-OCT volumes overlaid with our best (top two 

rows) and worst (bottom two rows) choroidal layer segmentations (yellow line: grader 1, 

orange line: grader 2, green line: reference standard, cyan line: our previous method, red 

line: our proposed method).
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Fig. 4. 
Central B-scan images of (A, B) repeated macular Cirrus SD-OCT volumes (6.0 × 6.0 × 2.0 

mm) and (C) Spectralis EDI-OCT volume (9.2 × 7.8 × 1.9 mm) of the same eye overlaid 

with our proposed choroidal layer segmentations (red lines). The black circle on the 

choroidal thickness map is originated on the fovea, and its radius is 3.0 mm.
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Fig. 5. 
Bland-Altman plots of choroidal thicknesses between repeated Cirrus macular SD-OCT 

scans for repeatability and between Cirrus SD-OCT and Spectralis EDI-OCT scans for 

reproducibility.
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Fig. 6. 
Mis-segmented choroidal layer of our proposed method because of pigment epithelial 

detachment.
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Table 1.

Error metrics between our previous vs. proposed choroidal layer segmentation algorithms and the reference 

standard (RS), and between the manual tracings of two independent graders. The bold font shows a 

statistically significant improvement of the previous or proposed method (p < 0.01).

Previous Method vs. RS Proposed Method vs. RS Grader 1 vs. 2

Mean Unsigned Border Positioning Error of BM (μm) 3.85 ± 3.54 3.39 ± 1.26 4.68 ± 1.61

Mean Signed Border Positioning Error of BM (μm) 0.03 ± 3.87 −1.52 ± 1.63 1.08 ± 2.72

Mean Unsigned Border Positioning Error of CSI (μm) 80.62 ± 62.50 16.09 ± 6.21 23.73 ± 10.71

Mean Signed Border Positioning Error of CSI (μm) −79.39 ± 63.59 4.73 ± 9.53 −1.24 ± 15.92

Mean Unsigned Thickness Error (μm) 80.16 ± 62.73 16.54 ± 6.47 23.90 ± 10.54

Mean Signed Thickness Error (μm) −79.43 ± 63.31 6.25 ± 9.91 −2.33 ± 15.76

Mean Dice Similarity Coefficient (DSC, unitless) 0.743 ± 0.176 0.949 ± 0.025 0.926 ± 0.035
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Table 2.

Intraclass correlation coefficient (ICC), coefficient of variation (CV), and repeatability coefficient (RC) values 

of our proposed choroidal thicknesses between repeated Cirrus SD-OCT scans for repeatability and between 

Cirrus SD-OCT and Spectralis EDI-OCT scans for reproducibility.

SD-OCT 1 vs. SD-OCT 2 SD-OCT 1 vs. EDI-OCT SD-OCT 2 vs. EDI-OCT

Intraclass Correlation Coefficient (ICC, 95% 
Confidence Interval)

0.991 (0.977–0.997) 0.991 (0.977–0.997) 0.987 (0.967–0.995)

Coefficient of Variation (CV, %) 2.48 2.49 2.99

Repeatability Coefficient (RC, μm) 14.25 14.30 17.20
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