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Abstract

Embryo selection within in vitro fertilization (IVF) is the process of evaluating qualities of fertilized oocytes (embryos) and
selecting the best embryo(s) available within a patient cohort for subsequent transfer or cryopreservation. In recent years,
artificial intelligence (AI) has been used extensively to improve and automate the embryo ranking and selection procedure
by extracting relevant information from embryo microscopy images. The Al models are evaluated based on their ability to
identify the embryo(s) with the highest chance(s) of achieving a successful pregnancy. Whether such evaluations should be
based on ranking performance or pregnancy prediction, however, seems to divide studies. As such, a variety of performance
metrics are reported, and comparisons between studies are often made on different outcomes and data foundations. Moreover,
superiority of Al methods over manual human evaluation is often claimed based on retrospective data, without any mentions
of potential bias. In this paper, we provide a technical view on some of the major topics that divide how current Al models
are trained, evaluated and compared. We explain and discuss the most common evaluation metrics and relate them to the two
separate evaluation objectives, ranking and prediction. We also discuss when and how to compare Al models across studies
and explain in detail how a selection bias is inevitable when comparing AI models against current embryo selection practice
in retrospective cohort studies.
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Introduction

During the past few years, artificial intelligence (AI) has
heavily influenced innovation and research within the field
of in vitro fertilization (IVF). In the near future, Al appli-
cations may assist or even fully automate IVF procedures
such as assessing gamete quality, selecting sperm during
intracytoplasmic sperm injection (ICSI), collecting oocytes,
assisting with patient stimulation protocols, donor match-
ing, or selecting and ranking embryos for transfer and
cryopreservation [1]. Furthermore, Al may help optimize
and standardize clinical processes by introducing predictive
maintenance in IVF instruments and automatically extract
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and analyze key performance indicators in order to carry out
continuous quality control [2].

Several studies have reviewed Al algorithms and their
uses for various applications within IVF [2-8]. In this
paper, however, we focus specifically on embryo evaluation
and selection, as this is currently the most active research
area of applying Al within IVF, with more than 10 papers
published in 2020. Automated embryo evaluation using
machine learning or computer vision based on embryo
images has been an active field of research for more than
a decade [9, 10]. Yet, within the past few years, many of
the publications have focused more on commercialization
and competition rather than methodological novelties and
technical details of the Al [11-15]. Instead, they seem
to focus on reporting large datasets, high performance
values based upon a variety of metrics, and ability to
surpass human/embryologist performance. The evaluation
methods and clinical endpoints vary considerably across
studies, and performance comparisons are sometimes
made on completely different data foundations (patient
demographics, unbalanced data, sub-cohorts, etc.). It has
therefore become evident that the research community
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does not agree on a standard for how to report and
compare performances of Al models. A recent review by
[8] supports this claim, underlining “the importance of
transparency and standardization in reporting Al models”.
The review also points clinicians and researchers towards
two established and internationally accepted guidelines for
how to report clinical prediction models (TRIPOD: [16])
and how to assess potential risk of bias in models or model
comparisons (PROBLAST: [17]). Although the guidelines
primarily address regression models, most items still apply
to machine learning and Al methods as well. Additionally,
a new guideline (TRIPOD-AI) is currently being developed
specifically targeting reporting of Al models [18].

Traditionally, the main objective of embryo evaluation
has been to rank embryos within a patient cohort according
to their potential to implant. In this context, the actual
predictions by the AI model (e.g., between 0 and 1) for
each embryo is of limited relevance, as long as the order
(ranking) of the values within the cohort correlates with
the likelihood of implantation. In clinical practice, a pure
ranking model can help sort the embryos within a cohort,
but may not be useful for deciding which of them (if
any) are viable enough for transfer or cryopreservation.
Recent approaches, however, attempt to provide predictions
that directly represent the likelihood of implantation, thus
adding a second objective to embryo evaluation in the
form of probability estimation. A prognostic estimate
of implantation probability for each embryo, possibly
incorporating patient characteristics, can thus help in the
decision process regarding which embryos to prioritize for
transfer and which to cryopreserve. As such, prognostic
prediction may also simplify and improve communication
to patients. In this paper, we distinguish between the
two objectives and categorize them as ranking and
prediction, respectively. The two objectives relate directly
to model discrimination and model calibration [19] that
each have separate performance measures. Therefore, when
evaluating Al models for embryo evaluation, one needs
to be aware of which objectives (ranking vs. prediction)
that have been optimized and evaluated for. Similarly,
it is important to notice how the evaluation reflects the
intended use of a model. For instance, a model evaluated
solely on transferred embryos, implicitly assumes manual
preselection by embryologists of embryo sub-cohorts and is
thus intended to be used as a supplement to manual, human
evaluation. A fully automated model with intended use to
analyze all embryos within a cohort, on the other hand,
needs to be evaluated across all embryos [2].

The review by [8] provides a list of criteria, which
researchers and clinicians can use to evaluate studies
about AI models. The list includes assessments of
model generalization, dataset balance requirements, bias
considerations, and guidelines for the best performance
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metrics. Although the review successfully points out some
of the important challenges and pitfalls concerning training
and evaluation of Al models, it provides a too simplified
view of some of the topics. In this paper, we therefore
elaborate more technically on four of the major topics that
seem to divide how current AI models are trained, evaluated
and compared:

e In “Data foundation,” we address the data foundation,
on which a study is based. Here, we provide a scheme to
categorize Al models based on their embryo population
and outcome and use this to illustrate why model
comparisons are often unjustified. We also explain why
we cannot simply define universal requirements for
balancing datasets or for splitting datasets into training,
validation and test sets.

e In “Evaluation metrics: which performance measure to
use?” we present the most common evaluation metrics,
discussing pros and cons while relating them to their
dependency on data balancing and to the two objectives,
ranking and prediction.

e In “Sample size,” we illustrate how sample size of
the test set affects the certainty of the most common
performance measures.

e In “Bias in model comparisons,” we demonstrate and
discuss bias in model comparisons. Here, we provide
an in-depth explanation based on simulated data of
how selection bias is inevitable when comparing Al
models against current embryo selection practice in
retrospective cohort studies.

e Finally, in “Discussion,” we summarize our main
points and suggestions and discuss how future studies
including AI methods can strengthen their evaluations
and reduce bias in reported metrics and model
comparisons.

Throughout the sections, Table 1 is used to exemplify dis-
parities between data foundations and evaluation methods
for different embryo evaluation studies using Al. The table
lists 13 studies that all used pregnancy-related outcome to
train and evaluate Al models on image data. The studies
are categorized in terms of data input, evaluated outcome,
embryo population, inclusion of human vs. Al comparison,
and metrics used for the evaluation.

Data foundation

An important parameter that often differs between Al
models is the data foundation used to train and evaluate
them. Some models seek to automate the embryo selection
process completely, assuming no preselection of embryos
by embryologists [11, 15]. Such models need to evaluate
the performance not only on transferred embryos, but also
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Table 1 List of studies that used AI on image data to predict or rank embryos based on pregnancy outcome. The reported information only
concerns evaluation of pregnancy-related outcomes. Therefore, if a study includes additional tasks such as blastocyst prediction, these are not

included in the table

Reference Input Outcome Embryo population® Human vs. AT Metrics®
[20] Static image Fetal heartbeat *-D5-blastocyst v Accuracy, AUC
[21] Static image, patient age Beta-HCG *-D5/D6-blastocyst - Accuracy, sensitivity,
specificity, PPV, NPV,
FPR, FNR, F1, AUC
[13] Static image, patient age, Ploidy/beta-HCG *-D5/D6-blastocyst v Accuracy, sensitivity,
blastocyst age, lab set- specificity, PPV, AUC,
tings NDCG
[22] Time-lapse video Fetal heartbeat ICSI-D3-*, ICSI-D5-* W) Sensitivity, PPV, AUC
[11] Time-lapse video Fetal heartbeat? *_.D5-* - AUC
[12] Static image Fetal heartbeat *-D5-blastocyst v Accuracy, sensitivity, specificity
[23] Static image “pregnancy”’ *-*_blastocyst - Accuracy, sensitivity, specificity
[24] Static image Live birth *-D5/D6-blastocyst ) Accuracy, sensitivity,
specificity, AUC
[25] Static image Live birth *-D5-blastocyst! - Accuracy, sensitivity,
specificity, PPV, NPV,
AUC
[26] Static image, annota- Live birth *-D5/D6-blastocyst W) Accuracy, sensi-
tions, patient info (age, tivity, specificity,
BMI, ..) informedness, AUC
[27] Static image, annota- Live birth *-D5/D6-blastocyst - Accuracy, sensitivity,
tions, patient info (age, specificity,  informed-
BM]I, ...) ness, PPV, NPV,
AUC
[14] Time-lapse video Fetal heartbeat HE v PPV, NPV, AUC
[15] Time-lapse video Fetal heartbeat *-D5/D6-* W) AUC

4The notation for Embryo population is explained in “Data foundation” and visualized in Fig. 1

®Human vs. Al comparisons are discussed in “Bias in model comparisons”

¢All metrics are explained in detail in “Evaluation metrics: which performance measure to use?”

10nly aneuploid miscarriages (confirmed with genetic testing of chorionic villus samples) were included as negative live births

ZNegative fetal heartbeat was assumed for all non-transferred embryos that had “failed or abnormal fertilization, grossly abnormal morphology or

aneuploidy from preimplantation genetic testing”

on low quality embryos at different developmental stages,
in order to ensure that the evaluation data is representative
of prospective use [2]. Other models seek to differentiate
between previously transferred embryos [12, 14, 20-22, 24].
When only evaluating on transferred embryos, such models
assume that an embryologist first preselects potentially
transferable embryos (e.g., day 5 blastocysts). Thus, they are
developed on datasets consisting of more similar embryos in
terms of incubation time, developmental stage and quality.

In order to compare AI models, it is essential to note
the embryo population and which outcome was used for
training and (more importantly) evaluation. In this paper,
we use a population-outcome scheme to characterize Al
models used for embryo evaluation by their data foundation.
Figure 1 illustrates the scheme consisting of four different
attributes:

e  Fertilization: which method(s) of fertilization were
included? IVF, ICSI or both?

®  (Culture: for how long were the embryos incubated?
(e.g., 5 days)

® Sub-cohort: which of the available embryos were
included? (e.g., blastocysts, hatched blastocysts,
euploid, fresh, cryopreserved)

¢ Outcome: what was the measured endpoint? (e.g., fetal
heartbeat, live birth)

The embryo population is characterized by the first three
attributes and provides a description of which embryos
were included in a study, whereas the outcome defines
the clinical endpoint (or ground truth) that the model
was evaluated against. For instance, a study reporting
prediction of live birth on all embryos transferred on day
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Fig.1 Example scheme for

reporting embryo population Fertilization
and outcome. A study reporting

prediction of live birth on

transferred day 5 blastocysts 1
fertilized by ICSI would have

the embryo population

ICSI-D5-Blastocyst-Transfer

and outcome live birth

Insemination

Sub-cohort

Outcome

Number of - Subset of L Measured

method incubation days embryos endpoint
NS J
Y Y
Embryo population Outcome

5 or 6 after fertilization by ICSI would have the embryo
population ICSI-D5/D6-* and outcome live birth. By
considering live birth as outcome, only transferred embryos
were considered. D5/D6 means that the all embryos were
incubated for either 5 or 6 days, whereas * denotes that all
transferred embryos within a cohort were included (not only
fresh transfers or euploid embryos for instance). Another
example could be a study reporting prediction of ploidy
on all day 5 blastocysts that had undergone PGT, but not
necessarily transfer. This would be characterized by the
embryo population *-D5-Blastocyst and outcome euploid.
When applying the rather simple scheme in Fig. 1
onto the studies in Table 1, it is clear that both embryo
population and outcome vary considerably between studies.
In addition, attributes such as patient demographics, egg
donation, culture media, image quality criteria, and other
clinical settings may also be relevant in characterizing a
specific population of embryos. For instance, if a study
applies data cleaning based on image quality [13, 20], it
effectively changes the embryo population on which the
model is intended to be used clinically and upon which it can
be compared to other models. If not addressed explicitly in
terms of intended use, such exclusion of outliers, occluded
embryos, or missing data may introduce a risk of bias [17].
Another factor that can greatly influence the reported
performance is the characteristics of the input provided
to the model. Similar to embryo population and outcome,
Table 1 shows considerable variation in the provided inputs.
Some models include a single static image of the embryo,
whereas others include a time-lapse video of the developing
embryo. Other models may include parameters such as
patient age, previous number of attempts, stimulation
protocol, clinic-specific settings, and manual annotations
of morphokinetic and morphological parameters. Adding
such inputs may improve performance metrics drastically.
For instance, implantation models will generally improve
their overall discrimination performances when including
age (patient and/or oocyte) as an input variable. For
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predicting pregnancy probabilities, this may improve a
model considerably, as it can adapt to the general decrease
in success rates with age. For embryo ranking, however,
increased discrimination performance across all age groups
may not actually improve ranking ability within individual
patient cohorts. That is, when applying the model in an
actual clinical setting to discriminate embryos within a
single patient cohort (where the patient age is a constant),
the ranking potential may be unchanged [28].

The large variation across both input, embryo population
and outcome makes comparison of Al performance results
across studies difficult if not impossible. For instance,
Fernandez et al. [4] compare accuracy measures across
different studies and datasets, without taking into account
the different embryo populations and distributions of labels
in the test sets. Miyagi et al. [26] conclude that their
predictive results are good, because their area under the
curve (AUC) performance values on patient ages > 38
years are higher compared to AUC values obtained across
all age groups in a different study. Such comparisons are
invalid, simply because the embryo populations in the
different studies are different. Similarly, a considerable
bias can appear if compared models measure different
outcomes [29]. Paired analyses, or direct comparisons,
evaluating different models on the exact same dataset thus
seem to be the only appropriate and valid comparison
available [16]. And even then, pitfalls still exist when
evaluating an embryo population upon which one of the
compared models was involved in the decision process,
e.g., by deciding which embryos to transfer. “Bias in model
comparisons” elaborates on this potential selection bias
when comparing prediction models in retrospective cohort
studies.

Data split

To develop an Al model, a representative and hopefully
diverse dataset first has to be collected. The dataset is
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typically divided into development (training and validation)
and test subsets. In this context, it is important to split the
dataset on patient or treatment level, such that embryos
from the same couple are not divided into different subsets.
Splitting simply on embryo level could introduce a bias
due to correlation between both the embryo images/videos
and the associated outcomes. For constructing the test set,
an even stronger approach is to split the dataset by time,
such that the model is trained on an early time period and
evaluated on a later time period [16].

Because Al models often contain millions of parameters,
they easily “overfit,” meaning that they memorize the train-
ing examples directly instead of learning to generalize to
new examples based on similar features. The development
dataset is therefore normally split into a training and vali-
dation subset. Preferably, this is done with cross-validation
in order to ensure generalization and mitigate bias. Cross-
validation may even be stratified such that examples from
each relevant subgroup are evenly distributed across the
different folds. The validation set is used to continuously
monitor the generalization power of the Al model on unseen
data. Often, the generalization power will increase dur-
ing the first part of training. After a while, it might start
to decrease, indicating that the model is overfitting. Since
the validation data are typically used to tune a number of
“hyperparameters” such as deciding the optimum type and
size of the AI model, or the ideal time duration to train
the model, the performance on the validation set during a
hyperparameter search gradually becomes slightly biased.
Therefore, a completely separate and independent test set
must be used as a final step for evaluating and reporting
an unbiased estimate of the generalization performance of
the developed model. For clinical prediction models, this
step is often referred to as interval validation, because the
evaluation is applied on a data subset representing the same
population and distribution as the training set of the model.
As this will generally provide an optimistic estimate of
generalization performance, subgroup analyses (or strati-
fied performance evaluations) can be conducted in order to
reveal problems caused by a potential mismatch between
training and deployment domains [30]. A stronger evalu-
ation procedure referred to as external validation, on the
other hand, tests the performance of the model in a new set-
ting, such as a new clinic, new time period, new country, or
even a new population that was not included during model
development [16].

Traditionally, a common ratio for splitting a dataset into
training, validation and test subsets is 70%/15%/15%, such
that 15% of the entire dataset is held out for testing [31].
However, in practice, it is impossible to define a one-size-
fits-all split strategy, as overfitting is greatly affected by
technical training characteristics such as number of model
parameters, regularization methods, potential pretraining on

other datasets (transfer learning) such as ImageNet [32], or
use of unsupervised or semisupervised learning. Therefore,
one model might require only a limited (labeled) training
set to, e.g., finetune a subset of model parameters, whereas
another model might need a very large training set in
order to fit all parameters from scratch. For instance,
the data splitting used for the ImageNet challenge is
88%/4%/8% [32], thus allocating 1.2 million images for
training, but still a notable amount of 100,000 images for
testing. For this reason, less emphasis should be put on split
percentages and size of the training set. Instead, the absolute
size of the test set determines what claims of performance
can be made, and with what statistical certainty potential
superiority over humans or other models can be claimed. In
“Sample size,” the influence of sample size on performance
certainty is demonstrated for different evaluation metrics.

In addition to reporting prediction results on an
independent test set (internal validation), some multicentric
studies specifically address generalization performance
across clinical practices by carrying out cross-validation
in the form of clinical hold-out tests [11, 15]. This can
be seen as an intermediate step between internal and
external validation, as the performance is evaluated on new
clinics, however not by the final prediction model, but
instead separate development models expected to resemble
the final model. Similar cross-validation analyses could
split the dataset across IVF/ICSI fertilization, age groups,
ethnicities, years of treatment, etc. to reveal potential model
or dataset biases such as “spectrum bias” and ‘“historical
bias” [7]. However, a pure external validation requires the
new setting (e.g., clinic) to be held out entirely during model
development such as the so-called “double-blind test sets”
reported by [12].

Unbalanced data

A fundamental problem in machine learning is how to deal
with unbalanced datasets, also known as class imbalance.
In traditional IVF, the number of negative outcomes often
exceeds the number of positive outcomes, as the overall
success rate of transferred embryos is typically only around
30%. Therefore, a dataset of transferred embryos will often
contain around two times as many negative outcomes as
positives.

The issue concerning class imbalance can be split into
two separate problems: (1) training a model, and (2)
evaluating a model. For training an embryo evaluation
model, class imbalance has been pointed out as a major
challenge [6, 8], as the model will incorporate a prior
probability (bias) related to the success rate within the
training set. A simplistic way to handle this is to balance the
dataset by excluding a large amount of negative outcomes,
such that the model is trained on an even amount of
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positive and negative outcomes. More sophisticated ways
that avoid exclusion of data examples include oversampling
positive outcomes or adjusting the optimization algorithm
by weighting the objective function used during training
such that the cost of misclassifying positive and negatives
examples is effectively equal.

However, class imbalance is not necessarily unwanted. If
the goal of the model is to estimate the actual probability
of pregnancy, and the model is to be applied in an embryo
population similar to the one represented by the dataset,
the model should in fact learn a prior probability (bias)
of pregnancy. In this case, neither the training set nor
the test set used for evaluating the model should be
balanced. Instead, they should both represent the (realistic)
distribution of embryos, on which the model is intended to
be used.

Two recent review articles on clinical prediction models
in IVF argue both for and against data balancing. Curchoe
et al. [8] argue that “any validation testing should be
performed with a balanced data set”. However, Curchoe
et al. [2] argue that Al models need to trained and validated
on datasets that are representative of the data they will be
used on prospectively, which essentially is unbalanced.

One compromise could be to report metrics that are inde-
pendent of class imbalance, such as sensitivity, specificity,
and area under the receiver operating characteristic curve
(explained in the following section). Additionally, test set
prevalence (proportion of samples that are positive) should
always be reported, such that it is possible to assess class
imbalance and compare all metrics to random chance or
naive guessing. For instance, for a dataset with a prevalence
of 30%, naive guessing by always predicting “negative”
results in a naive accuracy of 70%. Model performance
should then be compared to a random chance of 70% instead
of the usual 50%.

Fig.2 Confusion matrix and
definitions of common binary
classification metrics

Outcome

(a) Confusion matrix
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Evaluation metrics: which performance
measure to use?

As outlined in Table 1, a variety of different metrics are
used to evaluate the performance of Al models for embryo
evaluation. Some of these are binary classification metrics,
calculated based on a confusion matrix that links actual
observations (pregnancy or not) with predicted (binary) val-
ues. While most prediction models are continuous in nature,
binary values often arise from dichotomization, that is,
introducing a prediction threshold resulting in binary pre-
dictions. However, dichotomization may remove relevant
information and furthermore assumes a single clinically rel-
evant threshold [16], which can potentially cause substantial
bias in estimated classification measures when the threshold
is chosen to maximize performance [17]. Therefore, another
group of metrics related to discrimination operate on con-
tinuous prediction values. The area under the curve (AUC)
belongs to this group as it aggregates performance across all
possible prediction thresholds. Each metric has its advan-
tages and disadvantages, some being easily interpretable
but biased by prevalence, while others being unbiased but
clinically less relevant.

Binary classification metrics

Figure 2 illustrates a confusion matrix along with formulas
for calculating accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV) and
Fy-score.

Accuracy (proportion of correct predictions) is probably
the most intuitive and widely used performance measure.
However, it is also misleading if the evaluated dataset is
unbalanced (e.g., more negative than positive pregnancies).
For instance, Chen et al. [33] used a highly unbalanced

Prediction
TP+ TN
accuracy =
TP+TN+ FP+ FN
- TP
sensitivity = ——
TP+ FN
ificit TN
specificity = ————
P Y= TN+ FP

informedness = sensitivity + specificity — 1

ppv— L
TP+ FP
TN
NPV = _——
TN+ FN
F =2 PPV - sensitivity

"PPV + sensitivity

(b) Classification metrics
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dataset for inner cell mass grading and reported an accuracy
of 91%, which seems high compared to a random-guessing
accuracy of 33%. However, due to the dataset imbalance,
merely predicting the class that occurred most frequently
would have resulted in an accuracy of 83%. Therefore,
reported accuracies should always be compared to a
baseline corresponding to naive classification performance.
In the case of pregnancy prediction, this baseline depends
on the prevalence of the measured outcome.

Sensitivity and specificity describe the proportion of
pregnancies that were predicted correctly as positive and
the proportion of failed implantations that were predicted
correctly as negative. Contrary to accuracy, these metrics
are both independent of prevalence. As such, they are
sometimes summarized by the single metric informedness
(or Youden’s J statistic [34]) used to replace the misleading
accuracy metric.

Positive predictive value (PPV) (also called precision)
and negative predictive value (NPV) describe the propor-
tion of positive predictions that were in fact pregnancies and
the proportion of negative predictions that were in fact failed
implantations or miscarriages. PPV and NPV are often con-
sidered as clinically relevant metrics, since they describe
the probabilities of pregnancy/no-pregnancy given a posi-
tive/negative prediction. However, as both metrics depend
on prevalence, PPV and NPV alone do not describe if the
predictions are better than random.

Fi-score is yet another summarized metric, although
rarely used for evaluating embryo evaluation models. It
is the average (harmonic mean) of PPV (precision) and
sensitivity (recall) and is often used in information retrieval
for testing prediction performance on positive predictions
and outcomes only, thus ignoring true negatives (TN). For
instance, a face detection model should be evaluated on how
many actual faces it detects in an image and how many
false detections it introduces in the image. It should not,
however, be evaluated on the true negatives (TN), being the
(infinitely many) positions in the image correctly identified
as not containing faces. For embryo evaluation, however,
true negatives represent non-viable embryos that should be
taken into account in order to minimize time to pregnancy
and associated costs. Therefore, F-score does not provide
a full picture and should, in our opinion, only be used to
provide relative model comparisons with paired analyses on
the same test set.

Model-wide metrics

All of the above metrics operate on binary predictions. Most
Al models, however, provide continuous output values that
need to be thresholded before providing a binary prediction.
That is, a prediction of which embryos are considered
positive and which are considered negative by the model.

While a threshold of 0.5 is often assumed for models that
predict values between 0 and 1, the optimum threshold
may be either smaller or larger and may not generalize
between different patients and clinical practices. Moreover,
for a specific threshold to be useful in a clinical setting,
the continuous predictions should first be calibrated against
observed outcomes [17]. That is, the predicted value should
correspond to the probability of, e.g., implantation [19].
In such cases, a (calibrated) threshold may make sense
in determining which embryos are useful for transfer or
cryopreservation and which embryos should not be used.
The primary objective of current embryo evaluation models,
however, is to rank embryos within a single patient cohort
according to their implantation potential and thus the
order in which they should be transferred to minimize
time to live birth. In this context, the AI model should
not be evaluated on binary predictions, but instead on its
ability to rank the embryos, such that the predicted values
correlate with implantation potentials. The area under the
curve (AUC) of the receiver operating characteristic (ROC)
constitutes such a ranking metric, which is independent of
a specific threshold. This is sometimes referred to as a
model-wide metric, because it summarizes the performance
across the entire model or score range. The AUC is
calculated by first constructing a ROC curve, mapping
the relationship between sensitivity and specificity for
all possible thresholds. Figure 3 illustrates a hypothetical
distribution of predicted scores across positive and negative
implantation outcomes. By applying a threshold on the
predicted scores, a confusion matrix like the one in Fig. 2a
can be constructed and used to calculate a sensitivity and
specificity. This corresponds to a single point on the ROC
curve. For instance, Fig. 3 illustrates how four different
thresholds on the predicted score distribution relate to points
on the ROC curve. The example also illustrates how thr
= 0.5, in this case, is not the optimum threshold if we want
to optimize for either accuracy, informedness or Fi-score. In
fact, the maximum accuracy is achieved at a score threshold
of 0.54, informedness at 0.47, and F{-score at 0.40.

The AUC (or concordance (c) statistic) is simply
defined as the area under the ROC curve. As such, it
provides a combined measure of discrimination ability
across all possible thresholds. Since it is calculated based
on sensitivities and specificities that are both independent
of prevalence, AUC is also independent of prevalence. The
AUC can be interpreted as the probability that a randomly
chosen positive sample (pregnancy) is ranked higher than
a randomly chosen negative sample (failed implantation).
Since it is calculated across the entire population of embryos
from various patients and clinics, AUC does not directly
reflect ranking performance within single patient cohorts.
Unfortunately, cohort-specific evaluations are typically
unattainable, as outcome information is only available for
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Fig. 3 Example of a hypothetical distribution of predicted scores across positive and negative implantation outcomes and the corresponding

receiver operating characteristic (ROC) curve

transferred embryos that usually constitute a small fraction
of the embryos in a cohort. However, various approaches
that deal with clustered data may be used to report, e.g.,
average AUCs across different clinics in order to provide
discrimination performances that are not biased by, e.g.,
clinical differences [16, 35].

AUC has been falsely accused of being influenced by
class imbalance [12, 21] with the conclusion that “the metric
cannot be trusted in highly unbalanced data” [8]. However,
as described above, AUC is independent of prevalence and
thus not influenced by unbalanced datasets. That is, if a
dataset includes, e.g., 10 times more negative than positive
outcomes, the AUC remains the same theoretically as if
they were balanced, as long as the score distributions of
positive and negative samples are unchanged. In Fig. 3a, this
means that the difference in height between the distributions
of positive and negative samples does not influence AUC.
The above studies may have confused class imbalance
with unequal misclassification cost, that is, the case in
which false positives (FP) and false negatives (FN) are
weighted unequally. In IVF, a false positive translates to a
failed implantation or miscarriage after transfer of a chosen
embryo, whereas a false negative translates to a missed
pregnancy because the embryo was incorrectly deprioritized
for transfer. Therefore, both misclassification types have
costs, and the optimal compromise between these may differ
between clinics and patients, as the trade-off is defined
by multiple factors including time to pregnancy, financial
costs, and emotional costs. Therefore, we suggest that AUC
values should generally be accompanied by ROC curves
that provide a full picture of performances across different
thresholds and allow the reader to lookup sensitivity and
specificity at their preferred trade-off (threshold). PPV and
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NPV can then be derived by weighting the sensitivity and
specificity by prevalence:

PPV — sensitivity x prevalence )
"~ sensitivity x prevalence + (1 — specificity) x (1 — prevalence)

specificity x (1 — prevalence)
NPV = —— —— @
(1 — sensitivity) x prevalence + specificity x (1 — prevalence)

Although not reported in any of the studies in Table 1, an
alternative representation to the ROC curve is a precision-
recall (PR) curve. The curve maps the relationship between
PPV (precision) and sensitivity (recall) and is therefore
independent of true negatives. Similar to the ROC curve, it
can be summarized using an area under the curve and is then
specifically termed PR AUC to avoid confusion between
the two. PR AUC has the same benefits and disadvantages as
the Fi-score mentioned above, however with the important
difference of providing a performance measure across all
possible thresholds.

Another ranking metric reported by [13] is the normal-
ized discounted cumulative gain (nDCG) [36]. It measures
the ranking quality within a cohort by weighting embryos
by their relevance and their position in the sorted list of
model scores. In the study by [13], relevance was measured
in terms of euploid/aneuploid outcomes of preimplantation
genetic testing (PGT). nDCG provides a ranking measure
between 0 and 1, with 1 indicating perfect ranking. That
is, nDCG = 1 when all euploid embryos within a cohort
have higher scores than all aneuploid embryos. The metric
is highly relevant for evaluating the ability of a model to
rank embryos according to PGT outcomes, whereas it may
be less relevant for evaluating ranking ability on transferred
embryos according to pregnancy outcome. This is because
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PGT results are obtained in parallel on multiple embryos
from a cohort irrespective of the ranking, whereas preg-
nancy outcomes are obtained sequentially according to the
ranking until the first positive pregnancy occurs. Effectively,
this limits the data foundation on which a meaningful anal-
ysis for transferred embryos can be carried out unless all
embryos are cryopreserved and eventually transferred with
a known outcome.

Clinical usefulness

All of the above mentioned metrics address model
discrimination, that is, the ability of a model to discriminate
between examples with positive and negative outcomes.
However, the ability of a model to discriminate on all
embryos, transferred or not, from a single or even multiple
clinics does not necessarily relate to how useful the
model would be in clinical practice. To address this
question, model calibration curves can be used to report
clinical agreement between model predictions and observed
outcomes [37, 38]. This relates to the prediction objective
of embryo evaluation, rather than ranking.

After training an Al model using, e.g., a neural network,
the predicted scores of the model typically lie between O and
1, with 1 indicating a higher likelihood of pregnancy than
0. However, this does not mean that the predicted scores
directly represent pregnancy probabilities. Therefore, before
evaluating how the scores relate to observed success rates,
AI models typically need to be calibrated. A prerequisite
to successful calibration, however, is that a monotonic
relationship exists between predicted scores and success
rates. This can be measured using the Spearman’s rank
correlation coefficient p which is 1 in case of a perfect
monotonic increasing relationship and close to 0 in case
of a weak relationship. [22] has used this to compare the
relationship between model scores and observed success
rates, grouped by deciles of scores. If p is close to 1,
model predictions can be calibrated using, e.g., a logistic
regression model in order to obtain a linear relationship
between scores and success rates. Here, either the training
set or the validation set can be used to fit calibration
coefficients. However, whereas data balancing may have
helped during training of the Al model, it is essential that
calibration coefficients are estimated without artificial data
balancing. Otherwise, the predicted probabilities by the
model will be biased [17]. To limit overfitting, shrinkage
techniques may be used [16, 19], either within the Al model
itself or in the calibration method.

Figure 4 illustrates an example of a calibration curve
based on simulated predictions from a hypothetical embryo
evaluation model. As for all other evaluation metrics, the
calibration curve should always be reported based on the
independent test set. Predicted scores between 0 and 1

1.0 pfeeeee- Perfect calibration
A  CGrouped observations
—— Flexible calibration (Loess)

0.8 Positive observations

Negative observations

0.6

Observed success rate

o

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Predicted probability

Fig.4 Calibration plot linking predicted probabilities to actual success
rates. Grouped observations (triangles) represent success rates for
embryos grouped by similar predictions. Flexible calibration (solid
line) represents a smoothed estimate of observed success rates in
relation to model predictions. The distributions of scores for positive
and negative pregnancy outcomes are shown at the bottom of the graph

are shown on the x-axis, whereas corresponding success
rates (pregnancy ratios) are shown on the y-axis. The
triangles represent success rates for the evaluated embryos
grouped by similar predictions (deciles). The red line
represents a Loess smoothed estimate of observed success
rates in relation to model predictions along with standard
deviations [39]. The black, dotted line represents an ideal
calibration. And finally, score distributions of embryos that
result in positive and negative pregnancy outcomes are
shown at the bottom.

In the specific example, we see that, on average, model
predictions agree roughly with observed outcomes, as both
the triangles and red line fluctuate around the ideal cal-
ibration. However, for model predictions below 0.5, the
model is underestimating success rates, whereas for predic-
tions above 0.5, the model is overestimating success rates. It
thus seems that the model has overfitted on the calibration
data (training or validation set). While different methods
exist for measuring general lack of calibration, such as
the Hosmer-Lemeshow goodness-of-fit statistic [40], these
are all sensitive to both grouping methods (e.g., prediction
deciles) and sample size, and provide no direction of mis-
calibration in terms of overestimation or underestimation. It
is therefore generally recommended to present full calibra-
tion curves, as opposed to reporting a combined statistic [16,
38].

Calibration plots like the one in Fig. 4 can be used
to assess the overall calibration of the model. They can,
however, also be used to perform subgroup analyses
by showing individual calibration plots for different age
groups, clinics, fertilization methods (IVF/ICSI), etc. In this
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case, it may become evident that individual calibrations
are needed for each group in order to match the observed
outcomes.

Of the 13 studies presented in Table 1, only two con-
sidered the clinical agreement between model predictions
and observed outcomes [22, 24], although in both cases
without any mentions of the concept “calibration”. This
agrees with a general trend for clinical prediction models
that often neglect to report calibration results, but tend to
focus entirely on discrimination [38].

In addition to calibration curves, clinical usefulness
may also be addressed with decision curves [19]. As
mentioned above, a single threshold may not generalize
between different patients and clinical practices. Therefore,
a decision curve such as net-benefit can show the expected
benefit of a treatment (e.g., transferring an embryo) relative
to no treatment as a function of the threshold value. The
difficulty, however, lies in defining a harm-to-benefit ratio,
incorporating all possible harms and benefits related to
a treatment. In IVF, these could involve financial costs
related to embryo cryopreservation, emotional costs related
to transferring embryos that most likely do not result
in pregnancies, or financial costs and extended time to
pregnancy when deciding not to transfer at all, but instead
starting a new cycle. As of now, however, none of these
considerations seems to be quantified. That is, none of the
studies listed in Table 1 reports patient-specific thresholds
for deciding which embryos to transfer or cryopreserve and
which embryos to deprioritize for transfer.

Sample size

Traditional regression models often require, as a rule of
thumb, at least 10 events per variable (EPV) when esti-
mating sample sizes needed for model development [17].
A simulation study by [41] showed that machine learning
methods such as neural networks often require at least 200
EPV to minimize overfitting. However, as argued in “Data
split,” modern Al models not only address overfitting issues
by using “big data”. Training characteristics such as data
augmentation, weight regularization, and potential pretrain-
ing on other datasets can greatly reduce overfitting and thus
make the concept of EPV irrelevant. Instead, sample size
considerations should be made when evaluating the gen-
eralization performance of a model. Here, the sample size
of the test set determines what claims of performance can
be made and with what certainty. For instance, for exter-
nal validation of a prediction model, a sample size should
be chosen that produces accurate and precise estimates of
model performance [42].

Figure 5 illustrates this for four different metrics with
simulated test sets of different sizes drawn from the

@ Springer

hypothetical score distribution in Fig. 3a. Embryos are
drawn randomly with an average prevalence of 40%.
Accuracy, informedness, and Fj-score are all calculated
based on score thresholds of 0.5. For test sets with 10
embryos, all metrics have high standard deviations. This
means that simply by role of chance, a test set with 10
embryos can be extremely easy or extremely difficult to
distinguish for the same model. For test sets with 100
embryos, the variation is smaller with standard deviations
around 1/3 of what they were at 10 samples. With 1000
embryos, all metrics have standard deviations of around
1/10 compared to the initial values at 10 samples. It is
therefore important always to report confidence intervals for
all performance measures, such that expected uncertainties
are made explicit [16].

The above results illustrate that even if two Al models
report their results on exactly the same population of
embryos, sample size of the test set in itself greatly affects
the certainty of a comparison, regardless of which metrics
are used. Again, this underlines the importance of paired
analyses, that is, evaluating different models on the exact
same dataset.

Bias in model comparisons

As shown in Table 1, embryo evaluation models are often
compared to human embryologists. The purpose of these
comparisons is generally to benchmark the AI model
against the current manual selection/ranking procedure in
the clinics. In this context, caution must be taken, as
comparisons are most often made on retrospective data
as opposed to actual prospective use under real clinical
conditions [5]. This introduces a risk that the comparison
may be biased by, e.g., optimism or reporting bias [17, 29,
43]. More so, results may be biased when the properties of
the AI model was used to define the method of comparison.
For instance, Chavez-Badiola et al. [13] compared their
Al model against embryologists at predicting ploidy, even
though embryologists are not trained for this task (illustrated
by their performances that were similar to random
predictions). Similarly, VerMilyea et al. [12] compared
their Al model against embryologists based on binary
(viable/non-viable) predictions. As embryologists were
never trained or asked to provide such binary predictions,
the authors instead inferred them from an existing scoring
system used by embryologists, thereby introducing a risk of
bias.

As indicated by the embryo population column in
Table 1, the majority of evaluations are performed on a
data subset of transferred embryos only. The decision to
transfer these embryos has typically been performed by the
embryologists themselves, possibly using the exact same
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Fig. 5 Influence of test set sample size (log scale) on standard devi-
ations for different metrics. Solid lines denote mean values for each
metric, whereas shaded regions illustrate the standard deviations.

(or a strongly correlated) procedure as the one used in the
human vs. Al comparison. Unfortunately, this introduces a
selection bias that is inevitable when comparing current and
future practices in a retrospective cohort study.

To illustrate the phenomenon, we have simulated how
two similar models perform on a subset of embryos that was
chosen by one of the models. Figure 6a depicts model score
distributions of transferred embryos that result in positive
and negative pregnancy outcomes. In this example, the two
hypothetical models both assign scores with a mean of 0.65
and standard deviation of 0.2 for embryos with a positive
outcome. Embryos with a negative outcome are sampled
with a mean score of 0.35 and a standard deviation of 0.3.
To simulate different correlations between the two models,
all samples are drawn from bivariate truncated normal
distributions with covariance matrices derived from Pearson
correlation coefficients, p. We sample 1000 embryos of
which 400 have positive outcomes and 600 have negative
outcomes (prevalence = 0.4). As both models (model 1
and model 2) are sampled from the same score distributions,
they also result in the same overall AUC of 0.76. That is, the
two models are equally good at distinguishing positive and
negative outcomes.

Figure 6b illustrates the scenario in which model 1 is
used to select embryos for transfer in an actual clinical
setting. Model 1 could thus represent embryo scores

0.7 1

0.6

Informedness

0.3

o
o

0.1 1

T T T T T T T T T
10 20 50 100 200 500 1000 2000 10000

Samples
0.95 4
0.90 4
0.85
0.80
o
=1
=
0.75
0.70
0.65
0.60 1
10 20 50 100 200 500 1000 2000 10000
Samples

Potential performance improvements caused by increasing the sample
size of the training set are not addressed in this analysis

assigned by embryologists based on manual morphokinetic
or morphological annotations. To simplify the analysis,
we assume that all embryos with a score > 0.5 (green
region) are transferred, while the rest are not used. When
we evaluate model 1 on the transferred embryos only,
the model now results in a lower AUC of 0.59. In
many retrospective cohort studies, a newly developed Al
model is compared against the traditional embryo selection
procedure, retrospectively. This corresponds to evaluating
model 2 on the subset of embryos that were chosen for
transfer by model 1. On this subset, model 2 obtains an AUC
of 0.74, which is considerably higher than the 0.59 obtained
by model 1. Intuitively, this makes sense because model
1 has to discriminate all the transferred embryos based on
scores between 0.5 and 1, while model 2 can still use the full
range of scores between 0 and 1. In Fig. 6b, the difference
in performance is large, because model 1 and model 2
are only weakly correlated. In practice, this means that
the two models might not look at the same characteristics
of an embryo, and thus they might assign substantially
different scores to the same embryo. Figure 6¢ and d show
similar examples, where the two models are moderately
and strongly correlated. Here, we see that the performance
differences narrow down, when the two models are more
correlated. In the extreme scenarios, model 2 obtains an
AUC of 0.76 (same as overall AUC) in case of no correlation
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Fig.6 Influence of selection
bias on model comparison
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(c) Moderate model correlation (p = 0.75)

p = 0, and 0.59 (same as model 1) in case of perfect
correlation p = 1.

The simulation in Fig. 6 demonstrates selection bias in
retrospective cohort studies. When a study compares its
newly developed model (model 2) against a baseline model
(model 1) that was used to select the test dataset (e.g.,
transferred embryos), the evaluation will be biased and
falsely show better performance of the newly developed
model. The amount of bias depends on two parameters: (1)
the selection criteria of model 1, and (2) the correlation
between the two models. The bias increases if the selection
strictness of model 1 increases (e.g., a higher threshold
than 0.5 in Fig. 6b—d). In practice, this means that for
clinics with very strict selection strategies, Al models are
more likely to appear better than humans without actually
being so, simply due to the selection bias. The bias also
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increases if the correlation between the embryo scores of
the two models decreases. While Fig. 6 only presents a
comparison based on AUC values, Table 2 shows that the
exact same selection bias exists for the summarized binary
classification metrics accuracy, informedness and Fj-score
(when choosing optimal thresholds for each metric).

In the above simulations, a global threshold of 0.5 was
used to decide whether embryos should be transferred or
discarded. This served as a simple criteria, which was easy
to visualize. In reality, such a global threshold is never used.
However, even in realistic cases with less strict transfer-
policies, the selection bias still exists. And even when the
baseline model (model 1) of a study is not exactly the
same as the model or procedure that was used to select the
test dataset, the selection bias remains in place if the two
procedures are correlated. For instance, if the decision to

Table 2 Influence of selection bias on model comparison with different performance metrics

Accuracy Informedness F1-score AUC

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
Overall 0.70 0.70 0.41 0.41 0.68 0.68 0.76 0.76
p=0.25 0.60 0.71 0.13 0.37 0.74 0.79 0.59 0.74
p=0.75 0.60 0.66 0.14 0.25 0.74 0.76 0.59 0.66
p =0.95 0.61 0.63 0.14 0.15 0.75 0.75 0.59 0.61

All performance measures are obtained from the simulations in Fig. 6
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transfer certain embryos was based on blastocyst grading
and the baseline model (model 1) used both blastocyst
grading and morphokinetics, they are still expected to
correlate, and thus still introduce a selection bias in the
comparison.

Many of the papers listed in Table 1 present comparisons
of their AI models against embryologists on retrospective
data without any mentions of biased performance consid-
erations [12-15, 20, 22, 24, 26]. Some of these even claim
statistical significant superiority over embryologists [12, 13,
20]. However, in order to eliminate selection bias and thus
provide a fair comparison, randomized controlled trials are
needed.

Discussion

Modern Al techniques for embryo evaluation have the
potential to both automate and improve current manual
and subjective selection performance. This will result in an
improvement of the clinical workflow, reduced time spent
on manual evaluations, and possibly even a reduction in
time to pregnancy. In recent years, several studies have
reported promising results using artificial intelligence (AI)
to automatically analyze embryo images or videos. The
objective of these methods can be to (1) rank embryos
according to their potential to implant, and/or (2) predict
the actual probability of pregnancy for each embryo. How
to evaluate the performance of these objectives, however, is
currently inconsistent across studies, and recommendations
and best practices on the subject have not yet been agreed
upon.

In this paper, we have shown that it is not possible to
define a set of “universal” requirements and recommenda-
tions for how to split datasets into training, validation and
test sets. Neither is there a universal truth for whether to
balance datasets in order to ensure an equal numbers of pos-
itive and negative examples. That is, unbalanced datasets
can cause problems during training and seemingly pro-
vide overoptimistic performance measures of prevalence-
dependent metrics during evaluation. At the same time,
balanced datasets do not represent actual clinical practices,
as current success rates of IVF are often below 50%.

We have provided a list of the most common evaluation
metrics and related all of them to their dependency on
prevalence (data balance). Relating the metrics to the two
objectives of (1) ranking and (2) prediction, we recommend
the area under the receiver operating characteristic (ROC
AUC) for reporting overall ranking performance across
treatments. Furthermore, when sufficient outcomes are
available within a treatment (e.g., for preimplantation
genetic testing), normalized discounted cumulative gain
(nDCG) can be used to report ranking performance on

treatment level. To evaluate the performance of probabilistic
prediction models, we recommend calibration curves,
possibly accompanied by decision curves to document
the clinical relevance of providing probability estimates.
Further reporting, such as showing the ROC curves and
not just reporting AUC values, may also help scientists
and clinicians assess discrimination performance at various
thresholds. However, providing a single confusion matrix
or single values for binary metrics such as accuracy,
sensitivity, or specificity, can be misleading, as no single
model threshold is likely to generalize across all patients
and clinical practices.

According to several recent studies listed in Table 1,
current Al models already surpass human performance [12,
13, 20] and are hypothesized to provide improvements
of clinical relevance as well [12]. Additionally, some
studies claim superiority over others, by comparing
reported measures across datasets, embryo populations, and
measured outcomes.

In this paper, however, we have illustrated how Al model
evaluations on different embryo populations or measured
outcomes cannot be compared in a meaningful way. That is,
different data distributions, patient populations, or observed
success rates directly affect maximum obtainable perfor-
mance measures and thus are incomparable. Therefore,
paired analyses on the same datasets seem to be the only
appropriate and valid comparisons available. Ideally, a large
multicentric dataset hosted by an independent party could be
used to evaluate and compare Al models in a double-blinded
fashion. In this way, embryo image data would be pub-
licly available, whereas outcome labels would be hidden and
managed centrally just like in the ImageNet challenge [32].
Using this approach, different AI models could be com-
pared on various subpopulations for their performances on
both ranking and probability prediction. However, we have
also shown that even in the case of a paired analysis, selec-
tion bias is inevitable when comparing current and future
practices on transferred embryos in a retrospective cohort
study. In practice, this means that superiority claims, even in
case of statistical significance, should always be interpreted
with caution. Along with many other concerns such as
model generalization ability, clinical relevance, and poten-
tial model bias, this finding highlights the importance of
prospective trials. To truly validate the performance of an
Al model in a clinical context and to reveal any improve-
ments over current practices, randomized controlled trials is
the only valid evaluation.
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