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Abstract
Purpose Our retrospective study is to investigate an end-to-end deep learning model in identifying ploidy status through raw
time-lapse video.
Methods By randomly dividing the dataset of time-lapse videos with known outcome of preimplantation genetic testing for
aneuploidy (PGT-A), a deep learning model on raw videos was trained by the 80% dataset, and used to test the remaining 20%,
by feeding time-lapse videos as input and the PGT-A prediction as output. The performance was measured by an average area
under the curve (AUC) of the receiver operating characteristic curve.
Result(s) With 690 sets of time-lapse video image, combined with PGT-A results, our deep learningmodel has achieved an AUC
of 0.74 from the test dataset (138 videos), in discriminating between aneuploid embryos (group 1) and others (group 2, including
euploid and mosaic embryos).
Conclusion Ourmodel demonstrated a proof of concept and potential in recognizing the ploidy status of tested embryos. A larger scale
and further optimization on the exclusion criteria would be included in our future investigation, as well as prospective approach.
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Introduction

The ultimate goal of assisted reproduction technology (ART)
is to carry out healthy live births. With regard to the current
ART practice, selecting the best embryo to transfer is highly
dependent on daily morphology observation by embryologists
trained with traditional grading systems. Though implantation
potential has been considered higher among good-quality

blastocysts, the correlation to clinical outcomes including
ploidy status of embryo remains unsatisfactory with existing
methods [1]. As morphology assessment has its subjective-
ness due to the reliance of experience from embryologists
and timing of observation, preimplantation genetic testing
for aneuploidy (PGT-A) which performs implantation screen-
ing by detecting the chromosomal status of embryos has be-
come a solid tool to interpret the genetic quality of the embryo
[1]. However, PGT-A requires an invasive biopsy of
trophectoderm (TE), which may intervene later in embryonic
development and implantation; such approach has been sug-
gested only under certain clinical indications with caution, not
as a universal utilization on all patient cases [2]. As the current
standard practice PGT-A protocol requires the highly invasive
biopsy procedure, scientists have been seeking non-invasive
methods to minimize the harm to the embryo. Beside PGT-A,
the cell-free DNA analysis is one of the alternative approaches
to predict chromosomal status [3], which also has the potential
to increase the feasibility toward a larger number of clients and
reduce lab expenses [4]. However, the frequent presence of
non-embryonic sources of DNA in spent culture medium, e.g.,
maternal DNA from cumulus or corona radiata cells, still
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exists and requires more research in that direction for future
clinical application [5].

As morphology grading remains the mainstream meth-
od of embryo evaluation, and PGT-A seems to provide a
higher implantation potential [6], studies started to con-
nect ploidy results with morphology and studies showed
that the morphology in the blastocyst stage has been
known to be associated with embryonic aneuploidy [7,
8]. Therefore, the morphology approach provides another
direction of ploidy prediction through non-invasive as-
sessment. The invention of the time-lapse incubator pro-
vides the laboratory an opportunity to utilize a vast num-
ber of sequence images for detailed morphology assess-
ment. By analyzing continuous embryo development
through captured time-lapse images from the incubator,
the focus of embryo assessment has been shifted from
the single snapshot morphological image to a more fluidic
morphokinetic direction. Previous time-lapse studies have
shown a potential relationship between morphokinetic pa-
rameters and ploidy status [9–13]. However, regarding the
efficacy of such an approach, the methodology of ploidy
prediction through time-lapse parameters is not ready for
universal clinical practice [14, 15].

While time-lapse morphology has limitations in applying
to clinical settings through statistical approach alone, deep
learning approaches first started gaining its potential in med-
ical imaging [16], followed by studies exploring its applica-
tions in ART to assist embryo evaluation and selection
through images [17–19].

Compared with those commonly selected positive clinical
outcomes, the genetic status relevant to ploidy results was
seldom selected as an endpoint for deep learning models; until
the most recent similar approach as Table 1 displays, AUC
ranged from 0.56 to 0.74 [9, 11, 15, 18, 19]. However, those
approaches varied in parameter selection, statistical analysis,
or deep learning approaches.

Identifying the embryo’s ploidy status could facilitate the
shortening of time-to-pregnancy; we were interested in wheth-
er a non-invasive deep learning approach toward the time-
lapse video was capable of predicting the ploidy status from
day 1 to day 5. In this study, we aim to see whether a
morphokinetic approach using a novel deep learning model
developed in-house through time-lapse video, instead of la-
beled parameters, can correlate with PGT-A result more pre-
cisely than existing protocols. Although there are studies that
combine ploidy outcomes to human embryo images through
deep learningmodels, the input data was mostly single images
instead of continuous time-lapse video. To the best of our
knowledge, the same approach as using continuous time-
lapse images connecting to ploidy status prediction by using
deep learning models has not yet been found. Therefore, our
study would like to know whether continuous raw time-lapse
videos can predict ploidy status through deep learningmodels. Ta
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Material and methods

Data collection and patient selection

This retrospective study was approved by the Institutional
Review Board (approval numbers CS18082 on 30 April
2018 and CS19039 on 1 April 2019) of Chung Sun
Medical University, Taichung, Taiwan. All procedures
were performed in compliance with relevant guidelines
and regulations [20].

A total of 108 patients undergoing 119 PGT-A cycles at the
Lee Women’s Hospital were enrolled. Cases that meet the
following conditions are excluded from our study: AMH ≤
1.1 ng/mL, advanced age group (> 38 years old), severe en-
dometriosis and uterine pathology, surgical sperm retrieval,
and the patient experienced at least three previous failures of
euploid embryo transfers. We obtained a total of 144,210 data
points from 690 sets of videos collected from the time-lapse
incubator. The Ethics Committee waived the requirement for
informed consent as the time-lapse monitoring was free of
charge to patients during the study period [20].

In vitro fertilization, embryo culture, and
micromanipulation

Oocyte retrieval, insemination, embryo culture, trophectoderm
biopsy, and embryo vitrification/warming were managed and
performed by following the standard protocols [21].
Insemination procedure, conventional or ICSI, was performed
in a fertilizationmedium (SAGEBiopharma, USA)with a 15%
serum protein substitute (SPS; SAGE Biopharma, USA). After
fertilization check, embryos were moved to EmbryoSlide+ cul-
ture dish with equilibrated cleavage medium (SAGE) contain-
ing 15% SPS, and placed into the time-lapse incubator
(EmbryoScope+, Vitrolife, Sweden) supplemented with gas
mixture at 5% CO2, 5% O2, and 90% N2. At this time, the
time-lapse video monitoring process began. After 70–72 h of
insemination or ICS, the culture medium was replaced by an
equilibrated blastocyst medium with 15% SPS (SAGE). The
quality of blastocysts expanded on day 5 or 6 was assessed
before biopsy. We used Gardner & Schoolcraft grading system
[22] to determine embryos feasible for biopsy for PGT and
vitrification. We only biopsied those that were considered de-
sirable (AA, BA, CA, AB, BB, CB, AC, and BC). Our biopsy
procedures were equipped with a warming plate on a Diaphot
300 inverted microscope (Nikon, Japan). Blastocysts were
shifted to microdroplets of blastocyst medium, and the biopsy
procedures were performed by using micromanipulation tools
(Humagen, USA). After creating a hole by 3–5 ms laser pulses
on zona pellucida away from ICM, 5–8 trophectoderm cells
were smoothly aspirated into the biopsy pipette. Then, by ap-
plying 2–3 laser pulses, the trophectoderm cells were then de-
tached from the blastocysts. With smooth suction, those

biopsied trophectoderm cells were shifted to droplets of
phosphate-buffered saline. After rinsing several times, we
moved the biopsied trophectoderm cells into an RNAse–
DNAse-free polymerase chain reaction tube. Those biopsied
blastocysts were subjected to vitrification (Cryotech, Japan)
after more than 3 h of incubation within a tri-gas incubator [20].

Determination of diploid–aneuploid

According to the diploid–aneuploid mosaic ratios detected
using the high-resolution next-generation sequencing (hr-
NGS) platform on the biopsied cells, blastocysts were divided
into the following four groups as Table 2: (i) euploid blasto-
cysts with mosaicism levels ≤ 20%; (ii) low-level mosaic blas-
tocysts with mosaicism levels between 20 and 50%; (iii) high-
level mosaic blastocysts with mosaicism levels between 50
and 80%; (iv) aneuploid blastocysts with mosaicism levels >
80%. In this study, a total of 690 expanded blastocysts derived
from culture in the time-lapse incubator were biopsied for the
hr-NGS analysis. Amplification failure was encountered in
nine blastocysts (1.3%), which were warmed for rebiopsy
followed by re-vitrification.

Model architecture and training process

Two-Stream Inflated 3D ConvNet (I3D) produced by Google
was chosen as our model’s structure [23] for its significant
improvement in classifying videos in action recognition.
After being pre-trained on the ImageNet and Kinetics datasets,
our model was then fine-tuned on the study datasets to learn
how to classify the embryos as group 1 (aneuploidy) and
group 2 (euploidy and mosaicism) based on a series of images
by itself. For fine-tuning, the weights of all convolution bases
were frozen, and the model was trained 1 epoch with a learn-
ing rate of 0.001. Later, weights were unfrozen for all layers,
and the model was trained 400 epochs with a learning rate of
0.01. Stochastic gradient descent with warm restarts was uti-
lized with 20 epochs per cycle, and the learning rate was
decayed epoch by epoch with a rate of 0.8 within each cycle
[24]. Batch size was set to 8 during training.

Deep learning models have the benefits of data augmenta-
tion because augmentation can increase the diversity of data
and simulate different situations [25, 26]. Before training, sev-
eral computer vision methods and calculations were utilized
on the model inputs, i.e., data augmentation and normaliza-
tion. For data augmentation, Fig. 1 briefly shows the change
of images during the augmentation. Figure 1A is the original
image, and Fig. 1B is the image after random horizontal and
vertical flips on the original image (Fig. 1A) with a probability
of 0.5. Figure 1C is a normal frame modified with gamma
contrast uniformly sampled from 0.5 to 1.5. The gamma con-
trast utilizes a formula listed as below:

output pixel = (pixel/255)γ

1657J Assist Reprod Genet (2021) 38:1655–1663



Lastly, the images or flows were randomly rotated up to
30°, and then shifted within 20% of the image width horizon-
tally and height vertically, respectively (Fig. 1D).

For the calculation of optical flow, TV-L1 algorithm
was utilized [27]. For the normalization part, pixel
values of the normal frames were rescaled to (−1, 1),
and values of the optical flow were clipped within (−20,
20) then rescaled to (−1, 1).

Figure 2 summarizes the process mentioned above. Our
input models are RGB I3D and Optical flow I3D. For the
RGB I3D model, since time-lapse videos are gray-scale
videos, we broadcast gray-scale data to three channels (red,
green, and blue (RGB)) in order to adapt to the input of a pre-
trained RGB I3D model. Different from RGB I3D, optical
flow is a vector. The color’s intensity is used for expressing
the calculated result of optical flow: The depth of the red
represents the vector of optical flow. Figure 3 also shows that
our raw time-lapse video has been fed by two different I3D
models: RGB and optical flow. After averaging the predic-
tions of RGB I3D and Optical flow I3D, the model predicts
the ploidy status as group 1 (aneuploidy) and group 2 (euploi-
dy and mosaicism).

Model evaluation

The dataset was split randomly into a training set (80% of
videos) and a test set (20% of videos) to examine the model’s
performance. The performance was measured by the AUC,
and we also observed the probability distribution of the dif-
ferent models. We evaluated the various settings of the

different model inputs, including the RGB (normal frames)
and the optical flow (motion features), and the time partitions,
consisting of day 1, day 1 to 3, and day 1 to 5. The working
flow is characterized as shown in Fig. 2.

Results

A total of 690 embryo videos were included in this study, with
all of them having been developed into expanded blastocysts.
Trophectoderm biopsy was performed on day 5 or day 6 for
hr-NGS-based PGT-A, and the blastocysts were classified as
group 1 (aneuploidy) and group 2 (euploidy and mosaicism).
In Table 3, time-lapse videos were divided into 3-time parti-
tions: day 1, day 1 to 3, and day 1 to 5. Besides the different
time partitions, we also validated both the RGB images
followed by the optical flow and with the additional fused
result from the RGB and optical flow. Our AUC result ap-
peared that neither the RGB nor the optical flow showed a
promising result in any of the time partitions selected.
However, while we did an average fusion on the predictions
of the RGB and optical flow models, the AUC result
was improved to 0.74. Figure 4 shows the ROC of the
model training on day 1 to 5 dataset in detail. The
curve with the fused predictions was overall on the
top-left side of the other curves, meaning that both the
true-positive rates and false-positive rates were mostly
better than those of other predictions. Therefore, the
fused predictions were favorable than the other ones
under almost all thresholds.

Fig. 1 Sample images of an embryo with data augmentation under time-
lapse video images. Random horizontal and vertical flips on original
image (A) is implemented with probability 0.5 (B). If the inputs are
normal frames (RGB), gamma contrasts are utilized, as the contrast of

images was modified with gamma (γ) uniformly sampled from 0.5 to 1.5
(C). At last, images or flows are randomly rotated up to 30°, and then
shifted within 20% of image width horizontally and height vertically,
respectively (D)

Table 2 Distribution of PGT-A
results. Parentheses denoted open
interval and square brackets indi-
cated closed interval

PGT-A result group Euploidy Low mosaicism High mosaicism Aneuploidy

Mosaicism levels (%) ≤ 20 (20, 50) [50, 80] > 80

Count 258 196 79 157

Ratio (%) 37.39 28.41 11.45 22.75
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Fig. 2 The flow chart of the
overall process. Exporting time-
lapse video from TLS, and obtain
metadata such as PGT-A results.
The study extracts frames ap-
proximately every 0.5 hpi and
starts to calculate optical flow.
Later, we split data randomly into
a training set (80%) and a testing
set (20%). The data augmentation
is done by random flipping input
images horizontally and vertical-
ly, following with contrast ad-
justment if the input was a RGB
format, also combined with some
rotation and shifting. After the
previous steps have been com-
pleted and ready, the model
training begins: fine tune on two-
stream I3D pre-trained on
ImageNet and Kinetics. Last, we
evaluated our model performance
on AUC and the distribution of
prediction. The TLS represents
time-lapse

Fig. 3 The I3D model process map. Our input models are RGB I3D and
Optical flow I3D. For the RGB I3D model, since time-lapse videos are
gray-scale videos, we broadcast gray-scale data to three channels (red,
green, and blue (RGB)) in order to adapt to the input of a pre-trained RGB
I3Dmodel. Different from RGB I3D, optical flow is a vector. The color’s
intensity is used for expressing the calculated result of optical flow. The

depth of the red represents the vector of optical flow. Figure 3 shows that
our raw time-lapse video has been fed by two different I3Dmodels: RGB
and optical flow. After averaging the predictions of RGB I3D and Optical
flow I3D, the model predicts the ploidy status as group 1 (aneuploidy)
and group 2 (euploidy and mosaicism)
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Figure 5 is the confusion matrix with considering group 2
as positive, showing false-positive rate: 0.666 (18/27), and
false-negative rate: 0.072 (8/111). Such a result may be due
to the fewer samples size of group 1, compared with that of
group 2. In order to clarify such a result, we use another
analyzing approach as follows.

The prediction distribution of each model is shown in Fig.
6. Although the difference was unclear between groups 1 and
2 in the RGB and optical flowmodel, the distribution of group
1 was more compact than other models in the fused model.

Figure 7 shows calibration performance of model predic-
tions, with X-axis range of sorted predictive values split by
quartiles, and Y-axis actual probabilities of aneuploid occur-
rence. Except for the RGBmodel, probabilities of optical flow
and fused model increased monotonically, meaning that those
models were more robust. The calibration of the optical flow
model was slightly better than the fused model in the quartile
view, yet the fused model had a huge improvement in the
AUC metric. Figure 8 shows that the majority of predicted
confidence scores of group 1 have fallen between 0.3 and
0.8. Those less than and equal to 0.5 are classified as group
2 mistakenly. Those fallen above 0.5 are classified as group 1
in the threshold of 0.5. Our model had better performance in
distinguishing group 2 since 75% of group 2 have been cor-
rectly identified with a strong confidence score (> 0.8). The
result may be caused by the relatively small sample size of

group 1 (n = 157, 22.75%), compared with group 2 (n = 533,
77.25%). There are several solutions for such limitations: first,
balancing and expanding datasets in ploidy status. We can
also seek for distinguished special features of morphokinetic
or morphology from time-lapse videos. Alternatively, there is
a need to develop deep learning algorithms optimized in time-
lapse videos of embryos. Thus, our current approach was to
prove the concept of using time-lapse images to deselect an-
euploidy blastocysts.

Discussion

Videos provided from the time-lapse incubator have satisfied
the need to better understand the continuous embryo develop-
ment within an incubator. However, with a large amount of

Table 3 AUC over different time partitions

Time partition Day 1 Day 1 to day 3 Day 1 to day 5

RGB 0.57 0.59 0.66

Optical flow 0.58 0.62 0.67

Fused 0.58 0.63 0.74

Fig. 4 ROC curve of all models on time partition days 1 to 5. The curve
with fused predictions is overall on the top-left side of other curves,
meaning that both true-positive rates and false-positive rates are mostly
better than others. Therefore, fused predictions are better than other ones
under almost all thresholds

Fig. 5 Confusion matrix of fused model on time partition day 1 to day 5.
Figure 5 shows the performance of the testing set, though the confusion
matrix showed false-positive rate: 0.072 (8/111), false-negative rate:
0.666 (18/27), positive predictive value (PPV, precision): 0.529 (9/17),
and recall sensitivity: 0.333 (9/27). Considering aneuploidy as positive,
such a result may be due to the few samples of group 1, compared with
that of group 2. The result can be adjusted through changing the threshold
to 0.3: AUC = 0.751, PPV = 0.436, recall = 0.63, false-positive rate =
0.198, and false-negative rate = 0.37

Fig. 6 Boxplot of different models prediction on days 1 to 5. Although
the difference was unclear between groups 1 and 2 in the RGB and optical
flow model, the distribution of group 1 was more compact than other
models in the fused model

1660 J Assist Reprod Genet (2021) 38:1655–1663



images to annotate and process, in addition to the labeling
stages, finding useful and meaningful information from
time-lapse images has been quite challenging as well.

Studies about relationships of ploidy status with time-lapse
images in recent decades have different conclusions [9, 13,
14]. As deep learning has been booming in recent years, many
consider it could play an essential role in large data manage-
ment in the clinical ART application. Recent time-lapse stud-
ies related to machine learning were mostly focused on em-
bryo assessment [28], selection for implantation capability,
and improvement of clinical outcomes, e.g., pregnancy and
live birth rates [18, 29]. In other words, deep learning has been
used for predictions of positive outcomes.

Our deep learning approach toward time-lapse images is
unique among recent related studies in two aspects: First, re-
cent approaches that involved time-lapse and deep learning

mostly used single time frames [17–19]. Second, although
there have been studies investigating post-insemination up to
day 5 or day 6, the analysis objects used were morphokinetic
parameters rather than images [9, 14]. With video images
collected from the beginning to the end of embryo develop-
ment under time-lapse microscopy, our approach includes
144,210 images from 209 time frames per embryo, a wider
pool of data.

There are three main findings in the current study: First,
both the RGB’s and the optical flow’s performance in the
AUC fell between 0.54 and 0.67. Second, the optical flow
appeared to have a slightly better performance than the
RGB. Last, it was foreseeable that the time frame of days 1
to 5 showed a higher AUC than the others. Based on these
initial findings, we identified a direction to optimize this mod-
el by fusing the RGB and optical flow by calculating the
averaged data. The fused AUC result, 0.74, appeared to be
much higher than both performances in the days 1 to 5 time
frame. Due to the other time frames that had relatively poor
performances, we only fused the days 1 to 3 and days 1 to 5,
and found that the performance of the days 1 to 5 was signif-
icantly higher. The AUC at 0.74 presented in this study is
considered an excellent indicator as previous studies showed
AUC at 0.56, 0.63, and 0.72 [9, 11, 15]. In the beginning, we
design a series of parameters for our study, in which blastocyst
morphology, morphogenetic, and KIDSCOREwere included,
and AUC appeared as 0.53–0.61 in blastocyst morphology,
0.5–0.56 in morphokinetics, and 0.48–0.58 in KIDSCORE.
Those AUC results appeared relatively low compared with
time-lapse video fusion, which AUC was 0.74.

Therefore, based on the AUC results, utilizing time-lapse
images without human interpretation to clinical application
was selected as the best option in our current study. We then
decided to focus on the raw time-lapse video alone.

In addition, the study’s original intention is to provide an-
euploidy prediction for clinical usage. Such research design of

Fig. 7 Observed average probability for each quartile on days 1 to 5. The
X-axis represents ranges of sorted predictive values split by quartiles, and
the Y-axis shows actual probabilities of aneuploid occurrence

Fig. 8 Confidence score
histogram of fused model.
Figure 8 shows the majority of
confidence scores of predictions
were fallen between 0.3 and 0.5.
Those less than 0.5 is classified as
group 1. Those fallen above 0.5 is
classified as group 2. Using a
threshold of confidence score at
0.5, group 2 appears to have a
better performance with 75% of
the sub-set having been correctly
identified with a strong confi-
dence score (> 0.8)
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placing aneuploidy as group 1 (n = 157, 22.75%) and euploidy
and mosaicism as group 2 (n = 533, 77.25%) had led to an
unbalanced data set. However, we did make a similar attempt
of dividing different ploidy statuses from 690 time-lapse
videos, and the result does not show superiority to the current
results, which might be related to the limitations of our current
sample size.

Since mosaic embryos detected through PGT-A are mostly
biopsied during day 5 or day 6, such early testing may not
include further propagation or apoptotic from both euploid
and aneuploidy cell lines, which may lead to different clinical
outcomes [30]. In addition, recent studies have pointed out the
potential self-correction within the mosaic embryo [30, 31].
Therefore, we assigned mosaic embryos along with euploid
embryos in this study. Advantages of deep learning method-
ology include the relatively easy localized implementation
into each clinic, as well as on-site information with a quick
turn-around time compared to PGT-A workflow. In addition,
its deselection capability has potential in easing the financial
burden for patients by reducing the number of embryos re-
quired for biopsy.

Our approach suggested that raw time-lapse videos have
the potential of providing additional reference in clinical us-
ages such as blastocyst selection for biopsies and implanta-
tions. The algorithm can be fully integrated into the software
system as electronic medical record (EMR) system that in-
cludes time-lapse image integration, or by uploading images
to website platforms, as described in literature [32] and our
current work in integration with an in-house EMR system for
embryo selection/deselection in daily practice.

The limitations of our approach are as follows: first, limited
sample size. This study is an extension study from our previous
research [20]. The setups of exclusion criteria are based on
selecting embryos which have minimal maternal effect; there-
fore, we excluded those with AMH ≤ 1.1 ng/mL, advanced age
group (> 38 years old). This led to our ploidy results as euploi-
dy 258 vs. mosaic 275 vs. aneuploid 157. We made several
attempts in predicting different subgroups as (A) aneuploidy
and euploidy; and (B) aneuploidy, mosaicism, and euploidy;
both A and B show relatively low accuracy, compared with our
original setups as deselecting aneuploid blastocysts based on
clinical needs. This may also be caused by similar
morphokinetic results between euploid and mosaic embryos
according to our previous study [20]; in other words, it is pos-
sible that both statuses cannot be differentiated by raw time-
lapse video images alone. In addition, according to our previ-
ous study, mosaic blastocyst has the potential of pregnancy and
healthy live births [31, 33]. Since the data in our current study
was obtained by a single center, our future direction is to ex-
pand our sample size by collectingmore PGT-A blastocyst data
through multiple IVF centers, in order to provide heteroge-
neousness of morphokinetic and morphology features, which
may improve the performance of the deep learning models.

Second, the 690 embryos are all biopsiable blastocysts;
such setting may also lead to bias to the study. However, in
our study, we would like to focus on embryos considered
biopsiable [20], which can hardly be distinguished through
traditional morphology grading. Since such bias may affect
the prediction of the model, we use the metric of AUC, which
is relatively insensitive for the unbalanced dataset. For the
unbalanced data set, we select other analyses: Figure 6 shows
a boxplot of different models’ prediction on days 1 to 5, Fig. 7
shows the observed average probability for each quartile on
days 1 to 5, and Fig. 8 shows the confidence scores of group 1
and group 2 to support the prediction of ploidy status through
raw time-lapse videos.

Third, the present study is retrospective and future prospec-
tive research would help us to identify and explore more pa-
rameters to improve our model performance. Last, but not
least, the group 1 and group 2 approach provided a deselection
of aneuploidy embryos, while future deep learning approaches
toward high mosaicism, low mosaicism, and euploidy will be
needed, in order to provide a better clinical application. We
strongly recommend that patients follow suggestions from
physicians for advanced medical examinations if needed, for
our deep learning model’s role is to provide assistance in
deselecting aneuploidy blastocysts as a non-invasive tool.

Conclusions

The approach of our deep learning model demonstrated a po-
tential in discriminating between test sets of aneuploid and
euploid/mosaic embryos. As a proof of concept, this model
may serve as an auxiliary tool, and with further studies con-
tribute to the long-term goal of providing non-invasive and
quick turn-around replacement for PGT-A.
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