
BIOTECHNOLOGY AND INDUSTRIAL MICROBIOLOGY - RESEARCH PAPER

Chromolaena laevigata (Asteraceae) as a source of endophytic
non-aflatoxigenic Aspergillus flavus: chemical profile in different
culture conditions and biological applications
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Abstract
Endophytes are microorganisms that form symbiotic relationships with their host. These microorganisms can produce a variety of
secondary metabolites, some of which have inhibitory effects on pests and pathogens or even act to promote plant growth. Due to
these characteristics, these microorganisms are used as sources of biologically active substances for a wide range of biotechno-
logical applications. Based on that, the aim of this study was to evaluate the production of metabolites of the endophytic
Aspergillus flavus CL7 isolated from Chromolaena laevigata, in four different cultivation conditions, and to determine the
antimicrobial, cytotoxic, antiviral, and antioxidant potential of these extracts. The multiphasic approach used to identify this
strain was based on morphology and ITS gene sequence analysis. The chemical investigation of A. flavus using potato dextrose
and minimal medium, using both stationary and agitated methods, resulted in the isolation of kojic acid, α-cyclopiazonic acid,
and 20,25-dihydroxyaflavinine. Another 18 compounds in these extracts were identified by UHPLC-HRMS/MS, of which
dideacetyl parasiticolide A has been described for the first time from A. flavus. Aflatoxins, important chemomarkers of
A. flavus, were not detected in any of the extracts, thus indicating that the CL7 strain is non-aflatoxigenic. The biological potential
of all extracts was evaluated, and the best results were observed for the extract obtained using minimal medium against
Trichophyton rubrum and Mycobacterium tuberculosis.
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Introduction

Endophytic microorganisms colonize intra- and intercellular
plant tissues. This colonization/association is asymptomatic,
causing no damage to the host plant. Among the microorgan-
isms capable of this association, the most common are bacteria
and fungi [1]. Our research group has been studying the chem-
ical and biological diversity of the Eupatorieae tribe [2–5]; as
part of our investigation of species belonging to this tribe, we
selected Chromolaena laevigata (basionym: Eupatorium
laevigatum) to characterize its foliar endophytic fungi.
Chromolaena laevigata (Lam.) RMKing & H. Rob is a shrub
native from Mexico to Argentina [6], widely distributed in
Brazil. This species is usually found in the Cerrado, Atlantic
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Forest, Amazon, and Caatinga [7] and is considered an inva-
sive species prone to infesting pastures, crops, roadsides, and
vacant lots [8]. Previous studies on the aerial parts of
C. laevigata have shown the presence of cadinene, clerodane,
steroids, and flavonoids [5, 9]. Aspergillus flavus was identi-
fied here as an endophytic fungus from this species.

Aspergillus is widespread in nature and includes more than
250 species. Several Aspergillus species are classified as
pathogens of harvested fruits and seeds, especially A. flavus
which is well known for its production of toxins such as
aflatoxins and cyclopiazonic acid [10–12]. Among the vari-
ous classes of secondary metabolites produced by Aspergillus
species, aflatoxins play an important role as chemomarkers.
The word “aflatoxin” is derived from the expression
“Aspergi l lus f lavus toxin” , s ince A. f lavus and
A. parasiticus, as well as A. nomius, A. bombycis, and
A. pseudotamarii, are the species predominantly responsible
for aflatoxin contamination of agricultural crops before har-
vest or during storage [13]. In addition to aflatoxins, A. flavus
can also produce a range of other compounds of different
classes, such as cyclopiazonic acid, β-nitropropionic acid,
aspertoxin, aflatrem, gliotoxin, aspergillic acid, 20,25-
dihydroxyaflavinine, and versicolorin A [14].

There are promising possibilities in exploring the biotech-
nological potential of endophytic fungi to produce a multitude
of known and new biologically active specialized metabolites.
For example, using controlled fermentation conditions and
changing the process parameters, such as the type of medium,
aeration, pO2, pCO2, pH, temperature, agitation, sampling,
and harvest points, the production of specialized metabolites
can be optimized [15–17], and the variation of medium con-
ditions has been shown to have variable effects on the produc-
tion of these metabolites [16, 18, 19]. Often, the variation of
culture conditions is used to optimize the yields of a specific
compound, such as an active metabolite or drug produced
through microorganisms [20–23].

Herein, we evaluated the influence of different cultiva-
tion conditions on the production of specialized metabolites
from an A. flavus strain isolated from a new host,
C. laevigata. First, the multiphasic approach, based on mor-
phology and ITS gene phylogenetic analysis, used to iden-
tify endophytic A. flavus is described. Subsequently, the
metabolites produced when this endophyte was submitted
to four different cultivation conditions were identified using
1D and 2D NMR spectroscopic experiments, and a
dereplication technique using UHPLC-HRMS/MS.
In vitro antimicrobial, antiviral, and antioxidant activity
was also evaluated. Three compounds were isolated, kojic
acid, cyclopiazonic acid and 20,25-dihydroxyaflavinine,
and 18 compounds were identified by dereplication; how-
ever, no aflatoxins were detected in any of the culture me-
dia, indicating a non-aflatoxigenic A. flavus strain, with
biotechnological potential for use as a biocontrol tool.

Materials and methods

General experimental procedures

Chromatography separations were performed on Sephadex
LH-20 (Sigma) chromatography columns (CC). Thin layer
chromatography (TLC) was performed on normal-phase pre-
coated silica gel 60G or 60GF254 plates (Merck). Visualization
of the compounds on TLC was accomplished by UV irradia-
tion at 254 and 366 nm and/or by spraying with H2SO4/
anisaldehyde/acetic acid/methanol (5 :0.5 :10 :85 mL) solu-
tion followed by heating at 150 °C or Dragendorff’s solution.

NMR spectra were recorded on a VARIAN Mercury Plus
spectrometer operating at 300 and 75.5 MHz, and a Bruker
advance III HD spectrometer operating at 500 and 125 MHz,
using CDCl3 and DMSO-d6 as solvents. The UHPLC analysis
was performed on a Shimadzu Nexera X2 instrument,
equipped with a CBM-20A system controller, two LC-
30AD pumps, a CTO-30A column oven, and a SIL-30AC
autosampler. The mass spectra were recorded on a Bruker
IMPACT II mass spectrometer, with an electrospray ioniza-
tion source (ESI) in the positive and negative ion modes,
quadrupole-time of flight (Q-TOF) analyzer, and multichan-
nel plate (MCP) detector.

Biological material

The endophyte CL7 was previously isolated from
Chromolaena laevigata (Lam.) R. M. King & H. Rob.
(Asteraceae) leaves and was retrieved from the Collection of
Endophytic and Environmental Microorganisms at the
Laboratory of Microbial Biotechnology (CMEA/LBIOMIC-
UEM), Universidade Estadual de Maringá, Brazil. This endo-
phyte was registered at the National System for the
Management of Genetic Heritage and Associated Traditional
Knowledge (SISGEN) under code AEE079A. Chromolaena
laevigata (Lam.) R. M. King & H. Rob. (Asteraceae) is a
native specimen; it was collected at Ponta Grossa city,
Paraná State, Brazil (25° 05′ 16″ S, 50° 05′ 43″ W) in
March 2016 and identified by Drª. Marta Regina Barrotto do
Carmo. A voucher specimenwas deposited at the herbarium at
Universidade Estadual de Ponta Grossa (HUEPG 21697); in
addition, this plant was registered at SISGEN under code
A6E6D08.

Microculture

For morphological analysis, strain CL7 was submitted to the
microculture technique. A circular piece of filter paper was
placed in a sterile Petri dish, and a sterile glass slide (26 ×
76mm) was put on the filter paper. A block of lemon-leaf agar
(100 g L−1 crushed lemon leaves, 15 g L−1 agar, 5 g L−1

peptone, and 15 g L−1 glucose) was cut with a sterile scalpel
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and transferred to the glass slide. Using a sterile wire needle,
the fungus was then inoculated from the culture plate to the
four sides of the agar block. A sterile coverslip was put over
the block, and 1 mL of sterile water was put onto the filter
paper. The plate cover was replaced, and it was incubated at
28 °C for 5 days. After 5 days, the slide was removed and the
block was deposited on another slide containing a drop of
Cotton Blue dye. The sample was analyzed using a ZEISS
Axioskop 2 Plus optical microscope equipped with an
Axiocam HRc camera.

DNA extraction, amplification, and phylogenetic
analysis

The genomic DNA was extracted using a PowerSoil® DNA
isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA,
USA), with 200 mg of mycelia initially added to the tubes,
before then following the manufacturer’s instructions.

Amplification of the ribosomal DNA region, ITS1-5.8S-
ITS2, was performed using primers V9G (5′-TTAC
GTCCCTGCCCTTTGTA-3 ′) and ITS4 (5 ′-TCCC
CGCTTATTGATATGC-3′) described by White et al. [24].
The PCR technique was performed under the following con-
ditions: 50 ng of DNA, 1× PCR buffer (50 mMKCl, 200 mM
Tris-HCl, pH 8.4), 1.5 U of Taq polymerase (Invitrogen,
Carlsbad, CA, USA), 0.25 μM of each primer, 0.2 mM
dNTP (Amersham Bioscience, Freiburg, Germany), and
3 mM MgCl2 in a final volume of 25 μL. Amplification was
performed on a TC1000-G thermocycler (DLAB®) using the
following conditions: initial denaturation at 94 °C for 5 min,
followed by 35 cycles of denaturation at 94 °C for 30 s, an-
nealing at 48 °C for 50 s, and extension at 72 °C for 2 min,
followed by a final extension at 72 °C for 5 min.

PCR products were purified using the enzyme alkaline
phosphatase (shrimp; Sigma-Aldrich®) and exonuclease I
(E. coli; BioLabs®). The extracted DNA was then subjected
to quantification on 1% agarose gel. Amplification products
were sequenced by ACTGene molecular analysis using an
ABI-PRISM 3100 Genetic Analyzer (Applied Biosystems).
The sequencing results were evaluated using BioEdit
Sequence Alignment Editor v. 7.2.2. The results were com-
pared with other sequences deposited at the NCBI (National
Center for Biotechnology Information) database (http://blast.
ncbi.nlm.nih.gov/Blast.cgi). Identification was based on the
best percentage identity, followed by phylogenetic analysis.

Alignment and phylogenetic analysis were conducted
using Geneious prime software (v. 2020.0.4). Based on the
BLAST similarity to the CL7 sequence of the A. flavus clade,
sequences of nearby species were rescued for phylogenetic
reconstruction [12]. The gene sequences were aligned using
MAFFT v. 1.4.0 [25]. For phylogenetic analysis based on
maximum likelihood and Bayesian inference, MrModelTest

v. 2.3 was used to choose the best evolutionary model [26].
The phylogenetic tree was constructed usingMrBayes v. 2.2.4
[27], taking into consideration the parameters generated by
MrModelTest, with a Markov chain Monte Carlo (MCMC)
simulation which lasted until the average standard deviation of
the split frequencies was below 0.01. The Bayesian probabil-
ity was demonstrated on the nodes between each individual.
The tree was edited with FigTree v. 1.4.2 and Adobe
Illustrator v. 23.0.3 [28].

The DNA sequence was deposited in GenBank under ac-
cession number MN955851.1.

Culture conditions and isolation

Axenic maintenance of the endophytic CL7 strain was per-
formed on potato dextrose broth (PD) (HiMedia M403), po-
tato dextrose agar (HiMedia M096), and minimal medium
(MM), at pH 6.8. The MM was prepared in the following
concentrations: NaNO3 60.00 g L−1, KH2PO4 15.00 g L−1,
KCl 5.00 g L−1, MgSO4·7H2O 5.00 g L−1, FeSO4·7H2O
0.01 g L−1, ZnSO4·7H2O 0.01 g L−1, CuSO4·7H2O 0.01 g
L−1. At the time of use, the MM was diluted 1:10 with dis-
tilled water and 10.00 g L−1 D-glucose was added.

The CL7 strain was subjected to four different axenic cul-
tivation conditions, using PD and MM and stationary (PD-S;
MM-S) and agitated methods (PD-A; MM-A). The strain was
cultivated in three 1-L Erlenmeyer flasks, each containing 500
mL of medium. A spore solution was prepared at a concen-
tration of 107 spores mL−1 according to Uldahl et al. with
modifications. Briefly, spores were harvested when the cul-
tures were fully sporulated, which was achieved after 10 days
of incubation. The spores were released by flooding the Petri
dishes with 5 mL sterile distilled water containing 0.1% (v/v)
of tween 80 and the gently rubbing the culture with a sterile L-
shaped spreader, a hemocytometer slide was used to count
spore concentration [29]. Subsequently, 500 μL of this solu-
tion was added to each culture flask. After inoculation, the
flasks were stored in a growth greenhouse at 28 °C for 21
days for the stationary cultures and in a shaker culture incu-
bator (Nova Instruments NI1712) at 28 °C at 110 rpm for 21
days for the agitated cultures.

At the end of the incubation period, the mycelium was
separated from the broth by vacuum filtration using a filter
membrane, Büchner funnel and Kitassato. The mycelium
was stored in a drying oven at 55 °C for 5 days to determine
the dry weight of the mycelium for each cultivation condition.
After filtration, the broths (approximately 500 mL) were ex-
tracted with ethyl acetate (3 × 150 mL). The solvent present
was evaporated using a rotary evaporator (Tecnal TE-210) at
37 °C and the resulting extract was submitted to column chro-
matography, NMR, and UHPLC-HRMS/MS analysis.

PD-S crude extract yielded compound 1 (491.7 mg), with
no purification step. Part of the PD-A crude extract (60.0 mg)
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was subjected to a CC (Ф = 1.00 cm × h = 25.0 cm) in
Sephadex LH-20 using methanol as the mobile phase, to give
subfractions PD-A1 to PD-A18. Compound 1 (8.0 mg) was
reisolated from subfraction PD-A6, and subfraction PD-A15
afforded compound 2 (16.0 mg).

An aliquot of MM-S (28.0 mg) was subjected to a CC (Ф =
1.00 cm × h = 25.0 cm) in Sephadex LH-20, using methanol
as the mobile phase, to give subfractions MM-S1 toMM-S15.
Subfraction MM-S6 yielded compound 3 (5.1 mg), and
subfraction MM-S10 afforded compound 2 (3.5 mg), previ-
ously isolated from PD-A15. MM-A extract was not obtained
in an amount sufficient for chromatographic purification.

UHPLC-HRMS/MS

The samples were prepared in MeOH (1.0 mg mL−1) and
chromatographic separations were performed using
UHPLC on a Symmetry C18 column (75 × 2.0 mm i.d.;
1.6 μm Shim-pack XR-ODS III), maintained at a temper-
ature of 40 °C. The mobile phase used in both the positive
and negative ionization modes consisted of H2O (solvent
A) and CH3CN (solvent B), with the addition of 0.1%
formic acid when analyzed in positive ionization mode.
The gradient program was as follows: initial 0–1 min,
using elution A–B (95 : 5, v/v), 1–3 min (30 : 70 v/v), 3–
12 min (5 : 95 v/v), and kept at 95% B for 16 min at a flow
rate of 0.2 mL min−1. The injection volume was 3 μL.
High-resolution mass spectrometry (HRMS) analysis was
carried out in a Q-TOF mass spectrometer with an
electrospray ionization interface. The capillary voltage
was operated in positive and negative ionization modes,
set at 4500 V, using sodium formate (10 μM) as calibrant.
The dry gas parameters were set to 8 L min−1 at 200 °C
with a nebulization gas pressure of 4 bar. Collision-
induced dissociation (CID) fragmentation was performed
using argon (Ar) collision gas and collision energy of 20–
45 eV. Spectra data of the investigated compounds were
collected from m/z 50–1300 with a resolution of 50,000 at
an acquisition rate of 5 spectrums per second. The ions of
interest were selected by auto MS/MS scan fragmentation.
The data processing software used was DataAnalysis 4.3
(Bruker). To identify the compounds, a library of already
identified compounds isolated from the genera Aspergillus
and Chromolaena was made, with annotations based on
the values of mass error and fragmentation profile/
characteristic fragment ions for the compounds. The mass
error value was calculated using the following equation:
Error (ppm) = [(Mcalc − Mexp)/Mcalc] × 106, where Mcalc is
the exact theoretical mass and Mexp is the exact experimen-
tal mass obtained. Only molecular formulas with ≤ 10 ppm
of error were considered in this study.

Antimicrobial activity

Antimicrobial assays were performed by the microdilution
method in sterile flat-bottom microplates, according to CLSI
[30–32]. The bacteria Escherichia coli ATCC 25922,
Pseudomonas aeruginosa ATCC 27853, Bacillus subtilis
ATCC 6623, and Staphylococcus aureus ATCC 25923 were
cultivated in Mueller–Hinton broth (MHB) (Difco) at 37 °C.
The yeas ts Candida albicans ATCC 10231 and
C. parapsilosis ATCC 22019 were cultivated in Sabouraud
dextrose broth (SDB) (Difco) at 37 °C. And the dermatophyte
fungi Trichophyton rubrum ATCC 28289 and Microsporum
gypseum ATCC 14683 were cultivated in SDB (Difco) at 28
°C.

Each well contained appropriate test samples, culture me-
dium and approximately 105 cells mL−1 for bacteria, 103 cells
mL−1 for yeasts, and 104 spores mL−1 for dermatophyte fungi.
Serial three-fold dilutions of each extract were done in a
microdilution plate (96 wells) containing 100 μL of culture
medium. Next, the inoculum was added to each well. The
microplates were incubated at 37 °C for 24 h for bacteria
and 48 h for yeast and at 28 °C for 72 h for dermatophyte
fungi. The MIC was defined as the lowest concentration
which resulted in inhibition of visual growth. Minimum bac-
tericidal and fungicidal concentrations (MBC and MFC) were
determined by subculturing 10 μL of the culture from each
negative well and from the positive control.

Anti-M. tuberculosis activity was performed using a
resazurin microtiter assay plate (REMA) [33]. Firstly, crude
extract PD-S, PD-A, MM-S, and MM-A stock solutions in
dimethyl sulfoxide (DMSO, Sigma-Aldrich) and two-fold se-
rial dilutions were prepared in supplemented Middlebrook
7H9 to obtain final concentrations ranging from 31.25 to
1000 μg mL−1. Then, 100 μL of each standardized inoculum
was added to each well of the microplate containing the crude
extract dilutions. The microplates were covered with their lids
and incubated at 35 °C, in a normal atmosphere, for 7 days.
After this period, 30 μL of fresh 0.01% resazurin solution
(Acros, Morris Plains, NJ, USA) was added to each well and
the microplates were re-incubated at 35 °C for an additional
24 h before visual reading was carried out. A color change
from blue to pink indicated mycobacterial growth and the
MIC was interpreted as the lowest crude extract concentration
that prevented the color change from blue to pink. The medi-
um, drug sterility, and bacterial growth with and without 2.5%
(v/v) DMSO controls were included in all tests.

Antioxidant activity

The antioxidant activity of the crude extracts PD-S, PD-A,
MM-S, and MM-A was evaluated using three different meth-
odologies: DPPH, ABTS, and evaluation of phenolic com-
pounds. To perform the tests, the samples were solubilized

1204 Braz J Microbiol (2021) 52:1201–1214



at a concentration of 1 mg mL−1 in distilled water with 5%
methanol [34].

To evaluate the antioxidant activity of crude extracts of
metabolites by the DPPH (2,2-diphenyl-1-picrylhydrazyl)
radical method, the methodology of Ma et al. was used [35];
25 μL of the samples and 2 mL of 6.25 × 10−5 mol L−1 DPPH
solution was added into light-protected glass tubes kept in the
dark for 30min. Absorbance was measured at 517 nm, and the
results were expressed as millimoles of Trolox per milligram
of sample (mmol Trolox mg sample−1).

The ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sul-
fonic acid) diammonium salt) method was performed accord-
ing to the method described by Rajurkar and Hande [36]. Prior
to the test, a solution of the ABTS+ radical containing 5 mL of
ABTS solution (7 mM) and 88 μL of potassium persulfate
(140 mM) was prepared, remaining in reaction for 16 h in
the dark. After this period, 3 mL of the ABTS+ solution was
transferred into tubes protected from the light; 30 μL of the
extract from each sample was added and the solution was kept
in the dark for 6 min. Absorbance was measured at 734 nm,
and the results were expressed as millimoles of Trolox per
milligram of sample (mmol Trolox mg sample−1).

The total phenolic content was determined using the Folin–
Ciocalteu method as described by Singleton and Rossi, with
modifications [37]. One aliquot (125 μL) of each sample was
mixed with 125 μL of the Folin–Ciocalteu reagent (1 :1 v/v
distilled water) and 2250 μL of 3.79 M sodium carbonate
solution. This mixture was kept in the dark for 30 min.
Absorbance was measured at 725 nm, and the results were
expressed as micrograms of gallic acid equivalent per milli-
gram of extract (μg GAE mg sample−1).

Cytotoxic and antiviral activity

The cytotoxicity of the crude extracts PD-S, PD-A, MM-S,
and MM-A from fungus A. flavus CL7 at concentrations from
31.25 to 1000μgmL−1 was evaluated on a monolayer of Vero
cells (CCL-81, American Type Culture Collection) prepared
in 96-well plates at an initial density of 2.5 × 105 cells mL−1

and incubated at 37 °C for 72 h in a humid oven with 5%CO2.
To determine antiviral activity, the cells were pre-infected
with HSV-1 TCID50 (KOS strain) and incubated for 1 h at
37 °C for adsorption and viral penetration, and subsequently
treated with different concentrations of the crude extracts
(3.125–100 μg mL−1) for 72 h at 37 °C. In both cases, cell
viability was determined by the MTT method, and the CC50

(cytotoxic concentration for 50% of cells) and EC50 (effective
concentration that protects 50% of viral infection) were calcu-
lated by linear regression analysis [38]. Acyclovir (Sigma-
Aldrich, 99% purity) was used as a positive control for anti-
HSV-1 activity. All concentrations were tested in triplicate in
at least three independent experiments and the results were
expressed as mean ± standard deviation.

Statistical analysis

Statistical analysis was carried out using GraphPad Prism
8.0.1. The differences among treatments in each experiment
were compared using one-way analysis of variance (ANOVA)
followed by Tukey’s test. In all cases, the threshold for signif-
icance was 5%.

Results

Multiphasic identification of CL7

Amultiphasic approachwas used to identify strain CL7, based
on morphology and phylogenetic analysis. The ITS sequence
of strain CL7 showed higher values of identity with A. flavus
species by BLAST analysis in GenBank (100% identity).
Therefore, phylogenetic analysis was conducted with the
aim of confirming the identification at species level, consider-
ing the A. flavus clade according to Frisvad et al. [12]. The
results show that strain CL7 has greater phylogenetic proxim-
ity to A. flavus and A. oryzaewith 100% Bayesian probability
(Fig. 1a).

The macro- and microstructures corroborate this identifica-
tion (Fig. 1b–d). The colonies are a yellowish-green color,
with conidiophores and large sclerotia characteristic of these
species. In addition, it may be observed in subsequent sections
that the chemical compounds produced by these strains match
the literature data. Thus, to the best of our knowledge, this is
the first time that A. flavus is described as an endophyte from
the Eupatorieae tribe.

Culture conditions

Observing the macroscopic characteristics of A. flavus (CL7)
cultured in different conditions (Fig. 2), it was possible to
notice the formation of a mycelium with an intense yellow
color, and the presence of a large amount of exudate when
the PD-S methodology was used (Fig. 2a). On the other hand,
whenA. flavusCL7was cultivated inMMusing the stationary
method (MM-S), the mycelium of the fungus started to pres-
ent a predominantly dark green color, and the amount of ex-
udate on the surface was reduced (Fig. 2c). In the agitated
cultures, with both PD and MM media, the fungus developed
in the form of pellets, very similarly in bothmedia (Fig. 2b and
d).

The greatest dry biomass production was obtained when
MM-S conditions were used (3.407 ± 0.088 g), followed by
PD-A and PD-S that had statistically the same production,
2.601 ± 0.186 g, and 2.589 ± 0.035 g, respectively. On the
other hand, the highest production of total metabolites dis-
solved in ethyl acetate was obtained using PD-Smethodology,
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163.8 ± 20.7 g of metabolite extract, and only 11.8 ± 2.0 g was
obtained using MM-S (Table S1).

Chemical constituents

Chemical investigation of the endophytic fungus A. flavus
CL7, associated with the leaves of C. laevigata, yielded three
compounds, identified by comparison of their spectroscopic
1D and 2D NMR data with those reported in the literature.

Compound 1 was identified as kojic acid [39], and it was
obtained from the culture of A. flavus CL7 grown on PD
medium using the stationary and agitated methods
(Table S2; Figs. S1–S5). Compound 2 was isolated from the
A. flavus CL7 culture grown on PD medium under agitation
and basal MM using the stationary method, and it was identi-
fied as cyclopiazonic acid (2) (Table S3; Figs. S6–S17) [40].
Compound 3, 20,25-dihydroxyaflavinine, was isolated only
from culture on basal MM using the stationary method
(Table S4; Figs. S18–S32) [41].

To provide comprehensive coverage of the A. flavus me-
tabolome, fungal extracts PD-S, PD-A, MM-S, and MM-A
were analyzed in both positive and negative ion modes by
UHPLC-HRMS/MS. This strategy allowed the identification
of 21 compounds (Table 1; Table S5).

Antimicrobial assay

The antimicrobial activity of crude extracts obtained from the
different cultures of A. flavus CL7 was evaluated against four
pathogenic bacterial strains, twoGram-negative (P. aeruginosa
and E. coli) and two Gram-positive (B. subtilis and S. aureus),
and four fungal strains (Candida albicans, C. parapsilosis,
T. rubrum, and M. gypseum).

The crude extracts were inactive against the Gram-negative
bacteria; however, they were active against the Gram-positive
bacteria, with the exception of PD-S which was inactive
against all microorganisms evaluated. The best results were
observed for the extract obtained using MM against the der-
matophyte T. rubrum (Table 2).

The crude extracts were also evaluated against
M. tuberculosis H37Rv, using the REMA technique. As ob-
served for the other microorganisms, PD-Swas the least active
extract, and the best result was observed for MM-S, with an
MIC of 62.5 μg mL−1.

Antioxidant assay

The antioxidant potential of A. flavus CL7 extracts, obtained
in different culture media, was determined using DPPH and

Fig. 1 Phylogenetic analysis and
macro- and micromorphological
structures of Aspergillus flavus
CL7. a Cladogram obtained from
a Bayesian inference based on the
alignment of ITS gene. Bayesian
probability was demonstrated at
the nodes between each organism.
The strain Aspergillus tamarii
CBS 104.13 was used as external
group; b 7-day-old culture colony
on potato dextrose agar medium;
c Conidiophores and conidia; d
large sclerotia
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ABTS methods, together with the total phenolic content
(TPC) (Table 3). Crude extracts PD-S (93.85 μg GAE mg
sample−1) and PD-A (84.22 μg GAE mg sample−1) presented
the highest levels of phenols and, consequently, they showed
potent antioxidant activity; PD-S exhibited higher scavenging
potential for the ABTS method (2.29 mmol Trolox mg sam-
ple−1; 98.97%) and PD-A exhibited higher scavenging poten-
tial for the DPPH method (0.23 mmol Trolox mg sample−1;
8.85%).

Cytotoxic and antiviral assays

The evaluation of cytotoxicity showed that among all crude ex-
tracts tested, PD-S was the least toxic to the cells. However, all
crude extracts were inactive, at the concentrations evaluated, for
cells infected with HSV-1 TCID50 (KOS strain) (Table 4).

Discussion

As mentioned before, our research group has been studying
species from the Eupatorieae tribe, especially from the genus

Eupatorium sensu lato; based on the fact that there are few
reports on endophytic fungi in species of this genus,
Chromolaena laevigata (basionym: Eupatorium laevigatum)
was selected for this study [2–5].

An endophytic fungus from the genus Phomopsis has been
described from Chromolaena arnottiana (basionym:
Eupatorium arnottianum) [42]. Six morphologically different
endophytes have been found to inhabit the leaves ofAgeratina
adenophora (basionym: Eupatorium adenophorum); four
morphotypes are close to Alternaria, Cladosporium,
Pestalotiopsis, and Didymella, while two morphotypes are
close to unidentified fungi [43]. Three endophytic fungi have
been identified from Eupatorium buniifolium; they were iden-
tified as Fusarium solani, Alternaria alternata, and
Neofusicoccum sp. [44].

The endophytic fungus isolated from Chromolaena
laevigata in this work was identified as Aspergillus flavus.
Endophytic A. flavus has been previously isolated from many
plant species, for example, from Paspalum maritimum Trin.
[45], Aegle marmelos [46, 47], Cephalotaxus fortunei [48],
Tylophora ovata [49], Catharanthus roseus, Annona
squamosa, and Curcuma xanthorrhiza [50]. So, this is the

Fig. 2 Micrograph of the
mycelium of the endophytic
fungus Aspergillus flavus CL7
under different conditions after 21
days of cultivation. a) Potato
Dextrose Stationary (PD-S); b)
Potato Dextrose Agitated (PD-A);
c) Minimum Medium Stationary
(MM-S); d) Minimum Medium
Agitated (MM-A)
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second study about endophytes from Chromolaena species,
and the first time that endophytic Aspergillus has been de-
scribed from Eupatorium sensu lato.

Characterization of the fungus as Aspergillus flavus was
based on BLAST analysis in GenBank; however, the charac-
teristics of the macro- and microstructure were essential for
confirming the species. Many studies have indicated that
A. oryzae is the domesticated form of A. flavus and can be
distinguished from the wild type due to many factors, among
them the presence of larger and more smooth conidia, more
floccose aerial mycelia and weaker sporulation, the absence of
sclerotia, no production of aspergillic acid, and a lack of afla-
toxin production [12, 51–53]. According to Frisvad et al.,
A. oryzae is isolated from fermented products, while strains
from other environments, even if they are not aflatoxin pro-
ducers, are identified as A. flavus [12]. Therefore, based on the
phylogenetic analysis performed on the type of host, on the
macroscopic characteristics of the culture together with the

presence of large sclerotia and the profile of identified second-
ary metabolites, strain CL7 was confirmed as being the spe-
cies A. flavus.

Macroscopic differences in cultures were observed when
the nutrients in the media were changed, and also when the
cultures were agitated (Fig. 2). A culture medium must have a
source of carbon and nitrogen, in addition to mineral salts and
some other nutrients, and the constitution of the medium di-
rectly influences the growth of the mycelium and the produc-
tion of bioactive metabolites [54–56]. When PD was used as
the medium, greater production of spores was observed com-
pared to culture in MM. The highest dry biomass was ob-
served for the MM-S condition; however, it provided the
smallest amount of metabolite extract. Although cultivation
in PD produced a similar dry biomass using agitated and sta-
tionary conditions, production of the metabolite extract was
240% higher when the stationary method was used.

The effect of culture conditions on the production of spe-
cialized metabolites by the endophytic fungus A. flavus CL7
was also investigated in this work. First, the metabolite ex-
tracts were submitted to a CC, and three metabolites were
isolated. Kojic acid (1) was the major compound found in
PD-S extract, and it was identified directly in this extract,
without purification. This compound is widely described
from Aspergillus genus, having already been found for
A. aflatoxiformans , A. alliaceus , A. arachidicola,
A. aspearensis, A. austwickii, A. bombycis, A. bertholletius,
A. caelatus, A. cerealis, A. flavus, A. flocculus, A. hancockii,
A. lanosus, A. leporis, A. luteovirescens, A. minisclerotigenes,
A. mottae, A. neoalliaceus, A. nomius, A. novoparasiticus,
A. oryzae , A. parasit icus , A. parviscierotigenus ,
A. pseudocaelatus, A. pseudonomius, A. pseudotamarii,
A . s e rg i i , A . so j ae , A . sub f l a vu s , A . t amar i i ,
A. transmontanensis, and A. vandermerwei [12, 57, 58].
Kojic acid has also been identified as a major compound from
A. flavus associated with Catharanthus roseus, Annona
squamosa, and Curcuma xanthorrhiza [50].

Cyclopiazonic acid (2), an indole tetramic acid, was de-
scribed for the first time from A. flavus in 1977 [59].
However, this metabolite is briefly described from endophytic
Aspergillus, being reported from the marine-derived fungus
A. flavus [60–62]. For plant-derived fungus, this metabolite
was described from A. flavus isolated from Triticum aestivum,
and from A. versicolor isolated from Paris polyphylla [63,
64].

Compound 3, 20,25-dihydroxyaflavinine, is frequently de-
scribed from the sclerotia of A. flavus; however, this is the first
time that this compound has been isolated from an endophytic
A. flavus strain [41, 65–68].

Other compounds were putatively identified using the
dereplication technique by UHPLC-HRMS/MS. In PD, 18
compounds were identified, and 15 compounds were detected
in MM. Only cyclopiazonic acid and its derivative 2-oxo-

Table 1 Specialized metabolites identified of Aspergillus flavus CL7
extracts by UHPLC-HRMS/MS

Compounds Extracts

PD-S PD-A MM-S MM-A

α-Cyclopiazonic acid (2) + + + +

2-Oxo-cyclopiazonic acid + + + +

Kojic acid (1) + + +

Phomaligin A + + +

Asparasone A + + +

Aspergillic acid + + +

Aspyrone + +

20,25-dihydroxyaflavinine (3) + +

Itaconic acid + +

Paspaline + +

Hydroxysydonic acid + +

Terrein + +

14-Deacetyl parasiticolide A +

Dideacetyl parasiticolide A +

Spinulosin +

Citreoisocoumarin +

Gregatin B +

Podophyllotoxin +

Flufuran +

Speradine F +

α-Cyclopiazonic acid imine +

The identification of the compounds was done by comparison of their
exact masses and fragmentation patterners to reported literature (see
Online Resource 1, Table S5)

PD-S potato dextrose stationary, PD-A potato dextrose agitated, MM-S
minimum medium stationary, MM-A minimum medium agitated

1208 Braz J Microbiol (2021) 52:1201–1214



cyclopiazonic acid were produced in all culture media evalu-
ated. Comparing the metabolites produced when the culture of
A. flavus was grown in PD using the stationary method, with
those produced in the same medium but under agitation, con-
siderable variation was observed: only five substances were
common between them (aspyrone, α-cyclopiazonic acid, 2-
oxo-cyclopiazonic acid, kojic acid, and phomaligin A). For
culture in MM, the number was even lower: only four com-
pounds were common (asparasone A, aspergillic acid, α-
cyclopiazonic acid, and 2-oxo-cyclopiazonic acid).

The principal variation was observed when the agitation
method was applied. It was also possible to verify that some
compounds were produced in both culture media; however, a
variation in the metabolites produced was observed when the
culture was carried out under agitation or without agitation.
Itaconic acid, paspaline, and 20,25-dihydroxyaflavinine were
detected from both culture media when they were kept with-
out agitation. On the other hand, hydroxysydonic acid and
terrein were identified when the media were kept under agita-
tion. These results corroborate the variable effects of medium

Table 2 Antimicrobial activity of
Aspergillus flavus CL7 extracts
(MIC, MBC, or MFC)

Microorganisms MIC/MBC or MFC (μg mL−1)

Extracts Ref. antibiotics

PD-S PD-A MM-S MM-A

Pseudomonas aeruginosa > 1000 > 1000 > 1000 > 1000 3.125a

Escherichia coli > 1000 > 1000 > 1000 > 1000 1a

Bacillus subtilis 1000/> 1000 125/500 250/500 125/250 0.2b

Staphylococcus aureus 1000/> 1000 250/500 500/1000 250/> 1000 0.02c

Candida albicans 1000/> 1000 250/500 > 1000 250/> 1000 3.9d

Candida parapsilosis > 1000 500/> 1000 > 1000 500/> 1000 3.9d

Trichophyton rubrum > 1000 500/> 1000 31.2/> 1000 31.2/1000 2.5d

Microsporum gypseum > 1000 125/125 125/1000 250/1000 2.5d

Mycobacterium tuberculosis 250 125 62.5 125 0.125e

The highest concentration tested was 1000μgmL−1 . Values expressed as > 1000μgmL−1 indicate that there was
no inhibition of growth of the microorganisms at the concentrations tested. Tests were performed in triplicate

Data from three independent experiments

PD-S potato dextrose stationary, PD-A potato dextrose agitated, MM-S minimum medium stationary, MM-A
minimum medium agitated
a Tetracycline
bVancomycin
c Penicillin
d Nystatin
e Rifampicin

Table 3 Antioxidant activity by DPPH, ABTS, and total phenolic compounds of Aspergillus flavus CL7 extracts

Extracts DPPH ABTS Total phenolic compounds

mmol trolox/mg % activity mmol trolox/mg % activity μg GAE/mg % activity

PD-S 0.07 ± 0.00a 2.16 ± 0.10a 2.29 ± 0.01a 98.97 ± 0.22a 93.85 ± 16.27a 13.71 ± 2.38a

PD-A 0.23 ± 0.01b 8.85 ± 0.34b 0.95 ± 0.03b 41.64 ± 1.24b 84.22 ± 17.32a 12.71 ± 2.61ac

MM-S 0.21 ± 0.01b 8.15 ± 0.49b 0.67 ± 0.07c 29.57 ± 2.92c 49.78 ± 6.67b 9.09 ± 1.22ac

MM-A 0.05 ± 0.01a 1.29 ± 0.23c 0.41 ± 0.04d 18.28 ± 1.90d 8.67 ± 2.22c 3.46 ± 0.89bd

Data expressed as mean ± standard deviation of three independent experiments. In the same raw, the values marked with the same lowercase letter are
similar (p > 0.05), whereas those marked with different ones are significantly different (p < 0.05)

PD-S potato dextrose stationary,PD-A potato dextrose agitated,MM-Sminimummedium stationary,MM-Aminimummedium agitated,GAE gallic acid
equivalent
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conditions on the production of specialized fungal metabolites
[18, 19].

The major compounds produced by A. flavus are myco-
toxins, especially aflatoxins and cyclopiazonic acid deriva-
tives, and it has been demonstrated that the ability to produce
these toxins can vary considerably [69–71]. It was previously
reported that the culture of A. flavus in PD enhances the for-
mation of aflatoxins as compared to CZPY medium, and it
was also shown that cyclopiazonic acid is produced in liquid
static culture in much greater concentrations than aflatoxins
[69–72]. However, in our work, only cyclopiazonic acid was
isolated, even using PD under agitation, and aflatoxins were
not found.

The results from the chemical investigation of A. flavus
have revealed constituents that agree with the identification,
classification, and chemotaxonomy of this fungal strain.
However, no aflatoxins were identified, which are
chemomarkers of this species; so, to provide comprehensive
coverage of the A. flavus metabolome, all extracts were sub-
mitted for analysis by UHPLC-HRMS/MS. Table 1 shows the
secondary metabolites identified, which corroborate the clas-
sification of our strain as A. flavus. Only compounds already
described from this species were identified, except for
dideacetyl parasiticolide A, which is described here for the
first time in this species [12, 73–76]. However, aflatoxins
were not detected in these extracts which were obtained by
different methods. The absence of these chemomarkers allows
us to indicate strain CL7 as a non-aflatoxigenic A. flavus.

Regarding the possible applications of secondary metabo-
lite extracts obtained by different methods of culturing the
endophyte CL7, the antimicrobial activity of extracts was
evaluated. Despite the extracts showing higher MIC than the

reference antibiotics, some of them showed promising values.
According to Holetz et al., extracts with anMIC below 100 μg
mL−1 present good antimicrobial activity; between 100 and
500 μg mL−1 indicates moderate antimicrobial activity and
from 500 to 1000 μg mL−1 indicates weak antimicrobial ac-
tivity; above 1000 μg mL−1, the extract may be considered
inactive [77]. In this context, PD-S extract did not present
antimicrobial activity against the microorganisms tested, since
the MIC was greater than 1000 μg mL−1. On the other hand,
the PD-A extract, which used the same culture medium but
was cultured on a shaker, showed an improvement in antimi-
crobial activity, with moderate activity against C. albicans,
T. rubrum, S. aureus, B. subtilis, andM. gypseum. In addition,
for the dermatophyte fungusM. gypseum, it was observed that
the microorganism died at the same MIC (MIC = MFC). This
activity may be attributed to the podophyllotoxin detected in
this extract, which is known to have antimicrobial properties
[78].

The best results were observed for the extract obtained
using MM against the dermatophyte T. rubrum, with an
MIC of 31.2 μg mL−1. This may be related to the presence
of aspergillic acid in this extract, which has been described as
an antibiotic and antifungal agent that is derived from certain
A. flavus strains [79]. Although this metabolite was also de-
tected in PD-S, and this extract did not show antimicrobial
activity, this could be related to the concentration of
aspergillic acid in the extract as the major compound in the
PD-S extract is kojic acid.

In evaluating anti-tuberculosis activity, Tosun et al. consid-
ered inactive those extracts that could not prevent the growth
ofM. tuberculosis up to a concentration of 200 μg mL−1 and,
according to Gu et al., an MIC of ≤ 128 μg mL−1 is defined as
active againstM. tuberculosis. By these measures, only PD-S
extract showed no significant activity, and MM-S extract was
the most potent inhibitor ofM. tuberculosis proliferation [80,
81].

Among the extracts evaluated, PD-S was the least toxic
against Vero cells, since its CC50 was higher than the highest
concentration tested (1000 μg mL−1). On the other hand, the
extracts PD-A, MM-S, and MM-A were highly cytotoxic to
Vero cells, with CC50 of 60.17, 40.17, and 21.08 μg mL−1,
respectively. The high toxicity of extracts grown in MM and
those grown on PD under shaking conditions is probably re-
lated to the compounds isolated from these fractions, such as
α-cyclopiazonic acid and 20,25-dihydroxyaflavinine [82].
Regarding antiviral activity, the extracts did not show a sig-
nificant inhibition capacity for HSV-1 virus (KOS strain),
since the EC50 were all higher than 100 μg mL−1, whereas
for the standard drug (acyclovir), the value determined was
0.11 μg mL−1.

The extract of the metabolites of the endophyte A. flavus
CL7 obtained by steady-state culture in PD presented high
antioxidant potential by the ABTS method, with almost 99%

Table 4 Cytotoxicity and antiviral activity of Aspergillus flavus CL7
extracts by the MTT method

Extracts CC50 (μg mL−1) EC50 (μg mL−1)

PD-S > 1000 > 100

PD-A 60.17 ± 7.02a > 100

MM-S 40.17 ± 2.75b > 100

MM-A 21.08 ± 1.38c > 100

Acyclovir > 1000 0.1115 ± 0.005

The highest concentration tested was 1000 μg mL−1 for cytotoxicity
assay and 100 μg mL−1 for antiviral activity. Tests were performed in
triplicate

Data expressed as mean ± standard deviation of three independent exper-
iments. In the same raw, the values marked with the same lowercase letter
are similar (p > 0.05), whereas those marked with different ones are
significant

PD-S potato dextrose stationary, PD-A potato dextrose agitated, MM-S
minimum medium stationary, MM-A minimum medium agitated, CC50

cytotoxic concentration for 50% of cells, EC50 effective concentration
that protects 50% of viral infection
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antioxidant activity. This result was probably due to the major
presence of kojic acid (1), an important antioxidant used by
the cosmetics industry [83].

In summary, we can highlight the identification of a non-
aflatoxigenic strain of A. flavus from a new host C. laevigata.
Dereplication analysis by UHPLC-HRMS/MS enabled the
identification of 21 compounds, one of which, dideacetyl
parasiticolide A, is being reported for the first time in this
species. This work also corroborates the direct influence of
culture medium on the production of specialized metabolites.
In addition, the biological activity of the different extracts was
evaluated; the extract obtained from stationary culture onMM
proved to be the most active in general, mainly due to theMIC
obtained against T. rubrum and M. tuberculosis, two patho-
genic microorganisms that affect the population and that are
becoming more and more resistant to conventional therapies.
Thus, we describe a strain of A. flavus with biotechnological
potential for use as a biocontrol tool, as a source of biomole-
cules active against other pathogenic microorganisms and as a
promising producer of kojic acid, an important metabolite
used in the food and beauty industries.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s42770-021-00502-6.
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