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The paper chase and the big data arms race
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Artificial intelligence (AI)—systems that program themselves
to listen, think, predict, anticipate, prognose, diagnose, and
RESPOND better than people—are the future of reproductive
medicine. And yet… despite its decades-long prominence in
other industries, AI has barely made an impact on the clinical
practice of infertility medicine.

Typically, artificial intelligence (AI) systems are trained
with many billions or millions of data points (think Google
predicting the content you are searching for). In reproduction,
the largest published data sets that have been used to train or
validate various deep learning, machine learning, and neural
network systems, fall in the 1000–10,000 range, for example;

AI for reproduction dataset available for download at
www.repro-ai.org.
Bormann, C. et al. [1] (742 embryo images);
Kan- Tor, Y. et al. [2] (6200 time lapse videos);
Chavez-Badiola, A. et al. [3] (1231 embryo images);
VerMilyea, M. et al. [4] (8886 embryos);
Letterie, G. et. al. [5] (2,603 total cycles (1,853 autolo-
gous and 750 donor cycles));
Tran, D. et al. [6] (8836 embryos);
Blank, C. et al. [7] (1052 patients),
Chen, T. et al. [8] (171,239 images from 16,201
embryos),
Miyagi, Y. et al. [9] (5691 embryo images).

Why is that?
Over 2.5 million IVF cycles are performed annually, gen-

eratingmillions uponmillions of individual data points. IVF is
supposedly one of the best registered procedures in medicine,
with global IVF registries spanning Europe, USA, Latina
America, Japan, Africa, Canada, New Zealand, and

Australia (Bart CJM Fauser, 2091). The International
Committee Monitoring ART (ICMART) has summarized
global IVF data (Dyer et al., 2016) based on existing registries
from approximately 60 countries and 2500 centers (collective-
ly representing approximately 4.5 million IVF cycles) span-
ning 2008–2010. However, huge data sinkholes exist. For
example, the majority of IVF lab data is recorded on paper
charts, many labs don’t record any image data, outcome met-
rics are extremely variable, and the Asia Pacific region (where
an estimated 400,000 (plus) cycles are performed annually)
does not (yet) report outcome data to a national registry.

The development of AI systems that are widely applicable
across ART clinics and protocols, AND geographies and
populations is challenged by the quality, diversity, and vol-
ume of available data. Some countries do not allow PGT,
some countries require the transfer of all available embryos,
and many do not routinely perform elective single embryo
transfers. Currently, much of the world’s IVF data is stuck in
paper charts, owned and sold by private IVF clinics, with
images taken on different microscopes, and cropped any
number of ways to remove patient data. The major AI pub-
lications in reproduction use data gathered from one to three
study sites.

In reproduction, AI systems could solve some of the
hardest problems in reproductive medicine, for example, the
complex dialogue between endometrium and embryo and re-
current miscarriage, the physiological function of the uterus
and disease states like endometriosis and adenomyosis, new
therapeutic targets for biological and chronological ovarian
ageing, preimplantation genetics to improve pregnancy out-
come, and recurrent implantation failure. The development of
AI systems for ART has thus far developed around areas
where embryo images (2D or timelapse video) are available:
embryo selection, prediction of ploidy, and live birth. An im-
mediate problem that could be addressed in the near future by
these systems is “non-invasive” genetic diagnosis, vastly re-
ducing the number of abnormal embryos that are sent for
further genetic testing and frozen at IVF clinics—drastically
reducing costs, man-hours, and embryo storage problems.
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As an embryologist in the USA, I have hand-transcribed
IVF cycle data (patient name, DOB, medical record number,
and other demographics) from the “paper packet” of a single
IVF cycle up to 7 times, from the “daily checks sheet” to the:
chain of custody, clinical EMR, cryostorage inventory, dewar
specimen log, statistics spreadsheet, research spreadsheet, and
lastly, into the SART CORS system. Image data (if collected
at all) is almost never connected to the IVF lab KPI data,
which is almost never connected to the clinical data. At least
100 times a day, I wonder, shouldn’t this be easier???

The industry is not ready to exploit artificial intelligence,
mainly because data collection, storage, and use is an exact
science… one that the messy and ephemeral science of creat-
ing and growing human embryos does not lend itself readily
to. The tedious, low-value work of cleansing, normalizing,
and wrangling data is essential to AI success. PGT results
are inaccessible until culled from PDF documents, and preg-
nancy results may be bHCG levels, obtained from an in-house
endocrinology machine or outside testing facilities. Embryo
images are most often collected on microscope computers
inside the IVF lab that are certainly not networked, and prob-
ably not even connected to the Internet. Many IVF labs still
use an ultrasound style printer, and don’t save the embryo
images. “On the ground” at the clinic, how can a digital sys-
tem replace processes the embryologist finds indispensable,
such as peeling the plastic label off of a cryo device after an
embryo is thawed, and sticking it into the cryostorage record
to become an indelible piece of evidence in the chain of
custody?

Half a dozen commercial entities are developing AI sys-
tems for ART, while private centers seem to be hiring com-
puter scientists to develop AI systems for “in house” use,
perhaps banking on a future competitive advantage or offering
for their patients. For AI algorithms to be facilitated into the
routine course of patient care, in an easy and automated fash-
ion, is currently impossible for the majority of ART clinics
that still use paper charts, and don’t capture and store image
data. Importantly, data management solutions to enrich AI
systems past the paradigm of embryo selection are lacking.
These data could be: patient demographics, clinical and lab
key performance indicators (KPI) and other relevant data
streams (ultrasound images and PGT results, competency as-
sessments, endocrinology, microscope and incubator QC,
room/environmental factors) or billing codes.

The role of medical coders has not yet been fully realized
for the development of AI systems for ART. Medical coders
analyze individual patient charts and translate complex infor-
mation about diagnoses, treatments, medications, and more
into alphanumeric codes. These codes are submitted to billing
systems and health insurers for payment and reimbursement
and play a critical role in patient care. Billing specialists rep-
resent an un-tapped well of knowledge; as they are responsible
for the accurate assessment of charts, they could also enrichAI

systems with medical knowledge that can improve the sys-
tem’s performance.

In general, there are unresolved concerns about electronic
health records and privacy; whether individuals can opt out,
who controls or can have access to data and when consent is
required, how to protect data from unauthorized use or acci-
dental loss, and use of “de-identified” data for ethically ap-
proved research. Some countries have out-lawed ART patient
data from crossing international borders, further restricting
large-scale data sharing.

AI systems need “big data” to achieve robustness. Public
databases of validated images and videos from diverse sources
are needed. The development of blockchain-based technolo-
gies (think cryptocurrency) for data sharing in ART promises
to promote collaborative research and innovation while reduc-
ing the cost of AI validation and implementation, and
allowing patient data to remain under the control of the clinic
by passing only the algorithms back and forth between
partners.

The big data arms race is not one that individual IVF clinics
or countries seem destined to win while the “paper chase” is
still being fought on the ground.
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