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Abstract
Staff competency is a crucial component of the in vitro fertilization (IVF) laboratory quality management system because it
impacts clinical outcomes and informs the key performance indicators (KPIs) used to continuously monitor and assess culture
conditions. Contemporary quality control and assurance in the IVF lab can be automated (collect, store, retrieve, and analyze), to
elevate quality control and assurance beyond the cursory monthly review. Here we demonstrate that statistical KPI monitoring
systems for individual embryologist performance and culture conditions can be detected by artificial intelligence systems to
provide systemic, early detection of adverse outcomes, and identify clinically relevant shifts in pregnancy rates, providing critical
validation for two statistical process controls proposed in the Vienna Consensus Document; intracytoplasmic sperm injection
(ICSI) fertilization rate and day 3 embryo quality.
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Introduction

The in vitro fertilization (IVF) laboratory director is responsi-
ble for identifying and monitoring key performance indicators
of IVF laboratory success. It can be difficult to identify the
source of problems when a program does not produce satis-
factory pregnancy outcomes. All accredited laboratories must
document continuous monitoring of quality control and assur-
ance parameters, culture conditions, and competency assess-
ments for staff [1]. More importantly, potential problems must

be identified quickly to permit timely corrections—an effort
that is hindered by the length of time to the clinical pregnancy
test, manual data entry to spreadsheets, subjectivity, inaccu-
rate recordings, and time-to analysis.

The clinical outcome of an IVF cycle is the gold standard of
system quality, with ongoing pregnancy rates dependent on
clinical KPIs [2, 3], culture systems [4], staff clinical decision-
making, and technical competency to perform a wide range of
procedures [5]. However, this approach has been criticized as
not providing actionable insight soon enough, in the unfortu-
nate event of a deleterious quality event. Alternate factors
beyond the laboratory’s control, such as the number of good
quality embryos available, number of good quality embryos
transferred, and number of embryos suitable for freezing [6],
also demonstrate significant correlation to pregnancy rates.

The primary outcome used to analyze embryology staff
proficiency in performing intracytoplasmic sperm injection
(ICSI) is fertilization rate. This outcome is measured between
16 and 18 h after insemination, and provides little information
about the quality of the resulting embryo. Fertilization checks
and embryo quality assessments require manual examination,
recording of status, and embryo developmental scores. These
processes are labor-intensive and subjective.
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Artificial intelligence (AI) in health care has shown the
most promise in diagnostics, especially image-based analysis
where AI systems can process “big” data and information to
help arrive at clinically useful conclusions and recommenda-
tions. AI systems have been significantly investigated in the
past several years for a wide variety of assisted reproductive
technology (ART) applications [7]. Notably, AI systems have
been developed for embryo selection [8, 9] and IVF cycle
outcome prediction [10, 11]. However, this advanced technol-
ogy has not been yet been demonstrated as a tool for monitor-
ing individual embryologist performance or for quality assur-
ance in an ART laboratory.

The goals of this study were to validate the predictive pow-
er of a previously developed AI to (1) detect performance
shifts of embryologists conducting ICSI, and (2) identify early
warning indicators for embryo culture conditions.

Here we present the validation of an AI algorithm, which
predicts in vitro human embryo developmental fate, to both
monitor the performance of embryo culture systems and to
evaluate individual embryologist’s performance of ICSI. The
AI-generated predictions were found to have a high associa-
tion with pregnancy rates (R2=0.9063) and low variation with
individual embryologist performance when compared to other
KPI techniques.

Materials and methods

Image capture and annotation Data was collected at a single
fertility center in Boston, MA, under an institutional review
board approval (IRB#2017P001339). EmbryoScope videos
were fragmented to extract the frames linked to specific time
points using a custom python script, which made use of the
OpenCV and Tesseract libraries. Machine-generated timestamps
available on each frame of the video were used to identify the
images associated with specific time points. All embryos used in
the study were annotated using images from the fixed time-
points by senior level embryologists with a minimum of 5 years
of human IVF training.Out-of-focus imageswere included in the
datasets and used for both testing and training. Only images of
embryos that were completely non-discernible were removed
from the study as part of the data cleaning procedure.

Automated fertilization and blastocyst assessment

Using annotated data of 2366 embryos, we trained and vali-
dated our convolutional neural network (CNN) to categorize
zygotes based on their number of pronuclei (Fig. 1). We then
evaluated the ability of the CNN in classifying zygotes based
on the number of pronuclei using a test set of 947 embryos.
The accuracy of the algorithm in 2PN and non-2PN embryo
classification using the 947 embryos test set was 93.1% with a

confidence interval (CI) ranged from 91.3 to 94.6%. We also
used this dataset of embryos to train a network using day 5
morphology embryos [12, 13]. We evaluated the accuracy of
the CNN in classifying embryos based on morphology on day
5 using a test set of 742 embryos. The accuracy of the system
in categorizing embryos into two classes of blastocysts and
non-blastocysts was 90.2% (CI: 87.8 to 92.2%).

Early developmental stage markers as predictors for
KPI monitoring

A deep neural network (AI) [8] analyzed embryo images ac-
quired at 70 h post-insemination and provided a score (KPI
score) taking into account all embryos within a given group. A
total of 876 embryos (Fig. 2) were cultured in 6 different lots
of media (Media A-F; CSC-Complete, Irvine Scientific), un-
der identical conditions at 37°C, 5% O2, and 6.5% CO2 with
oil overlay (Ovoil, Vitrolife) over a 6-month time period. The
percentage of 2 pronuclei (2PN) zygotes at the 4-cell stage on
day 2, 8-cell, 6- to 10-cell, ≥ 7-cells, and those predicted to
develop into high-quality blastocyst stages using an AI-based
generated KPI on day 3 of embryo development, were com-
pared with ongoing pregnancy rates using a regression analy-
sis. The low threshold value for ongoing pregnancy rates at
this hospital-based IVF practice is set at 50%.

AI algorithm architecture and dataset

To analyze and provide a KPI score for the embryos, we de-
signed a convolution neural network-based deep learning tech-
nique. Here we used Xception architecture, which is a combi-
nation of depth wise separable convolution layers with residual
connections comprising of 36 convolutional layers forming the
feature extraction. We pre-trained with 1.4 million images from
ImageNet, which performed with a top-1 accuracy of 79% and
top-5 accuracy of 94.5% across 1000 classes of ImageNet da-
tabase. We trained, evaluated, and tested this network with
cleavage stage embryo images of 2449 embryos categorized
across five classes based on their clinical annotations and their
developmental fate at 113 h post-insemination (hpi). At 113hpi,
class 1 consisted of degenerated and arrested embryos; class 2
embryos were at the morula stage; class 3 embryos were early
stage blastocysts with small blastocoel cavities, indistinguish-
able inner cell masses, and trophectoderm cells; class 4 embry-
os were expanded blastocysts that did not meet freezable qual-
ity criteria based on the practice guidelines (> 3CC), where 3
represents the degree of expansion (range 1–6) and C represents
the quality of ICM and TE (range A–D), respectively; and class
5 are embryos that met freezing criteria included full to hatched
blastocysts. These embryos have an A or B ICM and/or
trophectoderm. A total of 2449 embryos were divided into a
training dataset of 1190 images, validation set of 511 images,
and test set of 748 non-overlapping images of cleavage stage
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embryos. Using this test of 748 embryos, the accuracy of the
algorithm in predicting blastocyst development at 70 hpi was

71.87% [14]. We further used an independent test set of 876
embryos to generate KPI scores.

Fig. 1 Fertilization assessment. a The t-SNE plot for the Xception model
trained to classify abnormally fertilized embryos (non-fertilized, 3PN,
1PN etc. embryos) and normally fertilized embryos (2PN embryos).
The saliency map of the two embryos provides an example of the features
that network uses to classify embryos at the pronuclear stage. b The dot

matrix plot illustrates the system’s performance in evaluating embryos
(n=947) from the test set of patients. The squares represent true labels and
the circles within them represent the system’s classification. Blue squares
and circles represent normally fertilized embryos while red squares and
circles represent abnormally fertilized embryos

Fig. 2 Early developmental stage markers as predictors for KPI
monitoring. A deep neural network (AI) [8] analyzed embryo images
acquired at 70 h post-insemination and provided a score (KPI score)
taking into account all embryos within a given group. A total of 876

embryos were cultured in 6 different lots of media (Media A-F; CSC-
Complete, Irvine Scientific) and under identical conditions at 37°C, 5%
O2, and 6.5% CO2 with oil overlay (Ovoil, Vitrolife) over a 6-month
period
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Training and implementation

All the layers of the network were trained, and the classifica-
tion layer was replaced with a fully connected classification
layer with random weights for class 5 embryo classification.
Random rotation and flip argumentations were performed on
the training set across all classes during training to improve
the generalizability. The algorithm was implemented in py-
thon 3.7 using Keras, OpenCV libraries and trained on GTX
1080ti GPUs for 200 epochs using SGD optimizer with a
batch size of 64 and a learning rate of 0.00075. The network
generates 5 class confidence probabilities, which were used as
a KPI measure.

Automated quality assessment of individual
embryologists performing ICSI using AI

The second goal of the study was to determine whether an
automated AI system could be used to accurately monitor
the performance of embryology staff performing ICSI. Over
the course of 6 months, the developmental outcomes from 7
embryologists performing ICSI were tracked using standard
manual morphologic measurements and KPI calculations. The
first KPI analyzed was fertilization rate. Fertilization is eval-
uated 16–18h after ICSI to determine the presence or absence
of pronuclei (PN). Normal fertilization is defined as formation
of two distinct pronuclei. The next KPI analyzed is the blas-
tocyst development rate. This KPI calculates the percentage of
2PN embryos that develop to the blastocyst stage within 5
days of culture (class 3–5 descriptions). The last KPI manually
calculated is the high-quality blastocyst (HQB) conversion
rate. This measurement calculates the percentage of 2PN em-
bryos that develop to a freezable stage by day 5 of develop-
ment (see class 5 description). All three of these KPIs require
manual morphological assessments at fixed developmental
time points under high power magnification. These 3 manu-
ally assessed KPIs were compared against an AI system de-
veloped to automate the morphological assessment of embry-
os at the same stages of development. The rates of fertilization,
blastocyst development, and high-quality blastocyst (HQB)
development were compared in a total of 947 embryos, divid-
ed between 7 embryologists. To evaluate the difference be-
tween the two analysis methods, we performed a Wilcoxon
matched-pairs signed rank test and a coefficient of variation
(%CV) analysis.

Results

Developmental fate of ICSI-derived embryos

The Wilcoxon tests revealed that the two approaches per-
formed with negligible differences (P>0.05) for all three rate

estimations (fertilization, blastocysts, and HQB). Figure 3
shows the medians of difference for estimations of fertiliza-
tion, blastocysts, and HQBwhich were −1.3% (P>0.31), 1.8%
(P>0.09), and −3.6% (P>0.18), respectively. The %CV esti-
mations also showed that the difference between manual and
AI-generated estimations for each embryologist in all three
rates was low. The median of %CV between the two ap-
proaches in measuring the rates of fertilization, blastocysts,
and HQB was 1.9%, 3.4%, and 10.9%, respectively.

Early developmental stage markers as predictors for
KPI monitoring

The AI-based-generated KPI for predicting high-quality blas-
tocyst formation had the highest association with ongoing
pregnancy rates (R2=0.9063). This was the only cleavage
stage KPI examined that was able to detect changes in our
embryo culture environment that resulted in the pregnancy
rates dropping below the threshold of 50% (Table 1).

Discussion

Without question, laboratory quality control and assurance
must be performed routinely in an IVF lab, with the goal of
maintaining optimal culture conditions that leads to a healthy,
live-born baby [15, 16]. While the embryologist’s role in
achieving and contributing to quality through safety in the
assisted reproduction lab is well documented [16], appropriate
levels of monitoring, what to monitor, and the best ways to
monitor it are unclear and far from standardized. Laboratory
staff spend countless hours monitoring (sometimes multiple
times a day) and ensuring that the laboratory staff, equipment,
and environment remain within the parameters of the lab’s QC
program.

Many IVF labs, at a minimum, record the batch number of
all culture media, disposables, and laboratory ware used for a
particular patient and check incubators every day with regard
to temperature, humidity, and atmospheric conditions [17].
Consumables and physical culture environment are undeni-
ably important; however, staff competency is also a crucial
component of the IVF laboratory’s quality management sys-
tem. The “human factor” among physicians [2] can signifi-
cantly affect ongoing clinical pregnancy rates. Cirillo et al.
(2020) examined operator effect in frozen embryo transfers
and found that from worst to best operator, the odds ratio
varied between 0.84 and 1.13. The odds of success with the
worst operator were almost 16% lower than the mean, and the
odds of success for the best operator was 13% higher.
Likewise, embryologists must be competent to make dozens
of clinical decisions that can affect cycle outcomes, and be
technically proficient in a wide range of procedures.
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Certain IVF key performance indicators were formally de-
fined in the Vienna Consensus document published in 2017
[18]. Reference indicators, such as oocyte maturity rate, show
how the patient clinical side of the practice is performing.
Laboratory performance indicators fall into two categories—
those with a minimal threshold value (sperm motility post
prep) and ones with a simple threshold limit (such as IVF
polyspermy rate). The Vienna Consensus document defines
blastocyst development rate as a KPI, but does not support use
of a high quality or “usable” blastocyst rate. Blastocyst utili-
zation rate was considered for the Vienna Consensus, but
rejected as a KPI. Instead, the blastocyst formation rate, with
no consideration of blastocyst-stage or blastocyst quality, was
used.

The effectiveness of using these KPIs for detecting clini-
cally relevant shifts following changes in laboratory processes
was unverified, until a recent report by Hammond et al. [19]
demonstrated the utility of day 5 blastocyst rate in a statistical
KPI monitoring system to provide systematic, early detection
of adverse outcomes in ART laboratories. Hammond et al.
further extended and defined the day 5 blastocyst rate as a
“usable” blastocyst metric, i.e., not just blastocyst develop-
ment respective of quality but also good quality, usable blas-
tocysts. Here we present data to support a KPI of “high-quality
blastocyst (HQB) conversion rate.” This measurement

calculates the percentage of 2PN embryos that develop to a
freezable stage by day 5 of development. The AI-based-
generated KPI for predicting high-quality blastocyst forma-
tion had the highest association with ongoing pregnancy rates.

An important aspect of quality assurance data analysis is
identifying statistical process controls that will provide mean-
ingful insight into laboratory functioning at the earliest possi-
ble time point. Clinical pregnancy rates, although the gold
standard, are not the only outcome worth measuring, and
those data are only available after the “two-week wait” with
clinical fetal heart rate confirmation coming much later.
Factors such as multiple pregnancies, ovarian hyperstimula-
tion, patient satisfaction, and the proper evaluation of labora-
tory and clinical protocols are also important metrics [20]. The
timely discovery of a struggling technologist or bad lot of
consumables, followed by immediate corrective actions
through effective quality management practices, is the ambi-
tion of a quality control and assurance program. Table IV of
the Vienna Consensus document indicates that ICSI fertiliza-
tion rate and day 3 embryo development rate (defined as num-
ber of embryos with 8 or more cells on day 3 are among the
key performance indicators to be recorded and analyzed [18].

Here we demonstrate for the first time, the power of using
AI predictions in monitoring the performance of individual
embryologist technical competency and early embryo

Fig. 3 Comparison results. The Wilcoxon tests revealed that the two approaches in performed with negligible differences (P>0.05) overall for all three
rate estimations (fertilization, blastocysts, HQB)

Table 1 Early developmental stage markers as predictors for KPI monitoring

Key performance indicator MediumA (n=151) MediumB (n=137) Medium C (n=124) MediumD (n=137) Medium
E (n= 167)

Medium
F (n=160) R2

Day 2: % 4-cell 35.8 41.6 34.7 38.0 36.5 42.5 0.01144

Day 3: % 8-cell 27.8 26.3 16.1 27.0 30.5 31.9 0.01144

Day 3: % 6–10 cell 56.4 38.7 32.3 38.0 40.7 44.4 0.0415

Day 3: % ≥ 7-cell 64.9 70.1 66.1 66.4 77.8 74.4 0.0557

Day 3: % AI-generated KPI 33.8 30.0 41.5 38.9 38.6 37.8 0.9063

% ongoing pregnancy rate 50 42.9 58.3 58.8 58.8 57.9
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developmental stage markers as a predictor for the embryo
culture environment. Furthermore, we demonstrated the link
between quality assurance performance and patient outcomes.

This study is the first to describe that artificial intelligence
could be used to automate the monitoring of individual em-
bryologists performing ICSI in a clinical setting. Ideally, this
remote monitoring will be performed through a laboratory
information management system (LIMS) that can augment
in real-time image features with competency assessments
and many other types of patient-related clinical and laboratory
KPI data [21]. An embryologist quality assurance software
should automatically provide “red flags” when panic values
are reached. The extremely low coefficient of variation be-
tween the manual and AI-based QA assessment methods dem-
onstrates the high accuracy of the AI system.

A limitation of the approach presented here is the omission
of clinical KPIs that are significantly associated with pregnan-
cy rates, (age, AMH, and number of oocytes collected) and
have proven to be useful analysis tools to combine with labo-
ratory KPIs to predict the rates of clinical gestation [3].
Furthermore, the present study was limited in its analysis of
other laboratory KPIs that can influence the fertilization rate,
such as sperm quality, age of oocytes, oocyte maturity, or
other variables.

In conclusion, this study demonstrates an alternative AI-
drivenmethod for monitoring two of KPIs noted in the Vienna
consensus document in the IVF laboratory, without the need
for subjective grading, manual recording, and analysis. Our
work further validates the effectiveness of statistical process
controls for detecting clinically relevant shifts in culture con-
ditions and individual embryologist competency.
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