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Abstract
In this study, we examined endophytic fungi in leaves of Mandevilla catimbauensis, an endemic plant species found in 
the Brazilian dry forest (Caatinga), and endophytic fungi’s potential to produce L-asparaginase (L-ASNase). In total, 66 
endophytes were isolated, and the leaf-fragment colonisation rate was 11.78%. Based on morphology, internal transcribed 
spacer (ITS), and partial large subunit (LSU) of ribosomal DNA sequencing, the endophytic fungi isolated belonged to six 
Ascomycota orders (Botryosphaeriales, Capnodiales, Diaporthales, Eurotiales, Marthamycetales, and Pleosporales). Phyl-
losticta species were the most frequent endophytes isolated (23 isolates [45.1%] from two species). The Shannon–Wiener 
and Fisher alpha index average values were 0.56 and 3.26, respectively. Twenty endophytes were randomly selected for the 
L-ASNase production test, of which fourteen isolates showed potential to produce the enzyme (0.48–2.22 U  g−1), especially 
Phyllosticta catimbauensis URM 7672 (2.22 U  g−1) and Cladosporium sp. G45 (2.11 U  g−1). Phyllosticta catimbauensis 
URM 7672 was selected for the partial optimisation of L-ASNase production because of its ability to generate consider-
able amounts of enzyme. We obtained the highest L-ASNase activity (3.47 U  g−1), representing an increase of 36.02% in 
enzymatic production, under the following experimental conditions: a pH of 4.2, 1.0% inoculum concentration, and 2.5% 
L-asparagine concentration. Our study showed that M. catimbauensis harbours an important diversity of endophytic fungi 
with biotechnological potential for L-ASNase production.
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Introduction

Endophytic fungi inhabit intra- and inter-cellular plant 
tissues without causing harmful effects on plants. These 
microorganisms may alter gene expression, modulate 
biosynthetic pathways, mitigate stressful conditions in 
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plants, and play an important role in establishing the plant 
defence system against potential pathogens. Endophytic 
fungi are a potential resource for biosynthesis, biotrans-
formation, and biodegradation because they produce many 
secondary metabolites [1, 2]. Therefore, investigating the 
fungi inhabiting plant species with medicinal properties 
can lead to the discovery of new metabolites with potential 
bioactivity [2].

Many studies on endophytic fungi have been conducted 
in humid and temperate tropical forests [3, 4]. However, 
arid, semiarid, and desert areas, such as the Brazilian trop-
ical dry forest (Caatinga), are also promising environments 
in terms of fungal species diversity [5–7]. Studies con-
ducted in Caatinga sites have contributed to the descrip-
tion of new fungal endophytes with biotechnological 
potential [6–8]. These studies have described new fungal 
endophytes, suggesting that the real mycobiome richness 
has been underestimated [2, 5, 9].

The Caatinga is a tropical dry forest covering a large 
part of northeastern Brazil and harbours multiple numbers 
of plants, animals, and microorganisms [10–13]. Consider-
ing the large-scale destruction because of anthropogenic 
interference and to guarantee the maintenance of Caatinga 
diversity, some areas of this ecosystem have been selected 
to be conservation units. One important conservation unit 
is the Catimbau National Park (Parque Nacional do Cati-
mbau), the second largest archaeological park in Brazil, 
which presents a lush landscape and rich diversity [14]. 
Catimbau National Park harbours several endemic and 
exclusive plant species, including Mandevilla catimbau-
ensis Souza-Silva, Rapini & JF Morales (Apocynaceae), 
a rare and endemic species that is vulnerable to extinction 
[15, 16]. Mandevilla catimbauensis is an herbaceous and 
climbing plant mainly recognised by its twining habit and 
it is only found in the Catimbau National Park [15, 17]. 
Mandevilla is considered the largest neotropical genus of 
the family Apocynaceae, and it is represented by about 40 
species in Brazil [15]. Mandevilla species have medicinal 
importance in secondary chemical compound production 
with anti-inflammatory, antinociceptive, and antipyretic 
properties [18].

Several fungi isolated from dry environments have shown 
a potential for production of biomolecules of industrial inter-
est, such as L-asparaginase (L-ASNase) [6, 7, 9]. L-ASNase 
has been used as a drug in anti-leukaemia chemotherapy, but 
there are several adverse effects when this enzyme is pro-
duced by bacteria, which has led the scientific community to 
search for alternative sources [19]. In addition to its clinical 
use, L-ASNase has been used by the food industry to reduce 
the formation of acrylamide, a harmful toxin formed dur-
ing high-temperature food processing [20]. The L-ASNase 
used by the food industry has a fungal origin [21], and the 
increased use of the enzyme has motivated the search for 

fungal resources capable of meeting the high-L-ASNase 
demand of pharmaceutical and food industries [19, 22].

Endophytic fungi are a limitless source of novel metabo-
lites, and endophytes from plants growing in particular eco-
logical niches may have the ability to produce a variety of 
secondary metabolites [1]. In this study, we investigated, 
for the first time, the diversity and biotechnological poten-
tial of endophytic fungi from the plant M. catimbauensis, 
which grows in the Caatinga dry forest. We investigated the 
hypothesis that leaves of M. catimbauensis harbour a rich 
and diverse endophytic fungal community with the potential 
to produce L-ASNase. In order to test this hypothesis, our 
study aimed to analyse the diversity of endophytic fungi liv-
ing in healthy M. catimbauensis leaves and verify the capac-
ity of the endophytes to produce L-ASNase.

Materials and methods

Study area

This study was carried out at the Parque Nacional do Catim-
bau (8° 24′ 00″ and 8° 36′ 35″ S; 37° 09′ 30″ and 37° 14′ 40″ 
W), a federal conservation unit in the Caatinga dry forest, 
Pernambuco State, Brazil (Fig. 1a). The climate is semiarid 
and is classified as BSh according to Köppen’s scale [23]. It 
has an average annual temperature and rainfall of 23 °C and 
650–1100 mm, respectively, with March and October being 
the wettest and driest months, respectively. The park con-
tains heterogeneous vegetation, with four distinct vegetation 
types: rupestrian grasslands, semi-deciduous and evergreen 
vegetation, and small deciduous trees and shrubs [12].

Plant collection and isolation of endophytic fungi

Mandevilla catimbauensis leaves (Fig. 1b) were sampled 
in May 2015 during one of the longest drought periods in 
a sedimentary area of the Caatinga dry forest from Serra 
de Jerusalém (at an altitude of 910 m), Catimbau National 
Park, Buíque municipality (Fig. 1a). Leaves from 20 indi-
viduals were randomly collected, packed in paper bags, and 
processed in the laboratory within 24 h. The endophytic 
fungi were isolated by processing the leaves according to 
the method proposed by Bezerra et al. [24]. After disinfec-
tion, the leaf fragments were placed in Petri dishes contain-
ing potato dextrose agar (PDA) medium supplemented with 
chloramphenicol (100 mg  L−1) and tetracycline (50 mg  L−1) 
to restrict bacterial growth. The Petri dishes were incubated 
at 28 ± 2 °C for up to 30 days under a natural light cycle. 
Fungal endophyte growth was observed every day, and any 
colony found was isolated, purified, and maintained on PDA 
for later identification. The efficacy of the surface sterilisa-
tion process was verified by inoculating 1 mL of water used 

1432 Brazilian Journal of Microbiology (2021) 52:1431–1441



1 3

during the last rinses onto Petri dishes containing the same 
medium, followed by incubation under the same conditions.

A specimen of M. catimbauensis has been deposited in 
the Herbário UFP – Geraldo Mariz under number 81.210, 
and representative cultures of the endophytes are deposited 
in the URM culture collection (Micoteca URM Profa. Maria 
Auxiliadora Cavalcanti). Both collections are located at the 
Universidade Federal de Pernambuco (Recife, Brazil). The 
plant collections were authorised by MMA/ICMBio (SIS-
BIO number 48492–1).

DNA extraction, PCR, sequencing, and phylogenetic 
analyses

All the isolated endophytic fungi were cultured on PDA, 
and the DNA was extracted using the Wizard® Genomic 
DNA Purification kit (Promega, USA) according to the 
manufacturer’s instructions. The internal transcribed spacer 
(ITS) and part of the nuclear ribosomal small subunit (LSU) 
regions of the rDNA were used to identify endophytic fungi. 
PCR, sequencing, and sequence analyses were then per-
formed as described by Bezerra et al. [25].

Searches using the BLASTn tool in the GenBank database 
at NCBI were used to verify the phylogenetic relationships 

among all the ITS and LSU rDNA sequences. Subsequently, 
selected sequences deposited in GenBank were aligned with 
the ITS sequences obtained in this study to verify their rela-
tionships based on maximum likelihood (ML) analysis. 
Sequence editing, alignments, and phylogenetic analysis 
were conducted according to the procedures described ear-
lier [25], and the ML analysis used 1000 bootstrap replicates 
and GTR + I + G as the best nucleotide model.

The sequences obtained in this study were deposited in 
the GenBank database (ITS = MT569893–MT569930 and 
LSU = MT569931–MT569974) (Online Resource Table 1). 
The sequence alignment used to perform the phylogenetic 
analysis was deposited in TreeBASE (study S26389).

Colonisation rate and absolute and relative 
frequencies

The endophytic colonisation rate (CR) was calculated by 
considering the ratio between the number of colonised 
fragments (Nf) and the total number of fragments (Nt) 
taken from the plant tissue (CR = Nf / Nt × 100). The abso-
lute frequency represents the total number of endophytes 
isolated, and the relative frequency is the number of iso-
lates of each genus divided by the total number of isolates 
and multiplied by 100.

Fig. 1  a The geographical location of the Parque Nacional do Catimbau (Catimbau National Park), Brazilian tropical dry forest (Caatinga). b 
Mandevilla catimbauensis in the Catimbau National Park
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Ecological analyses

We calculated the richness (S), Shannon–Wiener diversity 
index (H′), and Fisher’s alpha value for all samples. Rich-
ness was defined as the number of species in each sample, 
and the Shannon–Wiener diversity index was calculated 
using the following equation: H′ =  − Σ(Pi ln(Pi)), where 
Pi = ni / N and ni = number of endophytic isolates of taxon 
i and N = total number of endophytic isolates of all taxa 
[26]. For statistical purposes, the H′ values were converted 
to Exp (H′). Fisher’s alpha value was calculated using the 
equation: S = α × ln (l + n / α), where S is the number of 
taxa, n is the number of isolates, and α is Fisher’s alpha 
value [27]. Species accumulation curves were determined, 
and observed richness was compared to estimated richness 
using the first-order Jackknife (Jackknife 1). All analyses 
were performed using R software v.3.5.0 (R Development 
Core Team 2018) and the “agricolae” [28], “vegan” [29], 
and “iNEXT” packages [30].

L‑ASNase production in liquid medium

The L-ASNase production process was based on the stud-
ies by Loureiro et al. [31] and Silva et al. [6]. During the 
pre-fermentative stage, biomass production was induced 
using Czapek Dox’s Medium (CDM) [32], as modified 
by Pádua et al. [7] [glucose (14.0 g  L−1), L-asparagine 
(10.0 g  L−1),  KH2PO4 (1.52 g  L−1), KCl (0.52 g  L−1), 
 MgSO4.7H2O (0.52 g  L−1),  CuNO3.3H2O (0.01 g  L−1), 
 ZnSO4.7H2O (0.01 g  L−1),  FeSO4.7H2O (0.01 g  L−1), 
and  (NH4)2SO4 (2.0 g  L−1) at pH 6.2]. Erlenmeyer flasks 
(250 mL) containing 100 mL of CDM were inoculated 
with five discs (5 mm) of fungal mycelium that had been 
allowed to grow for 7 days on malt extract agar. These 
flasks were incubated at 30 °C for 96 h at 120 rpm. The 
cultures were filtered using Whatman no. 1 filter paper, 
and the biomass obtained was used to determine enzyme 
production. During the fermentative stage, the biomass 
obtained in the previous stage was inoculated into the 
modified CDM medium (as described above), and the 
modifications were that the glucose concentration was 
adjusted to 2.0 g  L−1 and no  (NH4)2SO4 was added. The 
inoculated media were incubated at 30 °C for 96 h at 
120 rpm. Finally, the cultures were filtered using What-
man no. 1 filter paper. The enzymatic activity of the 
obtained biomass was quantified as described below.

L‑ASNase activity

The L-ASNase activity was determined according to Drainas 
et al. [33], as modified by Silva et al. [6] and Pádua et al. [7]. A 
total of 1.5 mL Tris–HCl buffer (20 mM, pH 8.6) and 0.1 g of 

fungal biomass from each culture obtained after the fermenta-
tion step were vortexed. Then, 0.2 mL of L-asparagine solu-
tion (100 mM) and 0.2 mL of stock hydroxylamine solution 
(1 M, pH 7.0) were added, and the samples were incubated for 
30 min at 37 °C and 150 rpm. The reaction was stopped by add-
ing 0.5 mL of  FeCl3 reagent [10% (w/v)  FeCl3 plus 5% (w/v) 
trichloroacetic acid in 0.66 mol  L−1 HCl] to all the samples, 
including the blank samples (Tris–HCl and mycelium). The 
reaction mixtures were then centrifuged for 15 min at 6000 rpm 
and 4 °C to remove the precipitates. Absorbance was measured 
at 500 nm against the blank samples that received L-asparagine 
and hydroxylamine solutions after 30 min of incubation. One 
unit of L-ASNase was defined as the amount of enzyme that 
releases 1 μmol of β-hydroxamic aspartic acid per minute.

Partial optimisation of L‑ASNase production

A statistical experimental design  (23 factorial design with four 
central points) [34, 35] was used to partially optimise L-ASNase 
production. We used a factorial design comprising 12 trials, three 
variables (concentration of L-asparagine, pH, and inoculum con-
centration), and four replications at the central point. The pre-fer-
mentation conditions were the same as described above (see the 
“L-ASNase production in liquid medium” section). The modified 
CDM was also used for fermentation, where the variables used 
were adjusted according to the results of the experimental design, 
and the flasks were incubated at 120 rpm for 120 h at 30 °C. After 
the incubation period, the fungal biomass was filtered and used 
to determine enzyme activity [33 modified by 6 and 7]. Based on 
the factorial design results, additional experiments were carried 
out to increase the enzymatic production.

Statistical analysis of L‑ASNase activity

The non-parametric Kruskal–Wallis test was used to 
determine if there was a statistically significant difference 
(p < 0.05) or a marginally significant difference (p < 0.1) 
between the results for L-ASNase production by endophytic 
fungi from M. catimbauensis. The results obtained from a  23 
factorial design and the non-parametric Kruskal–Wallis test 
were processed using R software. This test was carried out 
to verify and evaluate the relationship between the selected 
independent variables and enzyme production. All calcula-
tions were randomly performed.

Results

A total of 560 leaf fragments from M. catimbauensis were 
randomly collected from 20 individuals. The colonisa-
tion rate for the leaf fragments was 11.78%, and a total 
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of 66 endophytic fungi were isolated; however, 15 iso-
lates did not grow after isolation. We identified 13 gen-
era based on their morphological characteristics (macro 
and micromorphology) and analysis of the ITS or LSU 
rDNA sequences. The isolated endophytes belonged to six 
orders in Ascomycota (Botryosphaeriales, Capnodiales, 
Diaporthales, Eurotiales, Marthamycetales, and Pleospo-
rales) (Online Resource Fig. 1). Phyllosticta isolates were 
the most frequent (45.10%) in M. catimbauensis, followed 
by Diaporthe (11.76%). Cercospora, Cladosporium, Mar-
thamyces, Paracercosporidium, Paraconiothyrium, Para-
pyrenochaeta, Phaeophleospora, and Preussia, which 
were only present at low frequencies (one or two isolates) 
and were considered to be rare endophytes (Table 1).

The total richness of the endophytic fungi was 18 taxa, 
and the estimated richness per individual M. catimbauen-
sis varied from one to seven species, with an average of 
1.9. The total diversity of the endophytic fungi, according 
to the Shannon index, ranged from 0.69 to 1.90, with an 
average of 0.56. The Fisher index values varied from 0.79 
to 26.78, and the average was 3.26. The species accumula-
tion curve did not reach a plateau, and the sampling effort 
was not sufficient to recover all the estimated richness 
using the first-order Chao Jackknife index (Chao Jack-
knife 1) (Fig. 2).

Of the 20 endophytic fungi tested in the liquid medium, 
14 isolates showed a capacity to produce the enzyme 
L-ASNase, with the enzymatic activity varying between 
0.48 and 2.22 U  g−1 (Table 2). Phyllosticta catimbauensis 
URM 7672 and Cladosporium sp. G45 had the best results 
for the intracellular enzyme production (2.22 and 2.11 U 
 g−1, respectively) (Table 2). Based on these results, the 
endophyte P. catimbauensis URM 7672 was selected for 
partial optimisation of L-ASNase production.

L-ASNase production using the experimental  23 facto-
rial design varied between 0.61 and 2.25 U  g−1 (Table 3). 
The highest L-ASNase production (2.25 U  g−1) was 
obtained at pH 5.0, 1.5% L-asparagine, and 1.5% inocu-
lum (Assay 6, Table 3). The analysis of variance results 
showed that the increase in L-asparagine production was 
statistically significant, whereas the pH and the interac-
tion among the three explanatory variables were margin-
ally significant, and the inoculum concentration was not 
significant (Online Resource Table 2). The lack of adjust-
ment was not statistically significant, and the determina-
tion coefficients (R2) and adjusted R2 were 0.8418 and 
0.7514, respectively. Based on the independent variables’ 
effects (Online Resource Fig. 2), an experimental sequence 
was performed with the adjusted variables to obtain a 
greater enzymatic production (Table 4). In this experi-
mental design, 3.5 U  g−1 of L-ASNase was obtained using 
3.5% L-asparagine, pH 4.2, and 1.0% inoculum (Assay 
5, Table 4). Table 4 shows the Kruskal–Wallis analysis, 

which resulted in a p-value of 0.0155. The best values for 
enzymatic production were produced by assays 4 (3.47 
U  g−1) and 5 (3.50 U  g−1). According to the test results, 
there were no significant differences between these values. 
Assays 4 and 5 had the same pH (4.2) and inoculum con-
centration (1.0 g), but had different L-asparagine concen-
trations (assay 4 = 2.5 g and assay 5 = 3.5 g). The increase 
in L-ASNase enzymatic activity was 36.02% and 36.57% 
in assays 4 and 5, respectively.

Discussion

In this study, we isolated 66 endophytic fungi from the 
leaves of M. catimbauensis, a plant species belonging to the 
Apocynaceae family. Studies on the endophytic fungi associ-
ated with this plant family have recorded between 11 and 22 
endophytes [36]. The low recorded fungal colonisation rate 
(11.78%) in the leaves of M. catimbauensis may be because 
of the presence of latex in the plant composition, as latex has 
antibacterial and antifungal properties [37]. Another study 
on endophytic fungi isolated from the stems and roots of 
Nerium indicum (Apocynaceae) reported a total of 11 endo-
phytic fungi isolated from healthy tissues of the plant (five 
from stems and six from roots) [38].

Different factors may have influenced the low diversity of 
fungal endophytes recovered from M. catimbauensis leaves 
(H′ = 0.69 to 1.90 and F-α = 0.79 to 26.78), for example, 
plant tissue type and age, micro-habitats, the relationship 
between fungal hosts, climate, vegetation changes, and 
human impact [39–41]. Variations in solar intensity and 
exposure are relevant factors associated with the compo-
sition of the endophytic fungal community [42]. Further-
more, ultraviolet radiation in semiarid regions, such as the 
Caatinga dry forest in Brazil, can negatively influence the 
diversity of these fungi [7].

Most of the endophytic fungi isolated in this study were 
pigmented, and Phyllosticta was the most frequently found 
genus. Pigmented fungi have been isolated in studies on 
various plant species from arid environments, and they 
may confer host plant tolerance to extreme environmen-
tal conditions, including ultraviolet radiation [43, 44]. 
Suryanarayanan et al. [43] studied the occurrence and 
distribution of endophytic fungi in tropical forests and 
observed that the most frequently isolated genera were 
Colletotrichum, Phyllosticta, and Diaporthe [Phomopsis]. 
Phyllosticta has been frequently isolated as endophytes 
from the leaves of various tropical plants [44], and endo-
phytes belonging to Diaporthe are also frequently iso-
lated [5, 7]. For example, Pádua et al. [7] reported that 
Diaporthe and Phyllosticta were the most common endo-
phytes isolated from M. urundeuva occurring in the Caat-
inga forest of Brazil.
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Similar to our study, most investigations of microbial 
diversity have not sufficiently recovered all estimated species 
richness [7, 45–49]. For example, investigations of endo-
phytic fungi associated with different plant hosts in dry trop-
ical forests (Caatinga) in Brazil were not able to represent 
the estimated species richness [7, 47, 49]. Similarly, Oliveira 

et al. [48] did not isolate all expected endophytic fungi from 
the leaves of Cocos nucifera occurring in coconut crops in 
a region of the Atlantic Forest in Brazil. In a large study 
from the Canadian Arctic to the lowland tropical forest of 
central Panama, Arnold and Lutzoni [46] also demonstrated 
an inability to isolate all estimated endophytic species from 
the leaves of 28 hosts, showing that the expected species 
remarkably exceeded the numbers observed. Based on 1403 
endophytes isolated from representative arctic, boreal, tem-
perate, and tropical plants, the authors observed approxi-
mately 250 species, whereas 350 species were expected.

Most (70%) of the tested endophytic fungal isolates were 
able to produce L-ASNase. Phyllosticta catimbauensis, a 
species described in 2017 [50], had the highest ability to 
produce L-ASNase (URM 7672, 2.22 U  g−1). Some stud-
ies have demonstrated that endophytic fungi have a high 

Fig. 2  Species accumulation 
curve for endophytic fungi 
recovered from leaves of 
Mandevilla catimbauensis, an 
endemic plant of the Caatinga 
dry forest, Brazil

Table 2  L-asparaginase activity produced by endophytic fungi iso-
lated from leaves of the medicinal plant Mandevilla catimbauensis, 
an endemic plant of the Caatinga dry forest, Brazil

Values followed by the same letter do not differ significantly 
(p > 0.05) using the non-parametric test of Kruskal–Wallis

Endophytic fungi URM or isolate 
numbers

L-asparaginase 
activity (U  g−1)

Alternaria sp. G22 0.00 h

Alternaria sp. G7 0.00 h

Cladosporium sp. G45 2.11a

Diaporthe cf. acaciarum G25 0.56 fg

D. heveae URM 8162 0.80b

Marthamyces renga G48 0.00 h

Phyllosticta capitalensis URM 8159 0.00 h

P. capitalensis G21 0.76 cd

P. catimbauensis URM 7672 2.22a

P. catimbauensis G12 0.48 g

P. catimbauensis URM 7673 0.99bc

P. catimbauensis G20 0.75de

P. catimbauensis URM 7674 0.57ef

Pseudofusicoccum stromaticum G6 0.61ef

P. stromaticum G41 0.00 h

Paracercosporidium sp. G46 0.48 g

Parapyrenochaeta sp. URM 8160 0.79bc

Preussia sp. URM 8161 0.95b

Talaromyces sp. URM 8163 1.11b

Talaromyces sp. URM 8164 0.00 h

Table 3  Production of L-asparaginase by Phyllosticta catimbauensis 
URM 7672 in the  23 factorial experimental design

Assay L-aspara-
gine (%)

pH Inoculum concentra-
tion (biomass %)

L-Asparaginase 
activity (U  g−1)

1 0.5 5.0 0.5 0.61
2 1.5 5.0 0.5 2.03
3 0.5 7.0 0.5 1.07
4 1.5 7.0 0.5 1.38
5 0.5 5.0 1.5 1.46
6 1.5 5.0 1.5 2.25
7 0.5 7.0 1.5 0.67
8 1.5 7.0 1.5 1.81
9 1.0 6.0 1.0 1.70
10 1.0 6.0 1.0 1.85
11 1.0 6.0 1.0 1.46
12 1.0 6.0 1.0 1.54
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production capacity for L-ASNase [6, 7]. Furthermore, 
previous research has shown that some Phyllosticta spe-
cies can produce novel bioactive metabolites [51], includ-
ing anticancer drugs [7]. Other endophytes, such as Clad-
osporium sp. G45 and Talaromyces sp. URM 8163, have 
also demonstrated the capacity for L-ASNase production 
(2.11 U  g−1 and 1.11 U  g−1, respectively). Kumar et al. [52] 
reported Cladosporium sp. isolated from soil samples as the 
best producer of L-ASNase (3.74 U  g−1). Species of Tal-
aromyces have a huge biotechnological capacity to produce 
several metabolites. Krishnapura and Belur [53] partially 
purified and characterised the L-ASNase of T. pinophilus, 
an endophyte isolated from the rhizomes of Curcuma amada 
(Zingiberaceae), and they considered it a potential candidate 
for industrial and clinical trials because of its biochemical 
properties and high efficiency (174 U  mL−1).

Similar to the present study, Pádua et al. [7] used biomass 
to quantify enzymatic activity based on the formation of 
β-hydroxamic aspartic acid. The authors reported that Dia-
porthe sp. URM 7793 was one of the best producers (2.41 
U  g−1), followed by Diaporthe sp. URM 7779 (2.00 U  g−1) 
and Talaromyces sp. URM 7785 (1.91 U  g−1). In addition, 
Pádua et al. [7] demonstrated the potential of Phyllosticta 
sp. URM 7787 to produce L-ASNase with an average of 
0.57 U  g−1. Silva et al. [6] evaluated the L-ASNase activities 
of endophytes isolated from the bromeliad Tillandsia cati-
mbauensis and identified Talaromyces cf. cecidicola URM 
7826 as the best producer (2.30 U  g−1). In another study, Da 
Rocha et al. [54] evaluated 32 filamentous fungi isolated 
from the Caatinga and obtained an activity of 1.58 U  g−1 
using Aspergillus terreus URM 7732. However, Costa-Silva 
et al. [55] evaluated the conditions of biomass production by 
A. terreus CCT 7693 and obtained a production of 13.50 U 
 g−1 after optimisation (the best condition was CDM contain-
ing glucose 2 g  L−1, L-proline 10 g  L−1, and an inoculum 
concentration of 4.8 ×  108 spores  mL−1 adjusted to pH 9.49 
at 34.6 °C) of the enzyme production process. The superior 

production found by Costa-Silva et al. [55] is a basis for 
further studies on the conditions of L-ASNase production 
by P. catimbauensis URM 7672.

In this study, 2.5% L-asparagine and 1.0% fungal inoc-
ulum at pH 4.2 were the optimal parameters for enzyme 
production. Furthermore, the experimental design increased 
enzyme activity by 36.02%. According to Thakur et al. [56], 
the initial pH of the culture medium can influence enzyme 
production because it can affect nutrient availability. Kumar 
et al. [52] discovered that pH 5.8 was optimal for L-ASNase 
production by Cladosporium sp. isolated from soil. In 
another study, Farag et al. [57] optimised the fermentation 
parameters and obtained optimum conditions for L-ASNase 
production by Aspergillus terreus at pH 6.0 using dextrose 
and L-asparagine as sources of carbon and nitrogen, respec-
tively. Similarly, Vieira et al. [58] optimised L-ASNase 
production by Penicillium sp., and the optimum conditions 
were pH 5.1, 1.2 g  L−1 L-asparagine, and 3.0 g  L−1 glucose. 
However, Dias and Sato [59] reported that 2% proline, 0.5% 
glucose, 0.2% L-asparagine, and pH 8.0 were ideal condi-
tions for enzymatic production by Aspergillus oryzae.

Here, we present the first study on endophytic fungi 
associated with M. catimbauensis, an endemic species 
in the Brazilian tropical dry forest. Our findings showed 
that M. catimbauensis leaves are host to endophytic spe-
cies with a capacity to produce L-ASNase. Among the 
14 endophytic isolates that exhibited enzymatic activity 
(0.48–2.22 U  g−1), P. catimbauensis URM 7672 (2.22 
U  g−1) and Cladosporium sp. G45 (2.11 U  g−1) were the 
most promising enzyme producers. During the partial 
optimisation stage for L-ASNase production by P. cati-
mbauensis URM 7672, L-asparagine concentration was 
found to be significant, and pH was found to be mar-
ginally significant, whereas the inoculum concentration 
was not significant. Furthermore, L-ASNase production 
by P. catimbauensis URM 7672 varied between 1.13 
and 3.50 U  g−1 when using the optimal experimental 
design conditions. The best conditions for L-ASNase 
production by P. catimbauensis URM 7672 (3.47 U  g−1) 
were 2.5% L-asparagine and 1.0% inoculum at pH 4.2, 
considering that lower concentrations of L-asparagine 
did not produce statistically significant differences 
for the highest enzyme activity (3.50 U  g−1). The pro-
duction of secondary metabolites by endophytic fungi 
greatly impacts modern pharmaceutical products, which 
led us to explore this valuable biological resource to 
make the process more advantageous for human use 
[60]. The industrial importance of L-ASNase means that 
a search for new enzyme production sources is needed. 
Any new sources can contribute to biotechnological 
applications in the food and drug industries. These 
results suggest that the endophyte P. catimbauensis 
URM 7672 should be subjected to further optimisation 

Table 4  Production of L-asparaginase by Phyllosticta catimbauensis 
URM 7672 obtained through an experimental sequence. Inoculum 
concentration was fixed in 1.0% fungal biomass

Non-parametric test of Kruskal–Wallis (p = 0.0155). Values followed 
by the same letter do not differ statistically from each other

Assay L-asparagine (%) pH L-aspar-
aginase 
activity

1 1.5 5.0 2.33bc

2 1.5 4.6 2.49b

3 2.5 4.6 1.13c

4 2.5 4.2 3.47a

5 3.5 4.2 3.50a

6 4.5 4.2 2.91ab

1438 Brazilian Journal of Microbiology (2021) 52:1431–1441



1 3

studies that will investigate ways of optimising the pro-
duction of L-ASNase. In addition, genetic manipulation, 
mutations, and other recombinant DNA techniques can 
contribute to obtaining higher L-ASNase production, 
as has been done for other substances [60]. Our results 
highlight the importance of protecting plant species in 
their natural environments to guarantee diversity and 
to allow their potential contribution to future biotech-
nological studies for promotion of a future eco-friendly 
and sustainable bio-economy.
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