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Abstract
Lipases are enzymes that catalyze the breakdown of lipids into long-chain fatty acids and glycerol in oil-water interface. In
addition, they catalyze broad spectrum of bioconversion reactions including esterification, inter-esterification, among others in
non-aqueous and micro-aqueous milieu. Lipases are universally produced from plants, animals, and microorganisms. However,
lipases from microbial origin are mostly preferred owing to their lower production costs, ease of genetic manipulation etc. The
secretion of these biocatalysts by microorganisms is influenced by nutritional and physicochemical parameters. Optimization of
the bioprocess parameters enhanced lipase production. In addition, microbial lipases have gained intensified attention for a wide
range of applications in food, detergent, and cosmetics industries as well as in environmental bioremediation. This review
provides insights into strategies for production of microbial lipases for potential biotechnological applications.
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Introduction

Lipases (triacylglycerol acylhydrolases, EC 3.1.1.3) are a
class of enzymes that catalyze the hydrolysis of triglycerides
into diglycerides, monoglycerides, glycerol, and free fatty
acids at the organic-aqueous interface [1]. In addition, they
catalyze a plethora of reactions including esterification, in-
ter-esterification, trans-esterification, alcoholysis, acidolysis,
and aminolysis in non-aqueous and micro-aqueous milieu
[2]. Lipases represent the third most commercialized en-
zymes, after proteases and carbohydrases, and account for
more than one-fifth of the global enzyme market [3, 4].
They are commonly secreted from plants, animals, and mi-
croorganisms [1]. However, microbial lipases represent the
most widely used class of enzymes in biotechnology owing

to their stability at broad ranges of temperature and pH,
substrate specificity, high yields, lower production costs,
and ease of genetic manipulation [5]. In addition, the micro-
organisms can be cultivated in huge amounts in a relatively
short time by an established fermentation process for mass
production of the enzyme.

Microbial lipases are serine hydrolases and their activ-
ities rely on a catalytic triad, comprising of Ser-Asp/Glu-
His with a consensus sequence (Gly-x-Ser-x-Gly) [6, 7].
The three-dimensional structure of lipases reveals the
characteristic α/β hydrolase fold [8]. The active site of
the α/β hydrolase fold enzymes consists of three catalytic
residues namely, nucleophilic residue, catalytic acid resi-
due, and histidine residue [9]. Furthermore, microbial li-
pases exhibit chemo-specificity, regio-selectivity, and
enantio-selectivity toward substrates [10]. They are
employed for a variety of biotechnological applications
in biodiesel, food, nutraceutical, detergent, bioremedia-
tion, agriculture, cosmetics, leather, and paper industries
[11]. Therefore, the present review discusses on the tech-
niques for detection of lipase production from a diversity
of microorganisms. It further reveals bioprocess parame-
ters influencing microbial lipase production coupled with
strategies for optimization of the biocatalysts for industri-
al and environmental applications.
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Lipase-producing microorganisms

Many microorganisms including bacteria, fungi, yeasts, and
actinomycetes produce lipases [12]. Among bacteria, lipase
production has been reported from members of the genera
Acinetobacter [13], Bacillus [14], Burkholderia [15],
Pseudomonas [16], Staphylococcus [17], Microbacterium
[18], Lactobacillus [19], Serratia [20], Aeromonas [21],
Arthrobacter [22] , Stenotrophomonas [23] , and
Thermosyntropha [24] etc. However, genera Bacillus and
Pseudomonas are recognized as the most prominent lipase
producers [5]. In addition, lipase secretion from fungal and
yeast strains has been extensively studied in the last decades.
Among fungi, lipases from Aspergillus, Mucor, Penicillium,
Rhizopus, Fusarium, and Geotrichum, have been reported
[25–30]. Yeasts including members of the general Candida,
Cryptococcus , Trichosporon , Aureobasidium , and
Rhodotorula have been adequately investigated for their
lipase-producing potentials [31–35]. These lipase-producing
microorganisms are domiciled in different habitats including
industrial wastes, vegetable oil mill effluent, dairy effluent,
oil-contaminated sites, decaying foods, hot spring etc.
[36–38]. A list of lipase-producing microorganisms and their
sources of isolation is presented in Table 1.

Methods for detection of microbial lipase
production

Several techniques have been developed for the screening of
microorganisms for lipase production. These methods either
involve the use of microbial strains under study or measure-
ment of lipase activity from crude or purified enzyme [61, 62].
Numerous approaches employed for detection of microbial
lipase production or measuring lipolytic activity are discussed
in details below:

Qualitative screening of microorganisms on selective
growth media

In this technique, lipolysis is detected by changes in the ap-
pearance of the substrates (such as tributyrin and triolein) that
are emulsified in the growth media [63]. The formation of
clear halos around the colonies cultivated on the agar plate is
an indication of lipase production [64]. Pseudomonas
fluorescens RB02-3 and Acinetobacter haemolyticus NS02-
30 were screened for lipolytic activity on tributyrin agar [48,
53]. Lipolytic Bacillus sp. LBN 4 was isolated on tributyrin
agar medium using glycerol tributyrate as substrate [65].
Lipase production by Bacillus aryabhattai SE3-PB was de-
tected on Tween-20 agar plate as visible precipitates of calci-
um salts around the agar wells, resulting from formation of
fatty acid from lipid hydrolysis [14]. In addition, solid media

supplemented with dyes such as phenol red, Victoria Blue B,
Spirit blue, or Nile blue sulfate as pH indicators are also used
for determination of lipolytic activity. The drop in pH due to
the release of fatty acid is indicated by a change in the color of
the indicators. Phenol red agar, consisting of phenol red dye
(0.01%, w/v), olive oil (0.1%, v/v), CaCl2 (0.1%, w/v), and
Agar (2%, w/v), has been used for screening of Bacillus strain
[39]. Geobacillus zalihae sp. nov. was screened for lipolytic
activity using triolein agar plate, comprising of triolein
(0.25%, v/v), agar (1%, w/v), nutrient broth (0.8%, w/v),
and Victoria Blue (0.01%, w/v) [52]. Furthermore, fluorescent
dye Rhodomine B is also employed for the detection of lipo-
lytic organisms in plate assay containing emulsified olive oil
as substrate. The formation of orange fluorescent halos around
colonies under ultraviolet irradiation suggests production of
lipase [66]. Castro-Ochoa et al. [44] screened Bacillus
thermoleovorans CCR11 for lipolytic activity on
Rhodomine B agar consisting of Rhodomine B (0.001%,
w/v), nutrient broth (0.8%, w/v), NaCl (0.4%, w/v), olive oil
(3%, v/v), and agar (1%, w/v). Spirit blue agar medium has
also been used for the detection of lipolytic activity of Serratia
rubidaea and Acinetobacter sp. [46, 67]. This chromogenic
method is simple and rapid. However, acidification of the
medium resulting from the production of free fatty acids from
microbial lipases gives false results [63].

Quantitative titrimetric assay

Lipase activity is measured quantitatively on a continuously
stirred triacylglyceride emulsion by neutralization of free fatty
acids released following addition of titrated NaOH (in order to
maintain the pH at a constant end point value) [10, 63].
Several authors have reported the use of olive oil as a substrate
for the titrimetric analysis [68]. Rasmey et al. [69] measured
the lipolytic activity of Pseudomonas monteilli 2403-
KY120354 in a reaction mixture containing olive oil emulsion
incubated at 37 °C for 1 h. Enzyme activity was terminated
after addition of 20 mL acetone: ethanol mixture (1:1). The
liberated free fatty acids were titrated against 0.1 M NaOH
using phenolphthalein. One unit of lipase was defined as the
amount of enzyme that liberated 1 μmol/min of fatty acids
under standard assay conditions.

Microbial lipase production

Microbial lipases are mostly extracellular in nature and are
secreted in growth medium following utilization of the medi-
um components by lipolytic microorganisms in the presence
suitable inducer substrates under optimal fermentation condi-
tions [14]. However, the synthesis of these biocatalysts varies
based on appropriate selection of microbial strains, substrate
type, and fermentation technology [6]. Microbial lipase pro-
duction varies from a few hours to a few days during late
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Table 1 Some lipase-producing microorganisms and their sources

Microorganism Source of isolation Reference

Bacteria

Bacillus sp.
Bacillus aryabhattai SE3-PB

Oil-contaminated soil
Lipid-rich wastewater from edible oil mill industry in Pietermaritzburg, South Africa

[39]
[14]

Bacillus coagulans Soil from olive oil processing factory [40]

Bacillus sp. L2 Hot spring, Perak, Malaysia [41]

Bacillus sp. FH5 Tannery waste [42]

Bacillus coagulans BTS-3 Kitchen waste [43]

Bacillus thermoleovorans CCR11 “El Carrizal” hot springs, Veracruz, Mexico [44]

Bacillus pumilus RK31 Oil-contaminated soil [45]

Acinetobacter sp. AU07 Distillery unit [13]

Acinetobacter sp. Oil-contaminated soil, South Korea [46]

Acinetobacter haemolyticus TA 106 Human skin [47]

Acinetobacter haemolyticus NSO2-30 Olive pomace-soil mixture [48]

Enterobacter aerogenes IABR-0785 Soil of IIT, Kharagpur [49]

Burkholderia sp. HL-10 Lipid-contaminated soil [15]

Geobacillus thermoleovorans YN Desert soil sample [50]

Geobacillus sp. ARM Oil-contaminated soil, Selangor, Malaysia [51]

Geobacillus zalihae Palm oil effluent, Semenyih, Malaysia [52]

Pseudomonas sp. BUP6 Rumen of Malabari goat [16]

Pseudomonas fluorescens RB02-3 Pasteurized and raw milk [53]

Pseudomonas aeruginosa KM110 Oil processing plant wastewater, Tehran, Iran [54]

Microbacterium sp. Pulp and paper mill effluent [18]

Staphylococcus aureus NK-LB37 Oil-contaminated soil, Coimbatore, Tamilnadu [17]

Lactobacillus plantarum DSMZ 12028 Dry fermented sausage [19]

Aeromonas sp. S1 Soil and sludge in oil and grease chamber of dairy industry, New Delhi, India [21]

Arthrobacter sp. BGCC#490 Oil-contaminated soil of automobile garage [22]

Stenotrophomonas maltophilia Soil sample [23]

Thermomyces lanuginosus Zoo waste and bird nest materials [55]

Fungi

Aspergillus niger DAOM Dairy effluent [29]

Aspergillus tamarii JGIF06 Rhizospheric soil, Bangalore, India [56]

Aspergillus terreus NCFT 4269.10 - [57]

Trametes hirsuta Chicken slaughterhouse effluent [58]

Hypocrea pseudokoningii Soil samples [59]

Geotrichum candidum Soil sample [28]

Fusarium sp. (Gibberella fujikuroi complex) Decay plant matter in the Atlantic forest, São Paulo, Brazil [27]

Penicillium sp. section Gracilenta CBMAI 1583 Atlantic rainforest soil [30]

Mucor geophillus Soil sample [26]

Rhizopus chinensis CCTCC M201021 Da Qu (Traditional leaven for production of Chinese liquor) [25]

Yeast

Candida viswanathii – [60]

Candida gulliermondi Leaves of castor bean plant [34]

Rhodotorula mucilaginosa MTCC 8737 Marine soil sample, Mangalore, India [32]

Aureobasidium pullulans HN2.3 Sea saltern, Qingdao [31]

Cryptococcus sp. MTCC 5455 Air [35]

Trichosporon coremiiforme Traditional tannery, Fez, Morocco [33]
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exponential or stationary growth phase [36, 70, 71]. The pro-
duction of these biocatalysts occurs by submerged or solid
state fermentation in a batch, repeated-batch, fed-batch, or
continuous system [71]. However, submerged fermentation
involving cultivation of microorganisms as a suspension in
nutrient enriched broth is mostly preferred due to easily
engineered process control and colossal amounts of extracel-
lular enzyme released in the growth medium [72]. In addition,
submerged fermentation permits higher homogeneity of the
culture medium, easier lipase recovery from the fermentation
medium, and eliminates production of undesirable metabolites
[12, 14]. About 90% of industrial biocatalysts are produced by
submerged fermentation [6].

Influence of bioprocess parameters
on microbial lipase production

Lipase production is greatly influenced by carbon and nitro-
gen sources, temperature, pH, presence of lipids, inorganic
salts, dissolved oxygen concentration, incubation period, agi-
tation speed etc. [12, 38, 72]. The various nutritional and
physicochemical parameters affecting microbial lipase pro-
duction are illustrated in Fig. 1 and discussed in details below:

Carbon sources

Carbon sources represent the ultimate parameter that stimu-
lates the growth of microorganisms for lipase production.
However, among carbon sources, lipidic carbon sources play
a vital role in lipase secretion since the enzymes are inducible
in nature and are therefore generally produced in the presence
of a lipid source including oils or other inducers (such as
triacylglycerols, Tweens, hydrolysable esters, fatty acids, bile

salts, glycerol) [36, 72]. For instance, lipase production by
Bacillus flexus XJU-1 was stimulated by the presence of a
surfactant (Tween-80), which favored the uptake of medium
components and lipase release [73]. In addition, various oils
such as coconut oil [74], olive oil [75], castor oil [13], cotton
seed oil [73], soybean oil [76], sunflower oil [14], and neem
oil [77] are used as inducers for lipase production. Lipases are
produced with a low oil concentration (1–5%, v/v) [76].When
a large amount of oil is used, lipase secretion reduces due to
limitation of oxygen transfer, which results in poor microbial
growth [73].

In addition, other carbon sources including sugars, sugar
alcohol, polysaccharides, whey, casamino acids, and other
complexes influence lipase production [78, 79]. Mannitol
was found as the best carbon source for lipase production by
Streptomyces griseochromogenes [80]. In some cases, combi-
nation of carbohydrate and oil is used for maximum lipase
secretion [81–83]. Furthermore, non-conventional carbon
sources including whey, beef tallow, wool scour effluent,
cheap agro-industrial wastes etc. are also incorporated in fer-
mentation medium for lipase production [83–85].

Nitrogen sources

The addition of nitrogen sources (organic or inorganic) in
culture medium influences the amount of lipase yield by mi-
croorganisms [86]. Organic nitrogen sources including pep-
tone, yeast extract, or a combination of these resulted in a
significant lipase production by most microbial strains [54,
75, 87]. This is typical of optimum lipase production recorded
in the presence of soybean meal and corn steep liquor as
nitrogen sources by some microorganisms [83, 88–90]. On
the other hand, inorganic nitrogen sources such as ammonium
chloride, ammonium molybdate, and diammonium hydrogen

Bioprocess parameters

Metal ions

Agitation speed

Incubation 

period

Dissolved 

oxygen

Carbon 

sources

TemperaturepH

Nitrogen 

sources

Fig. 1 Schematic diagram
depicting bioprocess parameters
that influence microbial lipase
production
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phosphate are effective for maximum lipase production
[91–93]. However, the preference of organic nitrogen sources
by some lipase-producingmicroorganisms can be attributed to
the presence of some minerals, vitamins, or other growth fac-
tors that they contain [73]. In some cases, inclusion of amino
acids in the fermentation medium plays a significant role in
microbial lipase production [94]. This is typical of phenylala-
nine found as a preferred nitrogen source for lipase production
by Streptomyces griseochromogenes [80]. However, a higher
nitrogen source concentration inhibits lipase production due to
nitrogen metabolite repression [95].

Physicochemical parameters

Physicochemical parameters including temperature, pH, metal
ions, agitation speed, and incubation period play a crucial role
in influencing the growth of microorganisms for lipase pro-
duction. Microorganisms possess different optimum tempera-
tures for maximum lipase yield. This usually correlates with
peak growth temperatures of the organisms. For instance, op-
timum lipase production from Aspergillus niger (24 °C),
Bacillus sp. SP5 (37 °C), Bacillus aryabhattai SE3-PB (40
°C), and Bacillus sp. RSJ1 (50 °C) was recorded at respective
maximum growth temperatures [14, 96–98]. In addition, ini-
tial pH of fermentation media is vital, as this stimulates the
growth of the organisms for the secretion of the biocatalyst.
Usually, maximum lipase production by bacteria occurs at
neutral or alkaline pH [3, 86, 99]. However, at nearly neutral
and acidic pH, enhanced lipase secretion was recorded from
most yeasts and fungi [30, 100].

Microorganisms are cultivated at varying incubation pe-
riods for optimal lipase yield. This is notable of increased
lipase secretion at 12, 36, and 48 h by Acinetobacter baylyi
G40, Pseudomonas sp. LSK 25, and Arthrobacter sp.
BGCC#490, respectively [22, 101, 102]. Metal ions stimulate
secretion of lipase by microorganisms. Divalent metal ions
such as Fe2+, Mg2+, and Ca2+ improved lipase production
from Bacillus subtilis PCSIRNL-39, Burkholderia sp., and
Pseudomonas sp. LSK 25 [91, 102–104]. Conversely, avail-
ability of metal ions can be inhibitory to microbial growth for
lipase production. Agitation speed of fermentation medium is
vital for microbial lipase production, as it enhances dissolved
oxygen transfer rate and promotes dispersal of inducer oil
micelles, thus permitting their contact into microorganisms
[102, 105].

Strategies for optimization of microbial lipase
production

Optimization of appropriate bioprocess parameters is crucial
for improvement in growth and metabolic activities of micro-
organisms [106]. In addition, exploration of optimal

conditions of the fermentation parameters is key for high li-
pase yields at lesser costs [14]. A traditional technique known
as one variable-at-a-time (OVAT) approach involving change
of one variable at a time while maintaining others at a constant
level is commonly used to achieve these [107]. However, this
method is not only time-consuming, laborious, and expensive,
but also fails to depict interaction effects of the different var-
iables tested, leading to misinterpretation of results [108]. In
order to overcome these difficulties, statistical experimental
designs have been recognized as a preferred method for lipase
optimization studies [13, 14, 106, 109, 110] (Table 2). The
significant variables influencing lipase production are usually
selected with the aid of the Plackett-Burman design (PBD);
the optimal conditions and interaction effects of these vari-
ables are deduced from the response surface methodology
(RSM) or artificial neural network (ANN) [5, 112, 116, 120]
(Table 2). The various experimental designs employed for
lipase optimization are discussed in details below:

Placket-Burman design

Plackett-Burman design is employed for the screening of sig-
nificant parameters from a large number of bioprocess param-
eters, and thus applicable in prelude studies involving selec-
tion of variables for further optimization studies [121, 122]. It
comprises of two types of variables: real variables and dummy
variables. Each variable is represented in two levels: high and
low. PBD greatly lessens the overall number of experiments
since only key variables that influence the synthesis of desired
metabolite are selected [122, 123]. PBD is a dependable meth-
od for assessment of relative importance of bioprocess param-
eters for enhanced metabolite production by microorganisms
[124–126].

Response surface methodology

Response surface methodology is an assemblage of mathe-
matical and statistical techniques for modelling and analysis
in applications involving optimization of bioprocess parame-
ters for enhanced yield of target metabolite (response) [14,
127]. RSM involves three basic steps: design of experiments
for selection of significant parameters accompanied by path of
steepest ascent/descent, and finally quadratic regression mod-
el is fitted and optimized with the aid of canonical regression
method [122]. This approach permits building of models for
precise approximation of true response function within a re-
gion around the optimum using bioprocess parameters as au-
tonomous variables [107, 128]. RSM is a cost-effective ap-
proach applied in evaluating the interaction effects of fermen-
tation variables. In addition, it results in improved productiv-
ity, lessens process changeability, and gives closer confirma-
tion of predicted response to the experimental values [129].
Experimental designs such as central composite design
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(CCD), Box-Behnken design (BBD), or Doehlert design are
widely used in RSM to approximate a response function to
experimental data that cannot be described by linear functions
[130].

Response surface methodology in combination with PBD
resulted in enhanced practicability of process scale-up and
commercialization of lipase production from a multitude of
bacteria, fungi, and yeasts [14]. Ruchi et al. [115] screened
eleven media components (peptone, tryptone, NH4Cl,
NaNO3, yeast extract, glucose, glycerol, xylose, gum arabic,
MgSO4, and NaCl) for lipase production by Pseudomonas
aeruginosa using PBD. The most significant parameters
(gum arabic, MgSO4, tryptone, and yeast extract) were further
optimized by RSM. Maximum lipase yield (5.58-fold) was
recorded when tryptone, gum arabic, MgSO4, and yeast ex-
tract were utilized at concentrations of 1.01%, 0.02%, 0.10%,

and 0.02%, respectively. Similarly, the influence of ten medi-
um components (peptone, glucose, NaCl, MgSO4.7H2O,
FeSO4.7H2O, CaCl2, olive oil, KH2PO4, NH4Cl, and
Na2HPO4) on lipase production by Alkalibacillus salilacus
SR-079 Halowas studied using PBD [113]. Lipase production
was maximally affected by olive oil, KH2PO4, NaCl, and
glucose. Further optimization of the selected variables by
RSM resulted in 4.9-fold enhancement in lipase production
at optimal levels of glucose (1g/L), NaCl (4.18 mol/L), olive
oil (2%), and KH2PO4 (5 g/L).

In addition, cocktail of RSM and OVAT are employed for
optimization of lipase production [106]. Papagora et al. [109]
optimized lipase production from Debaryomyces hansenii
YLL29 using RSM. The simple one-factor-at-a-time strategy
showed that glucose, olive oil, and pH were the significant
variables influencing lipase production. Further optimization

Table 2 Improvements in lipase production from some microorganisms using statistical experimental designs

Microorganism Design Parameter optimized Improvement yield Reference

Bacillus aryabhattai SE3-PB RSM Temperature, agitation speed,
pH, inducer oil
concentration and inoculum
volume

7.2-fold [14]

Burkholderia cepacia RSM Glucose, palm oil, incubation
time, inoculum density and
agitation

4-fold [111]

Enterobacter aerogenes IABR-0785 RSM Temperature, oil
concentration, inoculum
volume, pH and incubation
period

1.4-fold [49]

Geobacillus thermoleovorans YN RSM Tween 80, olive oil,
temperature and pH

4-fold [50]

Burkholderia sp. HL-10 RSM Olive oil, tryptone and Tween
80

3-fold [15]

Geobacillus sp. ARM RSM and ANN Temperature, medium
volume, inoculum size,
agitation rate, incubation
period and pH

4.7-fold [51]

Staphylococcus xylosus RSM and ANN Temperature, pH, incubation
period, inoculum size, and
agitation speed

3.5-fold [112]

Alkalibacillus salilacus SR-079 Halo PBD and RSM Olive oil, KH2PO4, NaCl, and
glucose

4.9-fold [113]

Thalassospira permensis M35-15 PBD and RSM Glucose, peptone, yeast
powder and olive oil
emulsifier

1.85-fold [114]

Pseudomonas aeruginosa PBD and RSM Gum arabic, MgSO4,
tryptone, and yeast extract

5.58-fold [115]

Aspergillus niger G783 RSM Corn starch, soybean meal and
soybean oil

16.4% [116]

Fusarium solani SKWF7 RSM Palm oil, (NH4)2SO4 and
CaCO3

1.7-fold [117]

Fusarium verticillioides RSM KH2PO4, MgSO4, peptone
and sunflower oil

2-fold [118]

Candida rugosa NCIM 3462 PBD and RSM Glucose, groundnut oil,
peptone, (NH4)2SO4 and
FeCl3.6H2O

1.64-fold [119]

Debaryomyces hansenii YLL29 RSM Glucose, olive oil and pH 2.28-fold [109]
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of the selected variables by RSM led to a 2.28-fold increase in
lipase production at respective optimal levels of glucose (13.1
g/L), olive oil (19 g/L), and pH (6.4). Similarly, Lo et al. [15]
employed RSM and OVAT for the optimization of extracel-
lular lipase production by Burkholderia sp. HL-10.
Preliminary studies byOVAT revealed that olive oil, tryptone,
and Tween-80 exhibited significant effects on lipase produc-
tion. Optimization by CCD resulted in almost 3-fold increase
in maximum lipase production at respective optimum concen-
trations of olive oil (0.65%, v/v), tryptone (2.42%, w/v), and
Tween-80 (0.15%, v/v).

Potential biotechnological applications
of microbial lipases

Microbial lipases constitute an important class of biotechno-
logically valuable enzymes, mainly due to their versatility in
terms of enzymatic properties and substrate specificity. These
features make lipases the enzyme of choice for various appli-
cations in food, detergent, leather, pharmaceutical, textile,
cosmetics, and paper industries etc. (Fig. 2) [3, 131]. Some
of the biotechnological applications of microbial lipases are
illustrated in Table 3 and discussed in details below:

Detergent industry

The most important and large-scale application of microbial
lipases is their addition in detergent, used mainly in household
and industrial laundry [132]. Lipases are employed in deter-
gent formulations for the removal of oily stains on clothes,

thus reducing the need for the patronage of detrimental
chemicals. In addition, they are eco-friendly without harmful
residue and render no threat to aquatic life [3, 133]. Among
the qualities of lipase as a suitable additive in detergents in-
clude broad substrate specificity, ability to withstand harsh
washing conditions, and exhibit catalytic activity in the pres-
ence of various components of detergent formulations [72,
134]. Lipolase from Thermomyces lanuginosus represents
the first industrial lipase to be introduced into detergent and
was commercialized in 1988 by Novo Nordisk. Other lipases
including Lumafast (Pseudomonas mendocina) and Lipomax
(Pseudomonas alcaligenes) were commercialized by
Genencor (now Du Pont) [11]. Recently, lipases from several
microorganisms have been characterized as potent detergent
additives [132, 135].

Food industry

Fats and oils are vital constituents of foods; the nutritional and
sensory values as well as physical properties of a triglyceride
are greatly influenced by position of fatty acid in the glycerol
backbone, the chain length of the fatty acid, and its degree of
unsaturation etc. [136]. The modification of structure and
composition of fats and oils is of great significance in food
processing industries that require new economics and green
technologies. Microbial lipases that are regiospecific and fatty
acid specific are of enormous important for the production of
many food products. For instance, lipase-catalyzed reactions
can be used to modify and upgrade cheap oil into nutritionally
important structured triacylglycerols such as cocoa butter sub-
stitutes, low calories triacylglycerols, and oleic acid enriched

Microbial lipases Cosmetic 

industry

Detergent 

industry

Leather 

industry

Pulp & paper 

industry

Bioremediation

Pharmaceutical 

industry

Textile 

industry 
Food 

industry

Fig. 2 Schematic illustration of
potential biotechnological
applications of microbial lipases
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oils [137]. Lipases have also been used in foods to modify
flavor by synthesis of esters of short chain fatty acids and
alcohol, which are known flavor and fragrance compounds
[138]. In addition, lipases are used in the removal of fats from
meat and fish products to produce lean meat. The fat is re-
moved during processing of the fish meat by addition of li-
pases, a phenomenon known as bio-lipolysis [139]. Lipases
also play a substantial role in the fermentative production of
sausage and to determine change in long-chain fatty acid re-
leased during ripening [3]. Over decades, microbial lipases
have been used for refining rice flavor, modifying soybean
milk, improving aroma, and enhancing fermentation in apple
wine [140].

Cosmetics industry

Lipases are employed as a biocatalyst for the production of
cosmetic products including isopropyl palmitate and 2-
ethylhexyl palmitate, which are used as emollient in personal
care products such as skin and sun-tan creams and bath oils
[141]. In contrast to synthetic chemicals, the use of microbial
lipases in cosmetics industries gives products of improved
quality with minimum downstream processing. These include
wax esters (esters of fatty acids and fatty alcohols) produced
from catalytic reaction of lipase from Candida cylindracea
and used in personal care products [142]. In addition, enzy-
matic production of water-soluble retinol derivatives from
immobilized lipase has been reported [143]. Lipases are also

used in hair waving preparations and as a component of top-
ical anti-obese creams or as oral administration [11].

Pulp and paper industry

Microbial lipases are employed in pulp and paper industry for
the removal of pitch (a hydrophobic component in wood),
which creates severe problems in paper mill by producing
gluey deposits in the paper machines and causes spots in the
finished paper products [144]. This is achieved by hydrolyz-
ing triglycerides in the pitch into monoglycerides, glycerol,
and fatty acids, which are less sticky and highly hydrophilic
[144, 145]. Thus, decreasing chemical consumption promote
longevity of equipment and save energy and time [3]. The
enzymatic pitch control technique involving the use of lipase
has been a common practice for commercial paper making
process [146]. These biocatalysts increase pulping rate and
further enhance whiteness and strength of finished paper prod-
uct [147].

Bioremediation of oily wastewater

Lipids are noxious components of industrial and municipal
wastewaters since they contribute greatly to the organic load
of the wastewater and promote the growth of filamentous
microorganisms [148]. Therefore, their transformation into
innocuous products is imperative. The use of biocatalysts
serves as a promising technology for the treatment of high

Table 3 Some potential biotechnological applications of microbial lipases

Industry Role Product or application

Detergent Removal of fat and oil stains on clothes Clean fabrics

Pulp and paper Elimination of pitch from pulp produced during
paper-making processes

Paper with better quality

Pollution abatement Hydrolysis and trans-esterification of
oils and greases

Reduce organic pollutant load

Petroleum industry Trans-esterification Biodiesel

Leather Removal of fats and greases from skins and hides Cleaner finished products

Dairy foods Hydrolysis of milk fat; cheese ripening;
modification of butter, fat and cream

Flavoring agent in milk, cheese
and butter

Beverages Improved aroma Alcoholic beverages, e.g. sake wine

Fats and oil industry Hydrolysis, esterification and
inter-esterification

Cocoa butter, margarine, fatty
acids, glycerol, mono- and diglycerides

Bakery foods Enhance flavor content; prolong shelf-
life; improve texture and softness

Bread, rolls, pies, muffins,
cookies, pastries

Meat and fish Flavor development; fat removal Meat and fish products

Food dressings Quality improvement Mayonnaise, dressing and
whippings

Cosmetics Esterification Emulsifiers, moisturizers

Agrochemicals Esterification, hydrolysis Herbicides (such as phenoxypropionate)

Pharmaceuticals Trans-esterification, Hydrolysis Specialty lipids, digestive aids;
intermediates used in the manufacture of medicines
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fat-containingwastewater [149]. An alternative to convention-
al approaches that is attracting growing interest is the use of
enzymes, which significantly reduce the level of organic pol-
lutants in the wastewater by means of enzymatic catalysis and
enhance better performance of microbial community at the
later stage of biological treatment process [149]. Application
of lipases from different sources in the treatment of wastewa-
ter from lipid-processing factories, dairies, restaurants etc. of-
fers a novel approach in enzyme biotechnology, thus making
the wastewater acquiescent to conventional biological treat-
ment [150]. The utilization of a solid enzymatic preparation
from Penicillium restrictum for the treatment of dairy waste-
water with high levels of oil and grease (O & G) has been
reported [151]. Results obtained showed 13% higher chemical
oxygen demand (COD) removal efficiency with 40% lower
accumulation of O & G. In addition, enzymatic treatment of
coconut mill effluent using lipase from Staphylococcus
pasteuri COM-4A revealed COD and O & G removal effi-
ciencies of 29% and 45%, respectively [150].

Conclusions

Microbial lipases are produced by diverse groups of microor-
ganisms including bacteria, fungi, and yeasts. The production
of these biocatalysts is influenced by nutritional and physico-
chemical parameters. Optimization of fermentation parame-
ters through statistical experimental designs is crucial in order
to maintain a balance among various components for en-
hanced lipase production. Microbial lipases are employed in
high demands for a variety of biotechnological applications in
food, cosmetics, pulp and paper, and detergent industries as
well as in environmental bioremediation.
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