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Analysis of planes within reduced 
micromorphic model
A. R. El Dhaba1 & S. Mahmoud Mousavi2*

A plane within reduced micromorphic model subjected to external static load is studied using the 
finite element method. The reduced micromorphic model is a generalized continuum theory which 
can be used to capture the interaction of the microstructure. In this approach, the microstructure is 
homogenized and replaced by a reduced micromorphic material model. Then, avoiding the complexity 
of the microstructure, the reduced micromorphic model is analyzed to reveal the interaction of the 
microstructure and the external loading. In this study, the three-dimensional formulation of the 
reduced micromorphic model is dimensionally reduced to address a plane under in-plane external 
load. The governing system of partial differential equations with corresponding consistent boundary 
conditions are discretized and solved using the finite element method. The classical and nonclassical 
deformation measures are then demonstrated and discussed for the first time for a material 
employing the reduced micromorphic model.

Abbreviations
ui , i = 1, 2, 3	� Displacement components
εij =

(

ui,j + uj,i
)

/2 = εji	� Classical strain tensor
sij = sji , i, j = 1, 2, 3	� Micro-strain tensor
tij = tji , i, j = 1, 2, 3	� Micro-stress tensor
τij = τji , i, j = 1, 2, 3	� Cauchy-like tensor or residual stress tensor
mijk = mikj i, j, k = 1, 2, 3	� Higher order stress tensor
ρ and ρm	� Macroscopic mass density and mass density of a material particle
J 	� Micro-inertia
fi , i = 1, 2, 3	� Body force
Hjk , j, k = 1, 2, 3	� Body higher-order moment
ti , i = 1, 2, 3	� Cauchy stress vector
mjk , j, k = 1, 2, 3	� Higher stress tensor
Fexi , i = 1, 2, 3	� Wedge forces at the corners
�m and µm	� Elastic moduli of the microstructure,
� and µ	� Elastic moduli of the matrix material.
�c and µc	� Elastic moduli for coupling between micro-strain and macro-strain
ℓ1 and ℓ2	� Length scale parameters
a and b	� Height and width of the rectangle domain

Materials with architectured microstructure provide efficient properties and have been in the focus of 
many research groups in the last few decades. Due to the feasibility of tailoring the microstructure to 
achieve auxetic behaviors, the analysis and design of such novel materials (referred also as metamateri-
als) are not possible within classical continuum mechanics. Accordingly, the generalized continua1–4 have 
regained the attention and have been employed for capturing the non-classical features of these materials 
such as size effect and band gap5. In addition to mechanical properties, such generalized theories have 
also been presented for multiphysics addressing e.g. electrical and magnetic properties6.

A thorough literature review on generalized continua is out of the scope and only a brief review is 
compiled here to introduce the subject. Nonlocal7,8,23, higher-order and higher-grade theories9–11 have been 
introduced as extensions of the classical continuum theories. Within higher order (or micro continuum 
theories), the classical three translational degrees of freedom (DOF) is augmented by additional DOFs 
stemming from the microstructure. These theories are two-level continuum models which consider the 
material as a collection of deformable point particles. Depending on the number of the additional DOFs, 
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various theories such as micromorphic elasticity (with 12 DOFs), microstretch elasticity (with 7 DOFs), 
micropolar elasticity (with 6 DOFs)12, and dilatation elasticity (with 4 DOFs) are obtained.

An expected feature of the generalized continua is their numerous material constants which are to be 
determined for any specific microstructure via real or numerical experiments, e.g. see13. Although this task 
is commonly referred to as a “challenge” for the application of the generalized continua, one should not 
forget that capturing the nonclassical features are only possible due to the presence of such nonclassical 
material constants. Nevertheless, the generalization of the continuum theory should be performed with 
care to employ the most efficient model with the minimum number of material constants for the micro-
structure and the objective physical phenomenon to be captured. For this purpose, recently, computational 
homogenization has been successfully used for identifying and realizing a suitable continuum theory14–20,38. 
To this end, a comprehensive methodology capable of identifying the most efficient continuum theory for 
a specific heterogeneous material is not yet identified.

In addition to more classical versions of generalized continua, recent developments have been reported 
in the literature such as relaxed micromorphic model21 and reduced micromorphic model22. These models 
aim for filling the gaps in the realm of the generalized continua to provide an efficient selection of a gen-
eralized model without the need to include unnecessary extensions. In an attempt to reduce the number of 
material parameters and degrees of freedom, Neff et al.21 proposed a relaxed micromorphic model which 
uses the curl of the micro-deformation tensor as a micro-dislocation measure. Furthermore, the coupling 
between the micro-strain and the macro-strain is eliminated in this model. The relaxed micromorphic 
model has been used to model the wave propagation in metamaterials24–27.

Another form of the micromorphic model is proposed by Shaat22 which is referred to as the reduced 
micromorphic model (referred to, in this text, as RMM). In this model the author considers the coupling 
between the micro-strain and the macro-strain to measure the concept of so-called residual strain and 
consequently the residual stress. The model has been employed to investigate the wave propagation in 
metamaterials and composite materials. An application for the model is also introduced in28 to define the 
equivalent shear modulus of composite metamaterials. The reduced micromorphic model is also formu-
lated in orthogonal curvilinear coordinates and an application to a metamaterial hemisphere has been 
reported using spherical coordinates29. Later, Shaat et al. introduced a micromorphic beam theory30 based 
on the reduced micromorphic model.

In the absence or due the complexity of an analytical solution31, the finite element method is an 
efficient numerical treatment of continuum theories. In this paper, the reduced micromorphic model is 
used together with the finite element method for the analysis of a plane. The framework is dimensionally 
reduced for planar analysis. Such dimension reduction is motivated as it can efficiently be used for the 
analysis of 2D structures32. The corresponding measures of deformation are elaborated to demonstrate 
the response of a plane within RMM subjected to static in-plane loading.

The paper is organized as follows. The reduced micromorphic model is reviewed in Section “The RMM 
in Cartesian coordinates”. In Section “The RMM model in 2-Dimension”, the proposed domain in two 
dimensions and the planar formulation are presented. After introducing the governing field equations 
and the variationally consistent boundary conditions, two case studies are defined. In Section “Numerical 
results”. the finite element analysis and numerical simulation of the two case studies are reported. Finally, 
the conclusion is given in Section “Conclusion”.

The RMM in Cartesian coordinates
The kinematical variables.  The classical theories of continuum mechanics do not have the ability 
to represent the nanoscale phenomena. Accordingly, the generalized continua such as the reduced micro-
morphic model (RMM) is introduced as an alternative for studying such phenomena at the micro-scale 
level, where the model introduces the micro-strain tensor as an additional measure besides the displace-
ment field. Moreover, it introduces the coupling between the strain tensor and the micro-strain tensor as 
a coupling measure with the elimination of the repeated effects.

In addition to its ability to reducing the material parameters, the RMM generates additional field equa-
tions and reduces the order of the partial differential equations of the model. Such reduction sometimes 
facilitates obtaining the analytical solutions.

The deformation occurring for elastic materials is an accumulative movement for the material points 
at the nanoscale. Moreover, the tools used in classical theories to measure the displacement ignore the 
internal movement of such points and is only limited to the movement of the surface points. Consequently, 
introducing new measures to describe the internal movement of the material points and eliminating the 
repeated effects resultant from two different actions, the kinematics of RMM is given by

where εij
(

= εji
)

 denote the classical strain tensor, sij
(

= sji
)

 is the micro-strain tensor, γij
(

= γji
)

 is the coupling 
between the micro-strain sij and the macro-strain εij and χijk

(

= χikj
)

 is the gradient of the micro-strain tensor sij.

(1)εij =
1

2

(

ui,j + uj,i
)

, γij = εij − sij , χijk = sjk,i , χijj = 0,
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Equations of motion.  The variational method is a mathematical procedure that is used to obtain the 
field equations and the corresponding boundary conditions for the considered model. This procedure is 
used widely in continuum mechanics, fluid mechanics, optics, quantum mechanics, thermodynamics and 
electromagnetism. The total free energy function for the volume �(volume of the body) bounded by the 
surface ∂�(surface of the body) is considered as a function with internal variables as

The first variation for the total free energy reads

The constitutive relations are defined as follows

where tij is the micro-stress tensor, τij is a Cauchy-like tensor or residual stress tensor, and mijk is the higher order 
stress tensor, respectively.

Substituting Eq. (4) into Eq. (3) results in

Similar to the free energy, the kinetic energy is also generalized by considering the micro-inertia energy as

where ρ is the macroscopic mass density of the metamaterial, ρm is the mass density of the material particle, 
and J denotes its micro-inertia. Additional terms can be considered in the kinetic energy to describe complex 
phenomena in the metamaterials as in33.

The first variation of kinetic energy is

Therefore, the total variation for internal energy reads

The work done by the external forces, W̃ , is defined as

where fi is the body force, Hjk is the body higher-order moment, ti is the Cauchy stress vector, mjk is the higher 
stress tensor or double force, and Fexi  is the wedge forces at the corners of the domain34. Here, ∂∂� are the vertex 
points. The variation of external work reads

Considering Eqs. (8) and (10), the Hamilton’s principle results in

(2)W =

∫

�

W
(

sij , γij , sij,k
)

dV .

(3)δW =

∫

�

(

∂W

∂sij
δsij +

∂W

∂γij
δγij +

∂W

∂sij,k
δsij,k

)

dV .

(4)tij =
∂W

∂sij
, τij =

∂W

∂γij
, mijk =

∂W

∂sjk,i
,

(5)δW =

∫

�

(

tijδsij + τijδγij +mkijδsij,k
)

dV .

(6)K =
1

2

∫

�

(

ρu̇2i + ρmJṡ
2
jk

)

dV ,

(7)δK =

∫

�

(

ρ üi δui + ρmJ s̈jk δsjk
)

dV .

(8)δW + δK =

∫

�

(

tijδsij + τijδγij +mkijδsij,k
)

dV +

∫

�

(

ρ üi δui + ρmJ s̈jk δsjk
)

dV .

(9)W̃ =

∫

�

(

fiui +Hjksjk
)

dV +

∫

∂�

(

tiui +mjksjk
)

dS +

∫

∂∂�

Fexi uidL,

(10)δW̃ =

∫

�

(

fiδui +Hjkδsjk
)

dV +

∫

∂�

(

tiδui +mjkδsjk
)

dS +

∫

∂∂�

Fexi δuidL.

(11)

∫

�

(

tijδsij + τijδγij +mkijδsij,k
)

dV +

∫

�

(

ρüiδui + ρmJs̈jkδsjk
)

dV

=

∫

�

(

fiδui +Hjkδsjk
)

dV +

∫

∂�

(

tiδui +mjkδsjk
)

dS +

∫

∂∂�

Fexi δuidL.
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Applying the divergence theorem, we get

Equation (12) is satisfied for all volumes bounded by smooth and unsmooth boundaries if and only if the 
integrands are zero. Consequently, equations of motion and corresponding boundary conditions for smooth 
boundaries enclosed a bounded volume are

and

Internal energy.  According to22,28–30, the free energy in RMM is taken in the form

where �m and µm are the elastic moduli of the microstructure, � and µ are the elastic moduli of the matrix mate-
rial between two particles, �c and µc are two elastic moduli accounting for the coupling between the micro-strain 
and the macro-strain, and ℓ1 and ℓ2 are length scale parameters. The free energy function in two dimensions can 
be written in a matrix form as35

Therefore, the function W is positive definite if the following conditions are satisfied

The constitutive relations.  The constitutive relations are related to the free energy function by

Substituting the Eq. (15) into Eq. (17) and considering the deformation measures (1), the stress measures can 
be expressed in terms of deformation measures as

General field equations.  Considering the Eqs. (13) and (18) and using the condition χijj=0 , the general 
field equations read

(12)

∫

�

((

tij − τij −mkij,k −Hij + ρmJsij
)

δsij +
(

ρ ui − τij,j − fi
)

δui
)

dV

+

∫

∂�

((

njτij − t̄i
)

δu̇i +
(

nkmkij − m̄ij

)

δṡij
)

dS −

∫

∂∂�

Fexi δuidL.

(13)τji,j + fi = ρ üi ,mijk,i + τjk − tjk +Hjk = ρmJ s̈jk ,

(14)njτji = ti , nimijk = mjk .

(15)

W =
1

2
�msiisjj+µmsijsij+

1

2
�γiiγjj+µγijγij+�cγiisjj+2µcγijsij+

1

2
�mℓ

2
1

(

χiikχjjk + χijkχjik
)

+
1

2
µmℓ

2
2χijkχijk ,

(16)

W =
�

s11 s22 s12

�





1
2
�m + µm

1
2
�m 0

1
2
�m

1
2
�m + µm 0

0 0 2µm









s11

s22

s12



+
�

γ11 γ22 γ12
�





1
2
�+ µ 1

2
�+ µ 0

1
2
�+ µ 1

2
�+ µ 0

0 0 0









γ11
γ22
γ12





+
�

s11 s22 s12

�





�c + 2µc �c 0

�c �c + 2µc 0

0 0 4µc









γ11
γ22
γ12



+
�

χ112 χ221
�

�

�mℓ
2
1 + µmℓ

2
2 0

0 �mℓ
2
1 + µmℓ

2
2

��

χ112
χ221

�

.

�m + 2µm ≥ 0, µm ≥ 0, �m + µm ≥ 0,

�c + 2µc ≥ 0, µc ≥ 0, �c + µc ≥ 0,

�+ 2µ ≥ 0, µ ≥ 0, �+ � ≥ 0.

(17)tij =
∂W

∂sij
, τij =

∂W

∂γij
, mijk =

∂W

∂χijk
.

(18)

tij = (�− 2�c + �m)δijsqq + 2(µ− 2µc + µm)sij − (�− �c)δijuq,q − (µ− µc)
(

ui,j + uj,i
)

,

τij = (�− �c)δijuq,q + (µ− µc)
(

ui,j + uj,i
)

− 2(µ− 2µc)sij − (�− 2�c)δijsqq,

mijk =
1
2
�mℓ

2
1

(

δijsqk,q + δiksqj,q + sik,j + sij,k
)

+ µmℓ
2
2sjk,i .
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Equations (19), (20) represent the governing field equations for the RMM model, which should be satisfied 
inside the domain of the solution. In the limiting case, by neglecting the micro-strain tensors and the second 
equation, the RRM model is reduced to the classical model of elasticity.

The RMM model in 2‑Dimension
The field equations in 2D.  We consider a rectangular ( a× b ) plane which behaves according to the RMM 
model. In order to study the interaction between the applied forces and the induced internal fields in the mate-
rial, we consider planar displacement field and micro-strain field as follows:

According to the reduced dimensions of the problem, the non-vanishing components of kinematic relations 
are

while the following quantities are eliminated

The components of the micro-stress tensor (Eq. (18)1) take the form

The components of the so-called residual stress tensor (Eq. (18)2) read

Finally. the components of higher order micro-stress tensor (Eq. (18)3) are

with

(19)(µ− µc)∇
2ui + (�− �c + µ− µc)uj,ji − 2(µ− 2µc)sij,j + fi = ρ üi ,

(20)
µmℓ

2
2∇

2sjk +
1

2
�mℓ

2
1

(

smk,mj + smj,mk + sik,ij + sij,ik
)

− (2�− 4�c + �m)δkjsqq

− 2(2µ− 4µc + µm)skj + 2(�− �c)δkjuq,q + 2(µ− µc)
(

uk,j + uj,k
)

+Hjk = ρmJ s̈jk .

(21)ui = ui
(

x, y
)

, sij = sij
(

x, y
)

, i, j = x, y.

(22)
εxx = ∂ux

∂x , εyy =
∂uy
∂y , εxy =

1
2

(

∂ux
∂y +

∂uy
∂x

)

,

γxx = ∂ux
∂x − sxx , γyy =

∂uy
∂y − syy , γxy =

1
2

(

∂ux
∂y +

∂uy
∂x

)

− sxy ,

sxx

∂y
=

syy

∂x
= 0.

txx = (A1 + A2 + A5)sxx + (A3 + A6)syy − (2A0 + A6)
∂ux

∂x
− A6

∂uy

∂y
,

(23)tyy = (A3 + A6)sxx + (A1 + A2 + A5)syy − A6

∂ux

∂x
− (2A0 + A6)

∂uy

∂y
,

txy = A4sxy − A0

(

∂ux

∂y
+

∂uy

∂x

)

.

(24)

τxx = (2A0 + A6)
∂ux

∂x
+ A6

∂uy

∂y
− (A1 + A5)sxx − A1syy ,

τyy = A6

∂ux

∂x
+ (2A0 + A6)

∂uy

∂y
− A1sxx − (A1 + A5)syy ,

τxy = A0

(

∂ux

∂y
+

∂uy

∂x

)

− A5sxy .

(25)
mxxx = mxyy =

1
2
A7

∂sxy
∂y , myyy = myxx = 1

2
A7

∂sxy
∂x ,

myyx = A8
∂sxy
∂y , mxxy = A8

∂sxy
∂x ,

A0 = µ− µc , A1 = �− 2�c , A2 = �m + 2µm, A3 = �m − �c ,

A4 = 2(µ− 2µc + µm), A5 = 2(µ− 2µc), A6 = �− �c, A7 = 2�mℓ
2
1,

A8 = �mℓ
2
1 + µmℓ

2
2, A9 = 2A6 + A3 − �c,
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In the static equilibrium and in the absence of body forces and body higher-order-moments, equations of 
motion (19)–(20) are given in expanded form as

The boundary conditions.  To get a solution for the coupled system of partial differential Eqs. (26–30), we 
consider two boundary value problems where the domain of the solution is a rectangle with width a and height 
b . The first boundary value problem (BVP) and the second BVP are presented graphically in Figs. 2, 3.

A10 = 4A0 + A2 + A3 + 2A6 − �m − �c − 4µc , A1 + �m = A3 + A6.

(26)A0∇
2ux + (A0 + A6)

∂

∂x

(

∂ux

∂x
+

∂uy

∂y

)

− A5

∂sxy

∂y
= 0,

(27)A0∇
2uy + (A0 + A6)

∂

∂y

(

∂ux

∂x
+

∂uy

∂y

)

− A5

∂sxy

∂x
= 0,

(28)A7

∂2sxy

∂x∂y
+ 2(2A0 + A6)

∂ux

∂x
+ 2A6

∂uy

∂y
− A10sxx − A9syy = 0,

(29)A7

∂2sxy

∂x∂y
+ 2A6

∂ux

∂x
+ 2(2A0 + A6)

∂uy

∂y
− A9sxx − A10syy = 0,

(30)A8∇
2sxy − (A10 − A9)sxy + 2A0

(

∂ux

∂y
+

∂uy

∂x

)

= 0.

Figure 1.   First boundary value problem.

Figure 2.   Second boundary value problem.
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The mathematical expressions for the boundary conditions in Figs. 1, 2 are given here demonstrating the 
corresponding Dirichlet boundary conditions. Note that on the other boundaries, the Neumann boundary 
condition is applied being zero external tractions ( ti ,mjk).

1) Boundary conditions for the first boundary value problem:

2) Boundary conditions for the second boundary value problem:

Numerical results
The boundary value problem, i.e. Equations  (26–30) with the corresponding boundary conditions 
(31) and (32), are numerically solved using the finite element method. For this purpose, the COMSOL 
Multiphysics36,37 is used for the numerical treatment of the boundary value problem. It is noted that, 
similar to the other generalized continua, the RMM is not available in the finite element software such as 
COMSOL Multiphysics, and the boundary value problem should be implemented to use the software as 
a solver to the system of partial differential equations. In the absence of experimental data, the behavior 
of the solution and the results are interpreted qualitatively.

The material constants.  The material constants given in the Table 1 are used for the analysis of the 
plane. A more realistic input values necessities the homogenization of the heterogeneous microstructure38.

In order to implement the system of Eqs. (26–30), they are expressed in the following matrix form

where

(31)

ux = uy = sxx = syy = sxy = 0, ∀ 0 ≤ x ≤ δ1, y = 0,

ux = uy = sxx = syy = sxy = 0, ∀ a− δ1 ≤ x ≤ a, y = 0,

ux = uy = sxx = syy = sxy = 0, ∀ x = 0, 0 ≤ y ≤ δ2,

ux = uy = sxx = syy = sxy = 0, ∀ x = a, 0 ≤ y ≤ δ2,

uy = −u0, ux = sxx = syy = sxy = 0, ∀ a
2
− δ3 ≤ x ≤ a

2
+ δ3, y = b.

(32)
ux = uy = sxx = syy = sxy = 0, ∀ a

2
− δ2

2
≤ x ≤ a

2
+ δ2

2
, y = 0,

uy = −u0, ux = sxx = syy = sxy = 0, ∀ 0 ≤ x ≤ δ1, y = b,
uy = −u0, ux = sxx = syy = sxy = 0, ∀ a− δ1 ≤ x ≤ a, y = b.

(33)−c∇2X + aX = f ,

c =











A0 0 0 0 0

0 A0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 A8











, a =











0 0 0 0 0

0 0 0 0 0

0 0 −A10 −A9 0

0 0 −A9 −A10 0

0 0 0 0 −(A10 − A9)











, X =











ux
uy
sxx
syy
sxy











,

f =























(A0 + A6)
∂
∂x

�

∂ux
∂x +

∂uy
∂y

�

− A5
∂sxy
∂y

(A0 + A6)
∂
∂y

�

∂ux
∂x +

∂uy
∂y

�

− A5
∂sxy
∂x

A7
∂2sxy
∂x∂y + 2(2A0 + A6)

∂ux
∂x + 2A6

∂uy
∂y

A7
∂2sxy
∂x∂y + 2A6

∂ux
∂x + 2(2A0 + A6)

∂uy
∂y

2A0

�

∂ux
∂y +

∂uy
∂x

�























.

Table 1.   The material properties.

Dimension of square a = 0.1m, b = 0.04m

Density ρ = 2700N/m2

Lame’s coefficients � = 5.1× 1010N/m2, µ = 2.6× 1010N/m2

Lame’s coefficients �m = 1.79× 1011N/m2, µm = 1.41× 1011N/m2

Length scales ℓ1 = ℓ2 = 0, 0.001, 0.004, 0.008m,

The rule of mixture �e = f �m +
(

1− f
)

�,µe = fµm +
(

1− f
)

µ,

Coupling moduli �c = 0,µc = 0.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15537  | https://doi.org/10.1038/s41598-021-94912-z

www.nature.com/scientificreports/

Insertion of the coefficients of the matrix Eq. (33) and specifying the boundary conditions in COMSOL Mul-
tiphysics are performed considering the built-in tools in the software. The numerical solution is then carried out 
using the solver of the software while the convergence is achieved with sufficient number of triangular elements.

The first boundary value problem.  For numerical simulation in the first boundary value problem, we 
choose the following values for the applied displacement at the boundary.

We also consider vanishing coupling parameters µc and �c (i.e. µc = �c = 0 ) while the length scale parameters 
take the values ℓ1 = ℓ2 = 0.01, 0.004, 0.008, 0.001.

Figures 3, 4, 5, 6, 7 show the contour plot for the internal fields ux
(

x, y
)

 , uy
(

x, y
)

 , sxx
(

x, y
)

 , syy
(

x, y
)

 , and sxy
(

x, y
)

 , 
respectively. The results are normalized with |u0| and s0 =

√

µ
µm

|u0|
b  . The latter normalization is motivated by 

the form of the free energy. For colors in the figures, refer to the electronic version of the paper.
All boundary conditions, including both Neumann and Dirichlet conditions, are satisfied. The symmetry and 

anti-symmetry expected for the corresponding deformation measures are confirmed in the results presented in 

(34)u0 = −0.05a, δ1 = 0.3a δ2 = δ3 =
a

10
.

Figure 3.   Contour plot for the displacement ux
(

x, y
)

/|u0| for different values of ℓ1 and ℓ2 (COMSOL 
Multiphysics).
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the figures. Interestingly, the sxx and syy components of micro-strain appear only in the vicinity of the displaced 
boundaries while the sxy component of the micro-strain, similar to the displacements ux and uy , is distributed 
over the entire domain.

Reducing the length scale parameters ℓ1 and ℓ1 , as expected, eliminates the nonclassical measures i.e. micro-
strains. It is noted that setting the length scale parameters ℓ1 and ℓ1 equal to zero cancels the effect of the gradient 
of the micro-strain. In this case, with vanishing �c and µc , the RMM reduces to the classical model of elasticity 
for which the numerical treatment developed here is to be reformulated and replaced by the finite element for 
classical elasticity.

To elaborate the deformation pattern in the plane, the displacement and micro-strain components are dem-
onstrated in Figs. 8, 9, 10, 11, 12 along the mid-line y = b/2 . It is observed that the length scale parameter has 
a greater effect on micro-strain rather than the displacement components. It is also observed that the displace-
ment component uy(x, b/2) , the micro-strain component sxx(x, b/2) and the micro-strain component syy(x, b/2) 
possess even symmetry about the central point (0.05, b/2) , while the other components depict odd symmetry.

The second boundary value problem.  For the numerical simulation of the second boundary value 
problem, the following values are selected for the applied displacement at the boundary.

Considering these values together with µc = �c = 0, ℓ1 = ℓ2 = 0, 0.001, 0.004, 0.008, 0.01m , the internal fields 
of the RMM plane are obtained.

(35)u0 = −0.05a, δ1 = 0.2a, δ2 = 0.4a.

Figure 4.   Contour plot for the displacement uy
(

x, y
)

/|u0| for different values of ℓ1 and ℓ2(COMSOL 
Multiphysics).
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Figure 5.   Contour plot for the micro-strain sxx
(

x, y
)

/s0 for different values of ℓ1 and ℓ2(COMSOL Multiphysics).

Figure 6.   Contour plot for the micro-strain syy
(

x, y
)

/s0 for different values of ℓ1 and ℓ2(COMSOL Multiphysics).
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Figure 7.   Surface plot for the micro-strain sxy
(

x, y
)

/s0 for different values of ℓ1 and ℓ2(COMSOL Multiphysics).

Figure 8.   The displacement ux(x, b/2)/|u0| for different values of ℓ1 and ℓ2(COMSOL Multiphysics).
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Figures 13, 14, 15, 16, 17 show the contour plot for the internal fields ux
(

x, y
)

 , uy
(

x, y
)

 , sxx
(

x, y
)

 , syy
(

x, y
)

 , 
and sxy

(

x, y
)

 , respectively. Similar to the first BVP, the micro-strain vanishes when reducing the length scale 
parameters l1 and l2. Moreover, the sxx and syy components of micro-strain only appears in the neighborhood of 
the external excitation while the sxy component of micro-strain is distributed over the entire domain.

Figures 18, 19, 20, 21, 22 show the displacement and micro-strain fields of the homogenized domain along the 
midline y = b/2 with changing the parameter ℓ1 and ℓ2 while µc = �c = 0 . It is again noticed that the nonclas-
sical quantities, i.e. micro-strains, are considerably affected with the variation of the length scales.

Figure 9.   The displacement uy(x, b/2)/|u0| for different values of ℓ1 and ℓ2(COMSOL Multiphysics).

Figure 10.   The micro-strain sxx(x, b/2)/s0 for different values of ℓ1 and ℓ2(COMSOL Multiphysics).
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Figure 11.   The micro-strain syy(x, b/2)/s0 for different values of ℓ1 and ℓ2(COMSOL Multiphysics).

Figure 12.   The micro-strain sxy(x, b/2)/s0 for different values of ℓ1 and ℓ2(COMSOL Multiphysics).
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Figure 13.   Contour plot for the displacement ux
(

x, y
)

/|u0| for different values of ℓ1 and ℓ2(COMSOL 
Multiphysics).

Figure 14.   Contour plot for the displacement uy
(

x, y
)

/|u0| for different values of ℓ1 and ℓ2(COMSOL 
Multiphysics).
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Figure 15.   Contour plot for the micro-strain sxx
(

x, y
)

/|u0| for different values of ℓ1 and ℓ2(COMSOL 
Multiphysics).
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Conclusion
In this article, the reduced micromorphic model is used for the static analysis of a plane. The variational method is 
used to get the field equations and boundary conditions for the proposed quantities. The main difference between 
the present model and the classical model is the set of the deformation measures including classical strain tensor, 
micro-strain tensor, and residual strain tensor. One of the proposed quantities, micro-strain tensor, is used as a 
measure of the internal interaction of microelements due to the externally applied fields.

The governing equations and the specified boundary conditions were introduced in Cartesian coordinates to 
describe a rectangular domain. The numerical solution based on the finite element method were derived using 
the COMSOL Multiphysics. In order to elaborate the material behavior in the reduced micromorphic model, 
two case studies were discussed. The first case was a rectangular plane possessing one displaced boundary and 
two supports while the second case was a rectangular plane with two displaced boundaries and one support. The 
results are illustrated graphically and discussed. The most admissible results are that the micro-strain tensor is 
concentrated around the displaced boundary and supports while the displacement is distributed uniformly over 
the entire domain of the solution.

In future studies, specific microstructures/microarchitectures will be considered and homogenized computa-
tionally towards reduced micromorphic model. The deformation patterns obtained in this study can be used for 

Figure 16.   Contour plot for the micro-strain syy
(

x, y
)

/s0 for different values of ℓ1 and ℓ2(COMSOL 
Multiphysics).
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Figure 17.   Contour plot for the micro-strain sxy
(

x, y
)

/s0 for different values of ℓ1 and ℓ2(COMSOL 
Multiphysics).

Figure 18.   The displacement ux(x, b/2)/|u0| for different values of ℓ1 and ℓ2(COMSOL Multiphysics).
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Figure 19.   The displacement uy(x, b/2)/|u0| for different values of ℓ1 and ℓ2(COMSOL Multiphysics).

Figure 20.   The micro-strain sxx(x, b/2)/s0 for different values of ℓ1 and ℓ2(COMSOL Multiphysics).
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Figure 21.   The micro-strain syy(x, b/2)/s0 . for different values of ℓ1 and ℓ2(COMSOL Multiphysics).

Figure 22.   The micro-strain sxy(x, b/2)/s0 for different values of ℓ1 and ℓ2(COMSOL Multiphysics).
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the identification of the microarchitectures whose behavior can be captured by reduced micromorphic model. 
Furthermore, in the context of laboratory experiments and based on digital image correlation, the results of this 
study (in particular the contours of the field quantities) can also guide for identifying the heterogenous materials 
whose behavior can be well described with reduced micromorphic model.
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