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Photocrosslinkable liver 
extracellular matrix hydrogels 
for the generation of 3D liver 
microenvironment models
Akhilandeshwari Ravichandran1,2,3,5*, Berline Murekatete1,5, Denise Moedder1, 
Christoph Meinert1,4,6 & Laura J. Bray1,2,3,6

Liver extracellular matrix (ECM)-based hydrogels have gained considerable interest as biomimetic 
3D cell culture environments to investigate the mechanisms of liver pathology, metabolism, and 
toxicity. The preparation of current liver ECM hydrogels, however, is based on time-consuming 
thermal gelation and limits the control of mechanical properties. In this study, we used detergent-
based protocols to produce decellularized porcine liver ECM, which in turn were solubilized and 
functionalized with methacrylic anhydride to generate photocrosslinkable methacrylated liver ECM 
(LivMA) hydrogels. Firstly, we explored the efficacy of two protocols to decellularize porcine liver 
tissue using varying combinations of commonly used chemical agents such as Triton X-100, Sodium 
Dodecyl Sulphate (SDS) and Ammonium hydroxide. Then, we demonstrated successful formation 
of stable, reproducible LivMA hydrogels from both the protocols by photocrosslinking. The LivMA 
hydrogels obtained from the two decellularization protocols showed distinct mechanical properties. 
The compressive modulus of the hydrogels was directly dependent on the hydrogel concentration, 
thereby demonstrating the tuneability of mechanical properties of these hydrogels. Immortalized 
Human Hepatocytes cells were encapsulated in the LivMA hydrogels and cytocompatibility of the 
hydrogels was demonstrated after one week of culture. In summary, the LivMA hydrogel system 
provides a simple, photocrosslinkable platform, which can potentially be used to simulate healthy 
versus damaged liver for liver disease research, drug studies and cancer metastasis modelling.

The liver plays a crucial role in many biological functions such as metabolism, homeostasis, detoxification, bile 
production, electrolyte regulation and immunity. Despite its self-regenerative capacity, liver-related diseases such 
as drug-induced liver injury, fatty liver disease, hepatitis, fibrosis, cirrhosis and hepatocellular carcinoma, affect 
a major population across the world and result in significant healthcare burden1. Often, these pathological states 
are accompanied by elevated liver tissue stiffness2 which is a key physical property which governs hepatocyte 
proliferation, phenotype3,4 and migration5. Conventional laboratory models used to study these pathologies are 
based on hepatocyte cultures propagated in monolayer or whole liver explants. However, these approaches lack 
physiological relevance or pose significant problems of batch-to-batch variability, thereby severely limiting their 
translational value. This has prompted the development of more controlled three-dimensional (3D) in vitro liver 
models that closely mimic the liver microenvironment and improve the understanding of liver pathologies and 
develop targeted therapies6–8.

To recapitulate the native cellular microenvironment, tissue engineering strategies have successfully utilized 
decellularized extracellular matrix (ECM) for in vitro tissue generation9,10. With a distinct 3D structure, organi-
zation and function, tissue-specific ECM plays a crucial role in governing cellular dynamics, communication, 
tissue integrity and function11. Incorporation of these tissue-specific ECM components in 3D models systems 
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can therefore aid in achieving tissue generation with enhanced physiological relevance12. One of the most com-
monly used strategies for obtaining decellularized ECM involves chemical agents such as ionic and non-ionic 
detergents, acids/bases, alcohols, and chelators13. While all the above agents essentially aid in removing cellular 
content from the cells, their efficiency varies with tissue density and they can alter the properties of the ECM 
in different ways. While non-ionic detergents like Triton X-100 are gentle and largely preserve the native ECM 
protein structure, ionic detergents such as SDS are stronger and more effective, but may denature proteins13. 
Therefore, a single detergent may not be sufficient in all circumstances. Specifically for liver tissues, a wide vari-
ety of decellularization techniques have been used to produce ECM scaffolds14–17 or to prepare solubilised ECM 
which is used to coat tissue culture plastic18–22, as media additives23,24, in sandwich cultures25,26, and as ECM 
hydrogels21,22,27–33 to improve long-term maintenance of hepatic functionality. Predominantly, studies have used 
solubilized liver ECM to create collagenous hydrogels fabricated by thermal gelation, resulting in a biomimetic 
microenvironment for the cells to attach and grow21,22,27–33. Yet, despite several related studies published in the 
last decade22,27,31–35, there is little consensus on the most effective decellularization method to generate liver ECM 
hydrogels with relevant biochemical and biomechanical properties.

Further, the application of commonly used self-assembled ECM hydrogels is limited by their slow and largely 
uncontrolled gelation, as well as non-physiological mechanical properties36. Current ECM hydrogel-based liver 
tissue models offer little control of their physical properties2,37,38 and have not sufficiently considered the stiffness 
of hydrogels and its correlation with liver physiology and pathology39. Functionalization of natural polymers 
using photocurable components has been employed as a technique for rapid manufacture of hydrogels with 
controlled gelation40–47. By amalgamating the advantages of the natural polymers, like biocompatibility and 
degradability, along with reproducible physicochemical properties imparted by chemical functionalization, these 
resulting hydrogels can generate controllable, reproducible, and relevant 3D tissue models40–46. Yet very few 
studies have attempted to modify the liver ECM hydrogels to improve their physicochemical properties25,48–50.

In this study, we report the efficiencies of two decellularization protocols for porcine liver developed to study 
the combinatorial and temporal effects of commonly used chemical agents such as SDS, Triton X-100 and ammo-
nium hydroxide15,31. The decellularized liver tissues obtained were solubilized and methacrylated to produce 
LivMA (methacrylated, solubilized liver ECM), which formed stable hydrogels upon photocrosslinking51–53. 
Functionalization allowed the manufacture of LivMA hydrogels with reproducible and improved physical 
properties54,55. The LivMA hydrogels were characterized for their degree of functionalization, mechanical prop-
erties and cytocompatibility.

Results
Optimization of decellularization of porcine liver tissues.  With an aim to develop photocrosslink-
able, tuneable and reproducible liver ECM hydrogels from porcine liver tissues, we adapted methods from pro-
tocols previously developed in the group53 and followed the steps outlined in Fig. 1 including porcine liver decel-
lularization (detergent-based), enzymatic solubilization (pepsin-based), functionalization (methacrylation), as 
well as dialysis and lyophilization to obtain LivMA (methacrylated solubilized liver ECM) (Fig. 1). Firstly, we 
assessed the effects of two detergent protocols, I and II, that involved commonly used decellularization agents 
including Triton X-100, sodium dodecyl sulfate (SDS) and ammonium hydroxide (NH4OH) over a period of 
5 days (Fig. 1).

To determine the decellularization efficacy of the protocols throughout the duration of detergent treatment, 
we analyzed the DNA content of the tissues each day of the protocol. After the first day of treatment, we observed 
a ~ fivefold drop in DNA content (normalized to raw liver DNA content) in Protocol I and ~ 2.5-fold drop in 
Protocol II (Fig. 2A). DNA content sustained at these levels until the end of the 5 days of treatments (Fig. 2A). 
The DNA content (ng/mg of wet weight of the tissue) after decellularization was 13.7 ± 0.7 ng/mg from protocol 
I and 77 ± 3.5 ng/mg from protocol II by the end of the treatments (Fig. 2B). This corresponded to a removal of 
93.7 ± 0.3% of DNA using protocol I and 64.8 ± 1.6% from protocol II (Fig. 2C). Interestingly, we observed an 
increase in DNA content on some of the days in protocol II when compared to the previous time point likely 
due to the sensitivity of the detection method to the detergents in these protocols56.

To qualitatively visualize the structure and composition of the decellularized tissues from protocols I and II, 
we used histochemical staining to detect cellular nuclear material and collagen content. Raw liver tissue H&E 
images revealed intact liver tissue morphology with cells organized in hepatic lobules (Fig. 3). The representa-
tive H&E images of the decellularized tissues from protocol I and protocol II showed the loss of native lobular 
morphology in the decellularized liver tissues with no visible cell nuclei (stained purple), thereby confirming the 
efficacy of decellularization in these groups (Fig. 3). Remnant nuclear content was sparsely distributed across 
the sections in the decellularized tissues from both the protocols (Supp Fig. 1). Stronger eosinophilic staining 
was observed in decellularized tissues from protocol I when compared to protocol II. Immunohistochemical 
staining was performed to determine the presence of collagen type I in the decellularized liver tissues. Results 
revealed that the ECM collagen was preserved post-decellularization in both protocols I and II. The decellular-
ized tissues from protocol II presented gaps between the thick fibrillar networks when compared to the more 
continuous structure observed in protocol I.

Solubilization and methacrylation of decellularized liver ECM.  The decellularized tissues were lyo-
philized, solubilized using pepsin and 0.1 M HCl to produce solubilized d-ECM (sd-LECM) from protocols 
I and protocol II. This was followed by functionalization, dialysis, and lyophilization to produce LivMA. To 
determine the efficiency of methacrylation, the degree of functionalization (DOF) was calculated from the slope 
of the linear regression lines obtained from unmethacrylated samples (sd-LECM) and methacrylated samples 
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(LivMA) using a TNBS assay57. Protocol I produced LivMA gels with a DOF of 71.4% (n = 3) (Fig. 4A) and pro-
tocol II LivMA gels had a DOF of 72% (n = 6) (Fig. 4B).

Photocrosslinking of LivMA hydrogels.  Prior to photocrosslinking of LivMA, we attempted to make 
hydrogels by spontaneous thermal gelation at 37  °C in the absence of photocrosslinker from sd-LECM and 
LivMA. The sd-LECM derived from protocols I and II did not gel via thermal gelation at 37 °C. At the concentra-
tions we had used (0.5–1.75%), the LivMA from protocol I did not show any thermal gelation at 37 °C even after 
6 h of incubation. LivMA from Protocol II did not show thermal gelation at lower concentrations and formed 
soft hydrogels at concentrations > 1% (1.5%: 1.4 ± 0.3 kPa, 1.75%: 2.4 ± 0.25 kPa) (Supp Fig. 2) after 30 min of 
incubation at 37 °C. Beyond these concentrations, uniform dissolution of the stock was found to be difficult and 
hence we retained our stock concentrations for LivMA at 1.75%.

Preliminary studies for photocrosslinked LivMA gelation from both protocol I and protocol II showed suc-
cessful formation of stable, optically clear, and easy-to-handle LivMA gels at concentrations of ≥ 0.5% (w/v) and 
crosslinking times of ≥ 1 min (data not shown). We investigated the mechanical properties of these hydrogels 
using compression testing and effective swelling. The compressive moduli for hydrogels obtained from protocol 
I revealed a wide range from 9.8 ± 1.8 kPa to 39.9 ± 10.1 kPa (Fig. 5A). In comparison, the hydrogels obtained 
from protocol II had lower stiffnesses in all the crosslinking times and concentrations. The moduli for protocol 
II hydrogels ranged between 5.1 ± 0.9 kPa and 9.3 ± 1.5 kPa (Fig. 5A). From both the protocols, we observed a 
significant dependence of the compressive modulus of the LivMA hydrogels to the concentration with a ~ 1.4 
to ~ 2.8-fold increase in the modulus with an increase in LivMA concentration from 0.5% (w/v) to 0.75% (w/v) 
(n = 6, p < 0.0001). This demonstrated the control of hydrogel stiffness by modifying the concentration of the 
LivMA hydrogels. Between the protocols, increasing crosslinking times from 1 to 4 min resulted in an increase 
in the compressive modulus for gels from protocol I. No such effects were observed for the gels from protocol 
II with crosslinking times.

With respect to the swelling kinetics, we did not observe a defined trend with the crosslinking times for both 
0.5% (w/v) LivMA and 0.75% (w/v) LivMA obtained from both the protocols (n = 6) (Fig. 5B). Interestingly, 
hydrogels derived from protocol II exhibited a strong negative swelling behavior, while hydrogels from protocol 
I did not. This shrinkage effect was higher (twofold) in the 0.5% (w/v) LivMA hydrogels (protocol II) compared 
to the 0.75% LivMA hydrogels (protocol II) (n = 6, p < 0.0001).

Cell‑encapsulation in LivMA hydrogels.  Cytocompatibility of the hydrogels from protocol I and proto-
col II was assessed using a live/dead assay and a metabolic assay. For the hydrogels from Protocol II, we observed 

Figure 1.   Experimental workflow for obtaining LivMA (Liver ECM methacryloyl): Raw liver tissues were 
minced finely, rinsed in ultrapure water followed by a 5-day detergent treatment to obtain decellularized liver 
ECM (d-LECM) using decellularization protocols I and II. The d-LECM samples were enzymatically digested 
for 3 days using pepsin followed by methacrylation of the solubilized d-LECM, dialysis and lyophilization to 
obtain LivMA.
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Figure 2.   Decellularization of porcine liver tissues using detergent treatment protocols I and II. (A) Percentage 
of DNA content (normalized to raw liver tissues) obtained from tissues treated by both the protocols on each 
of the 5 days (n = 3, mean ± SD). (B) DNA content (n = 3, ng/mg of liver tissue) present in the tissue after the 
detergent treatments (n = 3, mean ± SD). (C) Percentage of DNA removed in each of the protocols (n = 3, 
mean ± SD).

Figure 3.   Representative images from H&E staining (5 ×, 20 ×, 40 ×) and immunohistochemical staining for 
Isotype control and Col-1 (40 ×) of 5 μm thick tissue sections from raw liver tissue and decellularized liver tissue 
from Protocol I and Protocol II.
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viable cells over the duration of one week and the cells aggregated to form spheroidal structures by day 7 in 0.5% 
(w/v) LivMA and 0.75% (w/v) LivMA that were photocrosslinked for 1 min (Fig. 6A). Quantitative results from 
the metabolic assay confirmed cell viability and growth in the 7 days of culture (Fig. 6B). Hydrogels derived from 
protocol I on the other hand were cytotoxic and resulted in cellular death within one day of encapsulation. This 
was confirmed by both the live/dead assay which showed no viable cells (green) (Fig. 6C) in the hydrogels and 
the metabolic assay (Fig. 6D). To confirm if the cytotoxic effects of hydrogels derived from Protocol I were a 
result of the presence of unmethacrylated products, we added sd-LECM (1%) solution to IHH cells propagated 

Figure 4.   Degree of amine functionalization (%) assessed using a TNBS assay. (A, B) Slope obtained from the 
range of concentrations versus absorbance from functionalized samples (LivMA) compared to that from the 
non-functionalized solubilized, decellularized liver ECM (sd-LECM) samples for protocol I and protocol II 
(n = 3–6, mean ± SD).

Figure 5.   Mechanical characterization of LivMA hydrogels derived from protocol I and protocol II. (A) Box 
plot (10th–90th percentile) showing the compressive moduli of hydrogels from protocol I and II at 0.5% (w/v) 
LivMA and 0.75% (w/v) LivMA with different crosslinking times—1 min, 2 min, 4 min (n = 6, line at median). 
(B) Box plot (10th–90th percentile) of the effective swelling (%) of hydrogels calculated by weighing the 
hydrogels before and after swelling in PBS overnight at 37 °C (n = 6, line at median).
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in monolayer on tissue-culture plastic. We observed cellular death in the cultures within one day of exposure to 
sd-LECM from protocol I likely due to residual SDS from the detergent treatments58,59 (Supp Fig. 3).

Discussion
Liver ECM hydrogels obtained using various decellularization methods have been extensively studied for generat-
ing engineered liver tissues and in vitro models21,22,27–33. However, the gelation kinetics is generally temperature-
dependent with little control over the gelation time and mechanical properties of the hydrogels. The present 
study analyzed the efficiency of two detergent treatment protocols to produce decellularized porcine liver tissues, 
which were solubilized and functionalized using methacryloyl groups to generate photocrosslinkable LivMA 
hydrogels. The LivMA hydrogels were assessed for their degree of functionalization, mechanical stiffness and 
cytocompatibility.

In the last decade, there has been significant interest in the development of ECM-derived materials for engi-
neering in vitro models that can provide better understanding of tissue physiology, pathology and function60,61. 
ECM has been predominantly obtained through animal organ and tissue decellularization using different chemi-
cal detergents62. This is a critical step because the choice of detergent treatment has been shown to affect gelation 
kinetics, mechanical properties and biological activity of the resulting ECM hydrogels35,58,63. While some studies 
have reported the use of a single detergent treatment for successful decellularization of liver tissues27,29,34, other 
studies have shown improved efficiency of decellularization by combinational use of detergents20,22,31. Many 
protocols can be potentially developed and tested from the varying concentrations, processing times and com-
binations of commonly used detergents such as Triton X-100, sodium dodecyl sulfate (SDS) and ammonium 

Figure 6.   Cytocompatibility of 0.5% (w/v) LivMA and 0.75% (w/v) LivMA hydrogels. (A) Live/Dead imaging 
of cell-laden LivMA hydrogels derived from protocol II on days 1, 3 and 7 (green cells: live, red cells: dead) 
(scale bar: 1 mm). (B) Metabolic assay of cell-laden LivMA hydrogels (protocol II) on day 1, day 3 and day 7 
(mean ± SD, n = 3). (C) Live/Dead imaging of cell-laden LivMA hydrogels derived from protocol I on day 1 
(green cells: live, red cells: dead) (scale bar: 1 mm). (D) Metabolic assay of cell-laden LivMA hydrogels (protocol 
I) on day 1, day 3 and day 7 (mean ± SD, n = 3).



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15566  | https://doi.org/10.1038/s41598-021-94990-z

www.nature.com/scientificreports/

hydroxide (NH4OH). To determine the ideal decellularization method for our study, we adapted protocols based 
on previous liver decellularization studies15,31. Focusing on parameters that have already been independently 
assessed for the decellularization of liver tissue enabled us to narrow down the wide range of parameters, com-
pare their decellularization efficiencies and capacities to generate liver-ECM based hydrogels. By exploring the 
synergistic effects of different combinations of commonly used detergents15,31, we successfully reported the decel-
lularization efficiency of porcine livers and used these protocols for further processing into LivMA hydrogels. 
Our results also showed that the DNA was removed to its maximum extent in the first 24 h of the treatment 
itself and hence future studies may aim to reduce the duration of the protocols to reduce exposure time of the 
liver tissues to chemical detergents.

Our next step was to solubilize these dLECM using enzymatic digestion. In our preliminary work, we 
observed poor enzymatic digestion of the decellularized tissues at 37 °C (data not shown). In accordance with 
previous studies, however, we achieved complete solubilization at room temperature30,64. The majority of previ-
ous studies have used unfunctionalized, solubilized liver ECM to encapsulate liver cells by spontaneous gela-
tion at 37°C22,26,27,31,32,34,35. While these studies have collectively demonstrated maintenance of liver-specific 
functions, thermal self-assembly of ECM hydrogels is a largely uncontrolled, time-consuming process which 
leaves little room to tune key physicochemical matrix parameters such as stiffness and porosity. It has been 
shown to take between 30 min and 6 h to produce stable hydrogels22,27,32,34,35. Further, pure ECM-based hydro-
gels have been shown to undergo rapid degradation owing to poor mechanical properties65. By methacrylation 
of the solubilized liver ECM in our study, we demonstrate the generation of stable LivMA hydrogels by rapid 
photocrosslinking (1 min). The photocrosslinked LivMA hydrogels from both the protocols were stiffer than 
the LivMA hydrogels that were fabricated by thermal gelation. Previous studies have shown that ECM-derived 
hydrogels could not be formed via spontaneous thermal gelation from decellularization methods that used SDS 
at certain concentrations58,63. Similar to previous studies, the Protocol I LivMA hydrogels did not gel spontane-
ously at 37 °C. Further, the slow gelation times of pure ECM-hydrogels preclude the manufacture of 3D tissues 
with distinct and complex geometries to represent the native tissue structure.

Here, the functionalization enables us to generate liver ECM tissues with higher mechanical stiffnesses. This 
is vital because liver stiffness has been demonstrated to be an effective marker of liver diseases, including liver 
fibrosis, cirrhosis, fatty liver disease, hepatocellular carcinoma and liver metastasis2,39,66. There have been several 
reports on liver elasticity measurements and the reported stiffnesses have differed depending on the type of tech-
nique used2,66. Overall, there is a consensus on the normal liver stiffness values to be below 6 kPa and pathological 
liver tissues including fibrotic, cirrhotic, and cancerous liver tissues to have stiffnesses higher than 8 kPa2. Yeh 
et al. had reported a 2–tenfold increase in liver stiffnesses in fibrotic and cirrhotic liver tissues (~ 20 kPa) when 
compared to healthy liver tissues39. Additionally, tissue stiffness has been shown to have a direct correlation with 
cancer progression and therapy resistance in solid tumors67,68. In a study that characterized the elasticity values of 
liver tumors, the results reported a ~ 7.5 fold increase in liver stiffnesses (~ 50 kPa) of hepatocellular carcinomas 
and liver metastases when compared to normal, healthy liver tissues66. Hence, it becomes essential to develop 
robust in vitro models that allow manipulation of tissue stiffness. Few studies have characterized mechanical 
properties of liver ECM-based hydrogels and the reported stiffnesses are not high enough to represent the 
pathological liver tissue conditions32,50. Lee et al. demonstrated enhanced modulus of rat liver ECM hydrogels 
(0.27 kPa to 0.4 kPa) by modifying the hydrogel concentrations (10 mg/mL to 20 mg/mL)32. Other studies have 
used crosslinkers like riboflavin49,69, N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) 
and genipin65 to inherently crosslink the decellularized ECM and tailor mechanical properties. In our study, 
methacrylation enabled easy manipulation of the modulus, and generated liver constructs with higher stiffnesses 
that can be used to mimic both normal liver tissues and pathological liver tissues. Here, we have demonstrated 
that by increasing the concentration of LivMA, a stiffness as high as 162 kPa (see Supp Fig. 2) could be achieved. 
By optimizing photocrosslinking parameters, we were able to create hydrogels with a range of stiffnesses to rep-
resent the native livers, normal as well as pathological. In addition to hydrogel concentration and crosslinking 
times, future studies can also modify crosslinker concentrations to achieve hydrogels with varying mechanical 
properties. Rapid crosslinking and improved mechanical properties can aid in generating desired architectures 
with the LivMA hydrogels using customized PTFE molds.

The LivMA hydrogels prepared from protocol II supported cellular growth over a period of 7 days. However, 
this was not the case with protocol I, where we found that the LivMA hydrogels had poor cell viability after 24 h 
of encapsulation (Fig. 6C). It is unlikely that these cytotoxic effects were related to byproducts of the LivMA 
synthesis as high levels of cell death were also observed with the unfunctionalized sd-LECM solutions from pro-
tocol I. The cytotoxicity was potentially a result of the remnant SDS in the LivMA hydrogels from the Protocol 
I decellularization. Similar to our study, White et al. found SDS (1%) to be most effective detergent for tissue 
decellularization and yet resulted in reduced cell numbers with poor morphology as a result of residual SDS 
on the decellularized tissues59. Another study also reported cytotoxicity of SDS-decellularized ECM hydrogels 
derived from porcine corneas which was contributed to remnant SDS in decellularized tissues58. These results 
along with results from the DNA content analyses indicate that residual detergent may be present in both the 
decellularized tissues and the ECM hydrogels which can interfere with their characterization and function. 
Residual detergent present in tissues post decellularization is a commonly reported, yet less frequently addressed 
problem in tissue decellularization studies. Quality control methods to evaluate the removal of detergent should 
be incorporated at every step starting right from decellularization to avoid potential cytotoxicity effects observed 
during the fabrication of hydrogels. Future studies will introduce repeated washing steps followed by relevant 
physicochemical characterization of the decellularized tissues and the ECM hydrogels59, to ensure complete 
removal of detergents and provide more accurate understanding of the effects of decellularization methods. 
While we did not observe significant differences in the cellular viability and metabolism between the 0.5% and 
0.75% LivMA obtained from Protocol II in the first week of culture, the platform provides scope to analyse the 
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effects of varying stiffnesses in liver disease models. Previous hydrogel studies, although not liver ECM-based, 
have demonstrated that mechanical stiffnesses higher than normal liver tissue can affect the proliferation, gene 
responses70 and phenotype71 of liver cells. Future studies will aim to specifically assess the expression of markers 
of fibrosis such as procollagen I, collagen III, connective tissue growth factor, TGFβ1 and α-SMA in response to 
increased stiffnesses of the LivMA hydrogels. The effects of tissue source and donor variability on tissue decel-
lularization and hydrogel properties have not been explored in our study and will need to be investigated in 
order to standardize the fabrication process72. Long-term culture of the cell-laden LivMA hydrogels and its effects 
on specific hepatogenic properties such as urea and albumin synthesis will also be examined in future studies.

In conclusion, we have reported the efficiencies of two different detergent protocols to form decellularized 
liver ECM tissues. We have developed a novel, photocrosslinkable hydrogel system that is composed of decel-
lularized, solubilized and functionalized porcine liver ECM. Mechanical tuneability and cytocompatibilty of 
these hydrogels have been demonstrated. This hydrogel system has the potential for recapitulating healthy and 
pathological states of liver tissues for future use in drug response studies.

Methods
Procurement of porcine liver tissue.  The porcine liver tissue was obtained from a local butcher. Fresh 
tissue was immediately chopped into 1 cm3 pieces and washed in distilled water. The liver pieces were washed in 
distilled water for one week at 4 °C with constant stirring. Samples from fresh liver tissue (< 50 mg wet weight, 
n = 6) were collected and stored at -80 °C for analysis.

Generation of LivMA material.  Decellularization process.  The washed liver tissues were decellularized 
using four different detergent treatments named as protocols I and II (Fig. 1), which included the following 
chemical solutions at different concentrations (made up in ultrapure water (MilliQ, Merck Millipore))—Triton 
X-100 (Merck, VIC, Australia), Ammonium hydroxide solution (Sigma Aldrich, NSW, Australia), and Sodium 
dodecyl sulfate (Sigma Aldrich, NSW, Australia). The treatments were carried out in 2L bottles (30% tissues) 
for five days with two solution changes per day. Tissue samples (< 50 mg wet weight) were collected for DNA 
analysis each day for each of the protocols (n = 3), followed by washes with ultrapure water for two days prior to 
storing the samples at -80 °C.

Homogenization.  The decellularized liver ECM (d-LECM) was washed using milliQ water for 2 days at 4 °C 
with constant stirring. The washed tissues were homogenized using a blender (High setting, two min) and then 
frozen at -80 °C before being lyophilized for 3–4 days using a freeze-dryer (Christ, Osterode am Harz, Germany).

Solubilization.  1 g of lyophilized d-LECM was solubilized using 100 mg of pepsin (Sigma Aldrich, NSW, Aus-
tralia) in 100 ml of 0.01 M HCl and stirred at room temperature for 48 h. The pH of the digested tissue was 
approximately pH 4 – 5 and the reaction was stopped by increasing the pH to 8 using 0.1 M NaOH.

Methacrylation.  Solubilized d-LECM (sd-LECM) was functionalized using methacrylation to obtain a pho-
tocrosslinkable hydrogel using previously developed methacrylation protocols73. Briefly, 0.6 g of Methacrylic 
anyhydride (MAAh) (Sigma Aldrich, NSW, Australia) was combined with 1 g of dECM to add methacryloyl 
groups on to the amine and hydroxyl groups of the solubilized liver dECM. The methacrylation was carried out 
for 24 h on ice with constant stirring (pH 8–9).

Dialysis.  The methacrylated liver tissue or LivMA obtained was dialyzed against milliQ water using a dialysis 
tubing (MW cut-off: 2 kDa, Sigma-Aldrich, NSW, Australia) at 4 °C with constant stirring for a period of 5 days 
with water changes twice per day. This was done to remove insoluble MAAh and low molecular by-products74.

Physicochemical characterization of LivMA.  Decellularization.  The extent of decellularization was 
assessed by analyzing DNA (Deoxyribonucleic acid) quantities obtained using Quant-iT™ PicoGreen™ Kit (Ther-
mo Fisher Scientific, VIC, Australia) for each sample taken from the protocols at different time points. Routine 
Hematoxylin & Eosin (H&E) staining (Hematoxylin (POCD Scientific, NSW, Australia), t = 4 min; Eosin (Am-
ber Scientific, WA, Australia), t = 1 min; Leica Autostainer XL, VIC, Australia) and immunohistochemical (IHC) 
staining were performed on 5 µm sections from fixed, paraffin-embedded fresh liver tissues and decellularized 
liver tissues from protocol I and protocol II. The expression of Collagen I (Col-1) (1:100, ab34710, Abcam) was 
studied by heat-mediated antigen retrieval (sodium citrate (pH 6), followed by 1 h primary antibody incubation. 
Rabbit IgG Isotype Control (Thermo Fisher Scientific, VIC, Australia) was used as the negative control. The 
staining was developed with the Envision + DualLink secondary HRP system (Agilent, VIC, Australia), 3,3′-dia-
minobenzidine (DAB) chromogen substrate (Agilent, VIC, Australia) and counterstaining with Hematoxylin 
(t = 30 s, Sigma Aldrich, NSW, Australia).

Degree of functionalization.  To determine the degree of functionalization (DOF), 2,4,6-Trinitrobenzenesul-
fonic acid (TNBS) (Sigma Aldrich, NSW, Australia) assay was used as described previously57. Briefly, solubilized 
liver ECM (non-functionalized) stock solution and LivMA (functionalized) stock solutions in 0.1 M NaHCO3 
buffers were serially diluted to prepare 500 µg/mL, 250 µg/mL, 125 µg/mL, 62.5 µg/mL, and 31.25 µg/mL solu-
tions. 0.01% (w/v) TNBS solution was added to each of the concentrations and incubated at 37 °C for 40 min–2 h 
and absorbance was read at 335 nm (n = 3–6).
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LivMA hydrogel fabrication.  A stock solution of 1.75% (w/v) LivMA was obtained by dissolving lyophi-
lized LivMA in sterile PBS at 4 °C for 24 h under constant rotation. Desired concentration of LivMA precursor 
solutions (0.5% (w/v), 0.75% (w/v)) were made by diluting the 1.75% (w/v) stock in PBS along with 0.15% (w/v) 
of photoinitiator lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) (Sigma Aldrich, NSW, Australia) 
(0.2 µm sterile filtered). The precursor solutions were added to wells of PTFE casting mold (1.5 mm height, 
5 mm diameter) ((Queensland University of Technology Design and Manufacturing Centre (QUT DMC)) and 
photocrosslinked by exposure to 405 nm light in a visible light crosslinker (Gelomics, QLD, Australia).

Mechanical testing of different concentrations of LivMA.  LivMA hydrogels at 0.5% (w/v) and 
0.75% (w/v) from protocols I and II were crosslinked a different crosslinking times—1 min, 2 min and 4 min 
and incubated in PBS at 37 °C overnight. Prior to the compression testing, the hydrogel surface area was imaged 
using stereomicroscope (Nikon, Melville, NY, USA) and measured using ImageJ software. In an unconfined 
compression test, the different gel groups submerged in 37  °C PBS-filled water bath were compressed using 
a 5848 Instron Microtester with a 5  N cell load (Instron, VIC, Australia) using a non-porous stainless-steel 
indenter at a strain rate of 0.01 mm/s. The compressive modulus was determined as the slope of the stress–strain 
curve from 10–15% strain (n = 6).

Effective swelling.  The effective swelling of the LivMA gels was calculated as the ratio of increase in hydro-
gel weight following overnight incubation in PBS at 37 °C on a shaker, to the initial hydrogel weight measured 
immediately following hydrogel preparation (n = 6).

Cell culture.  Immortalized Human Hepatocytes (IHH) (kindly provided by Professor Didier Trono from 
the Ecole Polytechnique Federale de Lausanne; EPFL) were cultured in DMEM/F-12 + GlutaMAX media sup-
plemented with 10% Fetal Bovine Serum, 1 μM Dexamethasone and 1ug/ml Insulin at 37 °C, 5% CO2 (media 
and serum from Thermo Fisher Scientific, VIC, Australia; Dexamethasone and Insulin from Sigma Aldrich, 
NSW, Australia). Cells were resuspended in LivMA precursor solutions (0.5% (w/v) and 0.75% (w/v)) at a ratio 
of 0.5 × 106 cells/mL and photocrosslinked by exposure to 405 nm for 1 min.

Live/dead assay.  The cell viability of IHH cells encapsulated in LivMA gels from days 1, 3 and 7 was ana-
lyzed by staining the gels with fluorescein diacetate/propidium Iodide (FDA/PI) (both reagents from Thermo 
Fisher Scientific, VIC, Australia) staining as described previously73. Briefly, cell-laden hydrogels were rinsed in 
PBS followed by 10 min incubation with 10 µg/mL of FDA and a 2 min incubation with 5 µg/mL stains live cells 
green and PI stains the nuclei red. The staining was visualized using a fluorescence stereomicroscope (Nikon, 
Melville, NY, USA).

Metabolic assay.  The metabolic activity of IHH cells encapsulated in the LivMA hydrogels was measured 
by incubating the gels with PrestoBlue™ Cell Viability Reagent for 5 h (Thermo Fisher Scientific, VIC, Australia) 
(9:1 of media:reagent). Relative fluorescence of the solution was measured (excitation at 544 nm, emission at 
590 nm) on days 1, 3 and 7.

Statistical analysis.  Statistical analysis was performed using GraphPad Prism version 8.2.1. Unpaired 
t-test was performed to investigate the differences between protocols I and II after the 5 days of treatment. Two-
way ANOVA followed by Tukey’s multiple comparisons test was also used to study the differences in compressive 
moduli between the protocols at different GelMA concentrations and photocrosslinking times. Statistical signifi-
cance is reported in the graphs using symbols—*p < 0.05, **p < 0.01, ***p < 0.001 and ***p < 0.0001.
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