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Abstract

Recent efforts to evaluate the heritability of the brain’s functional connectome have predominantly focused on static
connectivity. However, evaluating connectivity changes across time can provide valuable insight about the inherent
dynamic nature of brain function. Here, the heritability of Human Connectome Project resting-state fMRI data was
examined to determine whether there is a genetic basis for dynamic fluctuations in functional connectivity. The dynamic
connectivity variance, in addition to the dynamic mean and standard static connectivity, was evaluated. Heritability was
estimated using Accelerated Permutation Inference for the ACE (APACE), which models the additive genetic (h2), common
environmental (c2), and unique environmental (e2) variance. Heritability was moderate (mean h2: dynamic mean = 0.35,
dynamic variance = 0.45, and static = 0.37) and tended to be greater for dynamic variance compared to either dynamic mean
or static connectivity. Further, heritability of dynamic variance was reliable across both sessions for several network
connections, particularly between higher-order cognitive and visual networks. For both dynamic mean and static
connectivity, similar patterns of heritability were found across networks. The findings support the notion that dynamic
connectivity is genetically influenced. The flexibility of network connections, not just their strength, is a heritable
endophenotype that may predispose trait behavior.
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Introduction
The combination of neuroimaging with genetic techniques is
a powerful approach for understanding how individual differ-
ences in brain structure and function may be attributable in
part to genetic variation (Meyer-Lindenberg and Weinberger
2006). Disentangling the relative effects of genes and environ-
ment on brain circuitry is crucial for understanding dynamics

of both the healthy brain and those afflicted by neurologic
or psychiatric disease, such as schizophrenia and Alzheimer’s
Disease (Cannon et al. 2002; Jahanshad et al. 2013; Narayanan
et al. 2015). These disorders have a strong genetic component
and are associated with alterations in functional brain circuits.
Imaging genetics studies, which explore the degree to which
structural and functional features are influenced by genetic
factors, have begun to identify heritable endophenotypes that
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are closely tied to the underlying neurobiology. A goal of imaging
genetics is to develop precision medicine approaches, including
improved characterization of subsyndromal or transdiagnostic
biotypes, detection or prediction of early risk, and more refined
treatments for mental health disorders.

To date, most imaging genetic studies focus on the heri-
tability of structural phenotypes (Bartley et al. 1997; Sullivan
et al. 2001; Thompson et al. 2001; Posthuma et al. 2002; Wright
et al. 2002; Hulshoff Pol et al. 2006; Lenroot et al. 2009; Kremen
et al. 2010; Rimol et al. 2010; Yoon et al. 2010; Joshi et al. 2011;
Eyler et al. 2012; Chouinard-Decorte et al. 2014), such as cor-
tical thickness and volume. These studies have indicated that
heritability is regionally specific, with the highest heritability
estimates in the prefrontal and temporal regions (Bartley et al.
1997; Thompson et al. 2001; Wright et al. 2002; Hulshoff Pol et al.
2006; Lenroot et al. 2009; Kremen et al. 2010; Rimol et al. 2010;
Joshi et al. 2011; Chouinard-Decorte et al. 2014). One such study
explored the effect of age on heritability of cortical thickness,
reporting incomplete pleiotropy across age and suggesting that
age-dependent gene expression contributes to cortical thickness
(Chouinard-Decorte et al. 2014).

While early imaging genetic studies focused on structural
indices, a growing body of research is examining the heritability
of functional circuitry (Glahn et al. 2010; van den Heuvel et al.
2013; Korgaonkar et al. 2014; Moodie et al. 2014; Fu et al. 2015;
Sinclair et al. 2015; Yang et al. 2016; Colclough et al. 2017; Ge
et al. 2017; Sudre et al. 2017; Achterberg et al. 2018; Adhikari et al.
2018; Fox et al. 2018; Miranda-Dominguez et al. 2018). Most of
these studies use resting-state functional magnetic resonance
imaging (rsfMRI), a method that examines functional networks
composed of spatially distributed regions in which spontaneous
rsfMRI activity fluctuates together resulting in strong functional
connectivity (FC) (Fox and Raichle 2007). These FC networks
are commonly linked to both cognition and psychopathology.
For example, network efficiency is associated with intelligence
(Li et al. 2009; van den Heuvel et al. 2009) and abnormal net-
work architecture has been found across a host of psychiatric
disorders (Wang et al. 2010).

Imaging genetics studies using rsfMRI have consistently
reported mild to strong heritability of global and network FC,
with the majority of studies reporting mild to moderate values.
A number of studies have found that heritability of the default
mode network is especially strong, with genetic influence
accounting for 15–42% of the variance within the network,
significantly outweighing shared environmental contributions
(Glahn et al. 2010; Korgaonkar et al. 2014; Colclough et al. 2017;
Sudre et al. 2017; Miranda-Dominguez et al. 2018).

Traditionally, FC studies, including those utilizing imaging
genetics, have focused on static measures of connectivity, in
which connectivity reflects the correlation in activity between
2 regions across the entire scan. More recently, a growing
body of evidence has shown that accounting for changes in
FC across time can provide valuable insight into the dynamic
nature of brain function (Hutchison et al. 2013; Calhoun et al.
2014; Lindquist et al. 2014; Lurie et al. 2020; Pervaiz et al. 2020).
Changes in the strength and direction of network connections
vary on the scale of seconds and minutes within a single rsfMRI
scan (Chang and Glover 2010; Sakoglu et al. 2010; Kiviniemi
et al. 2011; Handwerker et al. 2012; Jones et al. 2012), and such
time-sensitive FC information is lost when FC reflects static
correlation over the course of a testing session. By quantifying
FC changes over time, dynamic FC preserves information about
brain network dynamics which may contribute to phenotypic
variation.

The utility of network dynamics in predicting trait
behavior has been increasingly underscored in recent years
(Chang and Glover 2010; Hutchison et al. 2013; Allen et al.
2014). Dynamic FC states reflect individual differences in
clinical symptoms (Damaraju et al. 2014; Kucyi and Davis
2014; Elton and Gao 2015; Barber et al. 2018), and behavior
(Barttfeld et al. 2015). It has been suggested that dynamic FC
is a more reliable predictor of psychiatric disease, such as
schizophrenia (Supekar et al. 2018), than static FC. Further,
dynamic FC reflects on-going intrasubject fluctuations in
behavioral performance, indicating momentary changes in
attention and cognitive states (Thompson et al. 2013; Kucyi
and Davis, 2014; Barttfeld et al., 2015). These findings suggest
that examination of the heritability of network dynamics is
warranted, although to date such studies have been limited.
One study indicated that dynamic connectivity states were
more similar between monozygotic (MZ) than dizygotic (DZ)
twins, although heritability values were not explicitly estimated
(Vidaurre et al. 2017).

Dynamic FC studies have revealed that both the magni-
tude of correlation coefficients and the variance (i.e., f luctua-
tions) in the strength of those correlations over time both carry
uniquely important information about brain network function
(Thompson and Fransson 2015; Choe et al. 2017). For example,
one study reported that approaches based on correlation mag-
nitude were better suited to analyze within-network connec-
tivity, while variance-based approaches were better suited for
between-network connectivity analyses (Thompson and Frans-
son 2015). The dynamic conditional correlation (DCC) model is
a time-series-based approach which is effective for estimat-
ing both mean correlation coefficients of networks as well as
the variance in those correlations (Lebo and Box-Steffensmeier
2008). Recently, our understanding of dynamic FC variance has
evolved from its initial designation as a source of noise to a
putative index of brain flexibility and function (McIntosh et al.
2010; Garrett et al. 2013b; Tognoli and Kelso 2014; Nomi et al.
2017; Nomi et al. 2018). For example, patients with schizophrenia
show less dynamic FC variance than healthy controls (Yu et al.
2015), individuals with autism spectrum disorders show altered
variance (He et al. 2018; Guo et al. 2020), and dynamic variance
predicts attention deficit hyperactivity disorder (ADHD) symp-
tom severity (Nomi et al. 2018). Despite increasing interest in
dynamic FC variance as biologically meaningful, there are no
studies evaluating its heritability.

Examining twin pairs provides a valuable opportunity for
understanding the heritability of brain network function. The
Human Connectome Project (HCP) is a multimodal neuroimag-
ing study that includes family structure for hundreds of sibling
sets, including MZ twins, DZ twins, and nontwin siblings, as
well as singletons. Here, we use DCC and the ACE model (Chen
et al. 2014) to investigate heritability of network FC using both
dynamic and static metrics in the HCP dataset. This is the first
study to examine whether the variance of dynamic FC, a metric
that reflects network flexibility, is itself heritable.

Materials and Methods
Participants

A total of 815 healthy adult participants from the HCP 900
Subjects Data Release (http://humanconnectome.org/documen
tation/S900) had complete data available for family structure, 4
resting state scans, and nuisance variables (age, gender, age2,
age x gender, age2 x gender, handedness, race, ethnicity, and
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scan motion). The HCP contains a relatively high proportion
of twins and/or sibling sets. For the current study sample, this
included 81 MZ twins, 78 DZ twins, 103 nontwin sibling sets, and
113 unrelated participants. Families ranged in size from 2 to 6
siblings with some including both twins and nontwin siblings.

HCP Imaging Acquisition and Data Processing

The HCP rsfMRI protocol has been previously described in detail
(Glasser et al. 2013; Smith et al. 2013; Van Essen et al. 2013).
Four 14 min, 33 s rsfMRI runs—divided across 2 sessions on
sequential days—were acquired on a Siemens connectome-
Skyra 3 T scanner with 32-channel head coil (multiband
acceleration factor of 8, TR = 0.72 s, 2 mm isotropic spatial
resolution). The time-courses from the “Parcellation-Timeseries-
Netmats (PTN) extensively processed resting-state fMRI dataset” were
used to assess the heritability of network and edge-wise resting-
state connectivity. This publicly released dataset was already
processed, including artifact removal using ICA + FIX (Griffanti
et al. 2014; Salimi-Khorshidi et al. 2014), temporal demeaning
and variance normalization (Beckmann and Smith 2004), and
data reduction using MELODIC for Incremental Group-PCA
(Smith et al. 2014) and spatial Group-ICA (Beckmann and Smith
2004; Smith et al. 2013). The Group-ICA had been performed at
several dimensionalities (i.e., 25, 50, 100, 200, 300 components).
It was expected that the higher ICA dimensionalities would
improve network connectivity estimates due to the more refined
spatial identification of networks and due to the inclusion of
a greater number of edges per network. For that reason, our
primary analysis used variance component models to examine
heritability with the 300-dimensional ICA. Follow-up analyses at
other ICA dimensionalities were performed to assess the impact
of ICA dimensionality on heritability estimates. An overview of
the processing pipeline is shown in Figure 1.

Network Identification

Our primary analysis examined heritability for mean within-
and between-network connectivity estimates of the 300-
dimensional ICA dataset. To assess the range of heritability
values for the edge-wise connections, follow-up analyses were
done on individual connections between all signal components.
For the purposes of network classification and signal component
identification, the volumetric MNI152 3D-space version of the
Group-ICA component spatial maps was automatically labeled
based on spatial overlap with the Yeo 7-network parcellation
(Yeo et al. 2011) using previously defined criteria (Barber et al.
2018). This included thresholding the top 5% of voxels within
each component map and then assigning the component to
the network with the highest spatial overlap. Each component
was thereby labeled as one of the 7 Yeo networks: Visual (VN),
Somatomotor (SMN), Dorsal Attention (DAN), Ventral Attention
(VAN), Limbic (LN), Frontoparietal (FPN), or Default Mode (DMN),
or it was classified as “noise” if it had a low degree of network
overlap (i.e., < 500 suprathreshold voxels or < 55% overlap with
any one network). This resulted in 65 “signal” components (29
VN, 8 SMN, 3 DAN, 2 VAN, 8 FPN, and 15 DMN), which were used
to compute connectivity. Since no components were classified
as LN, only 6 networks were included for the network-wise
analyses.

To determine whether this labeling method accurately char-
acterized “noise” components, the ICA components were also

labeled based purely on temporal characteristics of the com-
ponent time-courses. This involved examination of the LF:HF
power, based on a previous method (Allen et al. 2011). LF power
was defined as the integral of power from 0.1 to 0.01 Hz, while
HF power was defined as the power from 0.2 to 0.67 Hz. The
latter was modified from that of Allen et al. (2011), who defined
HF power as 0.15–0.25 Hz. Recent studies have determined that
resting-state network signatures exist at higher frequencies
than previously thought, so the current study increased the
minimum frequency to 0.2 Hz and also set the maximum fre-
quency to 0.67 Hz, due to the higher temporal resolution of the
HCP multiband acquisition. To calculate the LF:HF power, the
integral of power was first calculated within these prespecified
ranges for each subject and each component timecourse. Each
ICA component was then classified as signal if the mean LF:HF
power across all subjects was greater than 2 (i.e., at least twice
as much LF as HF power in the component), or was otherwise
classified as noise. Comparing the new temporal classification
with that of our previous component classification using the
Yeo 7 network spatial overlap, we found 90% sensitivity and
89% specificity. Our previous spatial approach classified 65 out
of 300 components as signal, while the new temporal approach
classified 87 networks as signal. A total of 58 ICs were consis-
tently classified as signal using both approaches and only 7 of
the 65 components classified as signal using the Yeo spatial
overlap approach were classified as noise using the temporal
approach, suggesting that the previous spatial method does a
relatively good job at distinguishing between signal and noise
components.

The Yeo 7-network parcellation was used to label the ICs
for the current study, rather than a finer-grained parcellation,
since previous studies have shown that higher model order ICA
tends to subdivide larger networks into smaller subnetworks
(Kiviniemi et al. 2009; Smith et al. 2009; Abou-Elseoud et al. 2010;
Abou Elseoud et al. 2011; Ray et al. 2013). Therefore, the 300-
component high model order ICA is used to distinguish sub-
networks characterized by each of the individual ICs. The coarse
functional labeling is then used to group these components into
larger-scale networks.

Dynamic and Static Connectivity Estimation

For both dynamic and static connectivity, primary ACE models
examined heritability of network-wise connectivity and follow-
up ACE models examined heritability of edge-wise connectivity.
Network-wise estimation involved first computing edge-wise
connectivity between all pairs of signal components and then
averaging over those connections identified as a particular net-
work pair. For the 6 Yeo networks that were included in the
current study, this resulted in 21 network connections (i.e., 6 ∗
5/2 = 21), including both within- and between-network connec-
tions. For edge-wise connections between each of the 65 signal
components, this resulted in 2080 connections (i.e., 65 ∗ 64/2).

DCC was used to compute dynamic connectivity (https://
github.com/canlab/Lindquist_Dynamic_Correlation) (Lindquist
et al. 2014) (please refer to the Supplementary Information
for a mathematical description of DCC). Briefly here, DCC
is a multivariate volatility method in which the current
conditional correlation is updated using a linear combination
of past estimates of the conditional correlation and current
observations. DCC estimates model parameters through quasi-
maximum likelihood methods and therefore, unlike sliding
window approaches, does not require an arbitrary window

https://github.com/canlab/Lindquist_Dynamic_Correlation
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Figure 1. Schematic for data processing pipeline.

length to be set. Pairwise-dynamic connectivity values were
obtained for every time-point of each participant’s 4 resting
state runs. A matrix of 2080 edge-wise connectivity values (i.e.,
all pairwise connections between the 65 signal components)
was generated at each of the 2400 time points for each scan
session. A matrix of 21 network-wise connectivity values
(i.e., all pairwise connections between 6 Yeo networks) was
generated at each of the 2400 time points for each scan session.

Dynamic connectivity was then summarized as the mean or
variance across all time points within a run. Therefore, the
DCC mean represented the strength of dynamic connectivity
for a run, while the DCC variance represented the variability
or flexibility of dynamic connectivity for a run. For each
connection, static connectivity was the Pearson’s correlation
coefficient between pairwise-signal component time-courses
and therefore, represented standard FC across the run. As with
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the DCC measures, this was first computed within each run
and then averaged over runs. ACE modeling was performed on
the mean and variance of the dynamic connectivity and on the
static connectivity for 21 network connections with follow-up
heritability models done on the 2080 edge-wise connections.

Heritability of Dynamic Mean and Variance and Static
Mean in Connectivity

Heritability analysis was performed using the Accelerated Per-
mutation Inference for the ACE Model (APACE: (Chen et al.
2014; Colclough et al. 2017)). The ACE model of heritability is
a variance decomposition of the additive genetic (A), common
environmental (C), and unique environmental (E) variance, using
family structure. Each APACE model included nuisance variables
(age, gender, age2, age x gender, age2 x gender, handedness, race,
ethnicity, and scan motion).

APACE speeds computation time by inferring the A, C, and
E components from the squared differences of paired individ-
uals (e.g., twin-pairs versus unrelated pairs). The parameters
are then estimated using ordinary least squares regression and
inference is done using the Likelihood Ratio Test (LRT). To assess
whether the mean heritability across the 21 network connec-
tions is significantly greater than zero, permutation testing was
performed by shuffling the relationship labels 1000 times and
recomputing the LRT. Multiple comparison correction across the
21 network pairs was implemented using False Discovery Rate
(FDR) in which the P value for each network pair was taken from
the permutation-based empirical distribution. For the mean h2,
c2, and e2 values across the 21 network pairs, APACE software
computes the confidence intervals by bootstrapping 1000 times.

To determine the stability of the heritability findings, the
APACE models were run on the 2 sessions, consisting of the 2
Day 1 runs and the 2 Day 2 runs, separately. In addition, to further
assess the stability of the heritability findings, the APACE models
were run using varying scan lengths. Scan length was examined
in 2 ways: 1) consecutively and 2) averaged over runs. First,
consecutive scan length was examined to determine the amount
of time required for heritability estimates to stabilize. Second,
scan length averaged over runs was examined since previous
studies have found that FC values and heritability estimates
are more reliable when pooling across multiple runs (Ge et al.
2017; Noble et al. 2017). For consecutive scan length, heritability
was estimated across scan volumes in the order in which they
were collected and included 300, 600, 900, 1200, 2400, 3600, or
4800 time points (i.e., corresponding to 3:36, 7:12, 10:48, 14:24,
28:48, 43:12, and 57:36 (min:s) of consecutive scanning). For scan
length averaged over runs, heritability was estimated across the
first 300, 600, 900, or 1200 time points for each run and then
averaged over the 4 runs, resulting in 3.6, 7.2, 10.8, or 14.4 min
of data per run (i.e., 14.4, 28.8, 43.2, or 57.6 min of data across
the 4 runs).

Results
Heritability of Network Connectivity

Both dynamic (mean and variance) and static connectivity mea-
sures resulted in nonzero heritability values across all network
pairs (Fig. S1). Heritability values for dynamic connectivity were
within a similar range to that of more traditional static connec-
tivity heritability values (Fig. 2). The heritability of the dynamic
connectivity mean ranged from 0.21 to 0.53 (session 1, mean

Figure 2. Relative contributions to connectivity measures. Bar graphs represent
the averaged ACE measures across both sessions, with error bars reflecting
standard deviation. For both sessions individually, heritability was higher for

the DCC variance relative to DCC mean (session 1: t(20) = 2.20, P = 0.040; ses-
sion 2: t(20) = 5.15, P = 4.88 × 10−5) and was higher for DCC variance relative
to static connectivity (session 1: t(20) = 2.40, P = 0.026; session 2: t(20) = 2.87,
P = 0.0095).Abbreviations: h2 = genetic variance, c2 = common environmental

variance, e2 = unique environmental variance.

dynamic mean h2 = 0.39, P = 0.0070; session 2, mean dynamic
mean h2 = 0.31, P = 0.012), which was within a similar range
to the heritability of static connectivity (static h2 range = 0.05–
0.53; session 1, mean static h2 = 0.38, P = 0.0060; session 2, mean
static h2 = 0.37, P = 0.0030) and was comparable to that of pre-
vious studies examining the heritability of traditional static FC
(Glahn et al. 2010; Yang et al. 2016; Ge et al. 2017; Adhikari
et al. 2018). Likewise, the heritability of the dynamic connectivity
variance ranged from 0.2 to 0.59 (session 1, mean dynamic
variance h2 = 0.45, P = 0.0010; session 2, mean dynamic variance
h2 = 0.45, P = 0.0010), which was also within a similar range to the
heritability of static connectivity.

Examining Heritability across Network Pairs

Figure S1 displays the network-wise heritability values for the
3 connectivity metrics during each session. For both dynamic
mean and static connectivity, only the heritability of the
VN-DAN network connections was consistently significant
for both sessions (dynamic mean, session 1: h2 = 0.45, FDR-
corrected P value = 0.021; dynamic mean, session 2, h2 = 0.38,
FDR-corrected P value = 0.029; static, session 1: h2 = 0.47, FDR-
corrected P value = 0.042; static, session 2, h2 = 0.49, FDR-
corrected P value = 0.021). For the variance of the dynamic
connectivity, on the other hand, heritability was consistently
significant for a number of network pairs. This included VN-
SMN (session 1: h2 = 0.45, FDR-corrected P value = 0.031; session
2, h2 = 0.45, FDR-corrected P value = 0.021), VN-VAN (session 1:
h2 = 0.55, FDR-corrected P value = 0.043; session 2, h2 = 0.46, FDR-
corrected P value = 0.021), VN-FPN (session 1: h2 = 0.52, FDR-
corrected P value = 0.013; session 2, h2 = 0.49, FDR-corrected P
value = 0.021), VN-DMN (session 1: h2 = 0.50, FDR-corrected P
value = 0.026; session 2, h2 = 0.47, FDR-corrected P value = 0.021),
SMN-VAN (session 1: h2 = 0.36, FDR-corrected P value = 0.0070;
session 2, h2 = 0.38, FDR-corrected P value = 0.021), and DAN-FPN
(session 1: h2 = 0.50, FDR-corrected P value = 0.030; session 2,
h2 = 0.53, FDR-corrected P value = 0.021).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa391#supplementary-data
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Figure 3. Heritability as a function of consecutive scan length. Connectivity values were computed for the first 300, 600, 900, 1200, 2400, 3600, or 4800 consecutive time
points, resulting in 3.6, 7.2, 10.8, 14.4, 28.8, 43.2, or 57.6 min of data. The connectivity metrics were first computed over the consecutive scan length in each subject

before performing APACE. Heritability based on consecutive scans required 2400–3600 time points (i.e., between 28 and 43 min of scanning) before the heritability
measures became stable. This was the case for all 3 connectivity metrics although, as was consistently found in the current study, the DCC variability tended to result
in higher heritability at all scan lengths, and required fewer time points to stabilize than DCC mean and static connectivity.

Examining Heritability across Different Scan Lengths

The effect of scan length on heritability estimates was examined
for consecutive time points as well as for time points averaged
over runs. Figure 3 shows that for consecutive scan lengths of
300, 600, 900, 1200, 2400, 3600, and 4800 time points (i.e., 3:36,
7:12, 10:48, 14:24, 28:48, 43:12, and 57:36 (min:s)), relatively long
scan epochs are needed before heritability estimates stabilize
(∼2400–3600 time points or ∼ 28–43 min). This is the case for all
3 connectivity metrics; although, as has been consistently found
in the current study, the DCC variability tends to result in higher
heritability at all scan lengths, and requires fewer time points to
stabilize compared to DCC mean and static connectivity. Figure 4
shows that for scan length averaged over runs, heritability val-
ues were generally consistent for scan lengths of 300, 600, 900,
and 1200 across the 4 runs. For static connectivity, heritability
values were lower at a scan length of 300, but tended to be
consistent for scan length >300. For DCC measures, heritability
values were stable across all scan lengths.

Examining Heritability across Dimensionalities

Table S1 displays the range and mean of the network-wise heri-
tability values for sessions 1 and 2 at ICA dimensionalities of 25,
50, 100, 200, and 300 components. The heritability values did not
change much across the ICA dimensionalities. While there was
a slight increase in the heritability values for DCC variance from
25 to 300 components, this was mostly due to smaller values
for ICA dimensionalities of less than 100 components. For DCC
mean and static connectivity, this trend was less clear. Across
all ICA dimensionalities, DCC variance tended to have higher
heritability values than either DCC mean or static connectivity.

Examining Heritability of Individual Connections

Table S2 displays the range and mean of the individual connec-
tion heritability values of the 300-dimensional ICA for sessions
1 and 2. Due to the large number of individual connections,

heritability was only examined for the primary 300-dimensional
ICA results. We found that the heritability range tended to be
larger and the mean heritability tended to be lower for indi-
vidual connections, than for mean network connections. This
may have been due to very low heritability for a few individual
connections.

Higher Heritability for the Variance of Dynamic
Connectivity

As found previously (Choe et al. 2017), the dynamic connectivity
mean values were similar to the static FC values. This was
true both for the actual connectivity values, as well as for the
heritability. Further, the heritability of dynamic variance tended
to be higher than either that of the dynamic mean or static con-
nectivity. This trend was found across different dimensionalities
(Table S1) as well as for the individual connections (Table S2).
When the effect of scan length was considered, DCC variance
also tended to have higher heritability values across all scan
lengths (Fig. 3). To determine whether this trend was significant
across the 21 network pairs for the 300-dimensional ICA pri-
mary heritability findings, we performed 2-tailed, paired t-tests
which tested whether the heritability of dynamic variance was
different from that of dynamic mean or of static connectivity
across the 21 network pairs. We found that for both sessions,
heritability tended to be higher for the dynamic variance as
compared to dynamic mean (session 1: t(20) = 2.20, P = 0.040;
session 2: t(20) = 5.15, P = 4.88 × 10−5) and also tended to be higher
for dynamic variance as compared to static connectivity (session
1: t(20) = 2.40, P = 0.026; session 2: t(20) = 2.87, P = 0.0095).

Discussion
Our results provide novel and compelling evidence for the her-
itability of dynamic connectivity. Dynamic connectivity metrics
were robustly heritable and the estimated heritability values for

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa391#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa391#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa391#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa391#supplementary-data
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Figure 4. Heritability as a function of scan length averaged over 4 runs. Connectivity values were computed for the first 300, 600, 900, or 1200 time points of each run,
resulting in 3.6, 7.2, 10.8, or 14.4 min of data per run (i.e., 14.4, 28.8, 43.2, or 57.6 min of data across the 4 runs). As with the primary analyses, the connectivity metrics
were first computed within each run and then averaged across the 4 runs before performing APACE. Heritability values were generally stable across all scan lengths
for the DCC metrics. Heritability values were tended to be lower for the scan length of 300 for static connectivity.

dynamic connectivity were within the range of static connectiv-
ity heritability values. Importantly, we found that the heritability
of dynamic variance tended to be higher than that of either DCC
mean or static connectivity, suggesting that genetic influence
affects not only the strength but also the flexibility of net-
work connectivity. Furthermore, a greater number of network-
wise connections had robust heritability for DCC variance than
for either DCC mean or static connectivity. Heritability of DCC
variance was robust across both sessions for several VN, SMN,
and higher-order network connections, whereas the heritabil-
ity of DCC mean and static connectivity was more restricted
and was only significant across both sessions for the VN-DAN
connection.

Not only is this study the first to directly assess differences in
heritability of dynamic and static connectivity, but also the first
to establish the relatively greater heritability of DCC variance
than DCC mean. Our results show robust and reliable heritability
of DCC variance for VN network connections and also for con-
nections with higher-order networks, in particular the FPN and
DMN. Although variability in BOLD signal has traditionally been
considered noise or a confounding factor, several recent stud-
ies suggest that signal variance may be important for optimal
performance (McIntosh et al. 2010; Garrett et al. 2013a; Tognoli
and Kelso 2014; Nomi et al. 2017). Increased variability in BOLD
signal is associated with more efficient behavioral performance
(Garrett et al. 2013a) and faster reaction times in attentional
tasks (Garrett et al. 2011). Variability has also been identified as
an important feature of networks, enabling the shift between
integration and segregation (Tognoli and Kelso 2014). Given the
implications of variance for optimal brain functioning, it is con-
ceivable that network variance reflects genetic predisposition to

cognitive phenotypes in both healthy individuals and those with
psychiatric disorders.

Although dynamic connectivity, and the dynamic variance
in particular, captures state changes in connectivity over time,
the fact that dynamic variance is heritable suggests that it is
an important contributor to trait-level individual differences in
behavior. Further, it suggests that the degree to which partic-
ular network connections change over time plays an impor-
tant role in circuit dynamics. This may reflect changes in net-
work or global configurations, hormone and/or neurotransmit-
ter concentrations, arousal, or the frequency of engagement
of particular dynamic states. Thus, such state-level FC fluc-
tuations may provide unique information regarding network
dynamics.

Other recent studies using the HCP dataset have also reported
robust heritability (ranging from 20 to 40% of the variance
explained) for several functional networks, including the DMN,
FPN, SMN, VN, SN, and attention networks (Ge et al. 2017;
Adhikari et al. 2018; Miranda-Dominguez et al. 2018), with the
DAN (Yang et al. 2016; Miranda-Dominguez et al. 2018) and
VN (Yang et al. 2016) having some of the strongest genetic
effects. Interestingly, 4 of the 6 significantly heritable network
couplings identified in our analyses included the VN, and only
the VN-DAN network coupling demonstrated robust heritability
across both sessions. This heritability of the VN couplings is
consistent with previous studies, which have reported that
genetic influences are stronger for sensory networks, such
as VN and sensorimotor, than for cognition-related networks
(Fu et al. 2015).

Our findings should be considered with some limitations.
First, although controlled for in our model, the twin/sibling
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groups in the HCP data differ in age, sex, and race. Future
studies in samples with demographically matched groups could
help to evaluate whether such demographic differences have
differential effects on network heritability. Second, heritability
could be examined in the context of other dynamic connectivity
methods such as the identification of reoccurring dynamic con-
nectivity states. Clustering algorithms may improve detection
of genetic influences on connectivity patterns by classifying
unique brain states. Future work could also expand upon our
findings by including samples of extended families, rather
than solely siblings and twins as we have explored here.
Third, although we have employed a number of methods
to reduce nuisance confounds (i.e., nuisance regression and
group-level covariates), a number of uncontrolled state-level
phenotypic variables (e.g., medication-use, hunger, fatigue,
diurnal fluctuations, recent life events) are likely to have varying
levels of influence on FC metrics and contribute to noise in ACE
model estimates. The heritability estimates generated by the
APACE model were generally consistent across both sessions;
however, there were a few cases in which heritability was
significant for one session, but not the other. Heritability studies,
like most imaging studies examining individual differences,
assume that functional differences reflect trait behavior, and
therefore, can be profoundly influenced by uncontrolled state-
level variables. Like previous studies, the current study found
that reliability tended to be greater when pooling data across
multiple sessions (Ge et al. 2017; Noble et al. 2017). Fourth,
the LRT used in APACE will be mis-specified for variables
that are not normally distributed. Using permutation testing
improves Type I error control. However, the mis-specification
can potentially negatively affect Type II error. Fifth, the current
study used a high-order ICA approach and then classified
the components into networks. While high-dimensional ICA
has previously been shown to be effective in predicting
behavioral utility (Pervaiz et al. 2020), it also assumes spatial
independence of the ICA components. Other methods that relax
this assumption may more accurately represent regions that
change affiliations over time (Harrison et al. 2015; Bijsterbosch
et al. 2019). Further, while we have shown that our network
labeling method is fairly accurate in distinguishing signal
and noise components, more accurate labeling methods may
improve network heritability estimation. Finally, although these
findings provide valuable insights as to the genetic contribution
of network connectivity, they do not leverage molecular
genetics to identify individual genes or gene networks that
influence FC.

Our results demonstrate the utility of examining the heri-
tability of dynamic connectivity metrics and provide evidence
that genetic influences are stronger for the variance of dynamic
connectivity than for static and mean dynamic measures.
This indicates that network flexibility, in addition to network
strength, is an important contributor to trait-level differences in
behavior. Establishing the heritability of functional networks
has potentially far-reaching implications for understanding
the etiology of disease. Many neurologic and psychiatric
diseases, such as schizophrenia, autism spectrum disorder,
Alzheimer’s, and ADHD, have a strong genetic component
and are associated with aberrant function of brain circuits.
Assessing the relationship of both dynamic mean and variance
with genetics could help to identify endophenotypes. These
endophenotypes may in turn illuminate the neurobiological
etiologies of these disorders and aid in the development of novel
therapeutics.
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