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Abstract

Meta-analysis is a practical and powerful analytic tool that enables a unified statistical inference 

across the results from multiple studies. Notably, researchers often report the results on multiple 

related markers in each study (e.g., various α-diversity indices in microbiome studies). However, 

univariate meta-analyses are limited to combining the results on a single common marker at a 

time, whereas existing multivariate meta-analyses are limited to the situations where marker-by-

marker correlations are given in each study. Thus, here we introduce two meta-analysis methods, 

multi-marker meta-analysis (mMeta) and adaptive multi-marker meta-analysis (aMeta), to 

combine multiple studies throughout multiple related markers with no priori results on marker-by-

marker correlations. mMeta is a statistical estimator for a pooled estimate and its standard error 

across all the studies and markers, whereas aMeta is a statistical test based on the test statistic of 

the minimum p-value among marker-specific meta-analyses. mMeta conducts both effect 

estimation and hypothesis testing based on a weighted average of marker-specific pooled estimates 

while estimating marker-by-marker correlations non-parametrically via permutations, yet its power 

is only moderate. In contrast, aMeta closely approaches the highest power among marker-specific 

meta-analyses, yet it is limited to hypothesis testing. While their applications can be broader, we 

illustrate the use of mMeta and aMeta to combine microbiome studies throughout multiple α-

diversity indices. We evaluate mMeta and aMeta in silico and apply them to real microbiome 

studies on the disparity in α-diversity by the status of HIV infection. The R package for mMeta 
and aMeta is freely available at https://github.com/hk1785/mMeta.
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Introduction

Meta-analysis represents a statistical method to summarize and combine the results from 

multiple related studies. In the early years, meta-analysis was mostly a descriptive review of 

prior studies1, yet it has later been greatly reinforced with the functionality to make a unified 

statistical inference across studies (e.g., a pooled estimate and its standard error). The major 

benefits of meta-analysis are its practical use and improved statistical power as it requires 

only the summary statistics (e.g., study-specific estimates and their standard errors) for 

implementation and integrates information across studies. For these reasons, meta-analysis 

has been increasingly employed in many academic fields, such as biology, medicine, 

psychology, education and economics2. Especially in the fields of high-dimensional data 

analysis, meta-analysis has been proven as a powerful analytic tool to discover novel 

markers by aggregating possibly small effects across studies and thus making a detectable 

pooled effect3,4,5.

In this paper, we especially pay attention to the situation where researchers report the results 

on multiple, distinct but related, markers in each study; as such, the summary data (e.g., 

effect estimates and their standard errors) can be organized in a two-dimensional array 

[Table 1], where the first dimension is for individual studies, and the second dimension is for 

multiple markers. Here, the multiple markers are different measurements (distinct) that have 

a common goal (related). For example, the multiple, distinct but related, markers are many 

different α-diversity indices in human microbiome studies, such as Species richness, 

Shannon6, Simpson7, Inverse Simpson7,8, Chao19, ACE10, phylogenetic diversity (PD)11, 

phylogenetic entropy (PE)12 and phylogenetic quadratic entropy (PQE)13,14, for a common 

goal of measuring true α-diversity. Here, the human microbiome refers to the entire 

ecosystem of all microbes residing in and on the human body. The roles of the microbiome 

on human health or disease have been increasingly studied by the recent advance in high-

throughput sequence technologies. For example, the microbial α-diversity of the human 

microbiome have been surveyed to evaluate its association with a variety of host phenotypes 

(or disease status). In human microbiome studies, multiple α-diversity indices have been 

individually surveyed to evaluate the association between microbial diversity and a host 

phenotype (or disease status) because there is no single best α-diversity index which is 

superior to the other indices in all contexts8,15. Therefore, it will be worthwhile if we can 

make an overall conclusion on ‘α-diversity’ in a global sense while jointly considering 

multiple α-diversity indices.

However, univariate meta-analysis can combine the results only on a single common marker 

across studies, which is referred to in this paper as a single-marker (or marker-specific) 

meta-analysis. The single-marker meta-analyses are useful in making specific conclusions 

on each particular marker, but are subject to a substantial loss of power because of the 
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requisite multiple testing correction for multiple simultaneous tests. The results from single-

marker meta-analyses can also vary by markers, and we note that the approach that reports 

significant results while hiding non-significant results (a.k.a. cherry-picking or p-hacking) is 

detrimental to our science making it flooded with false discoveries because of the issue of 

invisible multiplicity. On the contrary, multivariate meta-analysis can combine multiple 

studies throughout multiple related markers, and thus can make an overall conclusion across 

all the studies and markers with no need for multiple testing correction. However, existing 

frequentist methods for multivariate meta-analysis can be implemented only when marker-

by-marker correlations (a.k.a. within-study covariances) are given from each study while 

assuming that they are fixed with no error to ensure identifiability of the other parameters in 

the model16,17. In reality, researchers rarely report the results on marker-by-marker 

correlations as they often analyze multiple markers individually, not using a joint statistical 

model, or simply omit them due to a lack of scholarly attention16. Of course, if individual 

study data are available, we can estimate ad hoc marker-by-marker correlations, yet such 

analyses fall in the class of pooled analysis, instead of meta-analysis, where the practical 

benefit of requiring only the summary statistics for implementation disappears. On the other 

hand, existing Bayesian methods for multivariate meta-analysis can be implemented by 

incorporating a prior information on the correlations, for example, through the inverse-

Wishart prior, into a parametric variance covariance structure via Markov Chain Monte 

Carlo methods17,18, yet any prior information on the correlations lacks in practice. Any 

violation on the parametric variance covariance structure can result in invalid statistical 

inference.

Thus, here we introduce two meta-analysis methods, namely, multi-marker meta-analysis 

(mMeta) and adaptive multi-marker meta-analysis (aMeta), that can be implemented using 

only the summary statistics (i.e., effect estimates and their standard errors) with no priori 
results on marker-by-marker correlations to combine multiple studies throughout multiple 

related markers. mMeta is a statistical estimator for a pooled estimate and its standard error 

across all the studies and markers, whereas aMeta is a statistical test based on the test 

statistic of the minimum p-value among multiple marker-specific meta-analyses19. mMeta 
conducts both effect estimation and hypothesis testing in a unified approach based on a 

weighted average of marker-specific pooled estimates while estimating marker-by-marker 

correlations using a permutation method, yet its power is only moderate among multiple 

marker-specific meta-analyses due to the central tendency of its weighted averaging scheme. 

In contrast, aMeta closely approaches the highest power among multiple marker-specific 

meta-analyses due to the high adaptivity to the most significant result of the minimum p-
value statistic, yet it is limited to hypothesis testing with no estimation facilities (i.e., purely 

a test for significance). Therefore, mMeta is better interpreted with the direction and size of 

the pooled estimate, while aMeta is more powerful to make novel discoveries.

The machinery of mMeta and aMeta starts with combining the results on each marker across 

studies (i.e., single-marker meta-analysis), and then combines the results from marker-

specific meta-analyses to make an overall conclusion across markers. Individual studies are 

usually heterogeneous to each other because of the difference in their underlying study 

characteristics, such as study design, ethnicity, sequencing and other unknown sources; 

hence, we developed mMeta and aMeta as random effects meta-analysis methods to account 
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for the heterogeneity across studies. We estimate the heterogeneity variance using the Sidik 

and Jonkman (SJ) estimator (a.k.a. the robust variance estimator or the sandwich variance 

estimator)20 because the SJ estimator gives a robust estimate based on a refinement using an 

initial estimate of the heterogeneity variance. We adopted a semi-parametric group 

permutation method21 to estimate marker-by-marker correlations for mMeta and to generate 

the null statistic values of the minimum p-value statistic for aMeta. We also adopted the Han 

and Eskin’s modified random effects meta-analysis22 which assumes no heterogeneity under 

H0 because the assumption of the traditional null hypothesis that the heterogeneity exists 

even under H0 can be overly conservative. Notably, the summary statistics are not usually 

available in a balanced way across all the studies and markers (i.e., the summary data in 

[Table 1] can be missing for some studies or markers); hence, we developed mMeta and 

aMeta to robustly handle missing summary data.

The methodological novelty of mMeta and aMeta, mostly lies in the implementation of 

multivariate meta-analysis with no priori results on marker-by-marker correlations and the 

use of minimum p-value statistic in the context of multivariate meta-analysis. The other 

methodological aspects of mMeta and aMeta are mostly multivariate extensions of the 

existing approaches in univariate meta-analysis. We illustrate the use of mMeta and aMeta to 

combine multiple microbiome association studies with the results on multiple α-diversity 

indices. We evaluate mMeta and aMeta in silico, and also apply them to 15 real microbiome 

studies on the disparity in microbial α-diversity by the status of HIV infection. While 

mMeta and aMeta require only the summary statistics [Table 1] for implementation, many 

studies report different forms of effect estimates or degrees of significance making the 

conventional meta-analysis challenging. Thus, finally, we discuss such practical limitations 

as well as potential extensions to other multi-marker studies.

mMeta and aMeta can be implemented using the R package, mMeta, which is freely 

available at https://github.com/hk1785/mMeta. In the software manual on the webpage, we 

described detailed implementation procedures (e.g., pre-requisite libraries, installation, 

functions, arguments) and outputs (e.g., graphical representations) including example data 

and codes.

Methods

Here, we describe the methodological details on mMeta and aMeta. We begin with the 

description of the prior single-marker meta-analysis to combine multiple studies on a single 

common marker (see Single-marker meta-analysis) as well as the Han and Eskin’s modified 

random effects meta-analysis that assumes no heterogeneity under H0 (see Han and Eskin’s 

modified random effects meta-analysis). Then, we describe our proposed methods, mMeta 
(see Multi-marker meta-analysis (mMeta)) and aMeta (see Adaptive multi-marker meta-

analysis (aMeta)), to jointly consider multiple related markers. We also describe the 

implications of mMeta and aMeta in the human microbiome research field to combine 

multiple α-diversity indices to make an overall conclusion on ‘α-diversity’ in a global sense 

(see α-diversity indices). Finally, we describe how mMeta and aMeta can handle missing 

summary data from prior studies (see A simple modification to robustly handle missing 

summary data from prior studies).
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Single-marker meta-analysis

Suppose that we conduct a meta-analysis with K independent studies on a single common 

marker, and let βk and σk denote the estimated study-specific effect (e.g., regression 

coefficient) and its standard error, respectively, for k = 1, …, K. Here, the true study-specific 

effects (denoted as βk’s) tend to be heterogeneous across studies due to the difference in 

their underlying study characteristics (e.g., study design, ethnicity, sequencing, etc). 

Therefore, we consider a random effects meta-analysis model to account for the 

heterogeneity across studies (Eq. 1)23.

βk = βk + ek, (1)

where βk’s are the true study-specific effects treated as random to account for the 

heterogeneity across studies, and ek’s are within-study errors. Here, the within-study error 

(ek) is assumed to follow a normal distribution N(0, σk
2), in which σk

2 is the within-study 

variance that can be simply estimated by the square of the estimated study-specific standard 

error (σk
2). The true study-specific effect (βk) is assumed to follow a normal distribution N(μ, 

τ2), in which μ is the pooled effect across studies and τ2 is the between-study variance 

(a.k.a. the heterogeneity variance). While there have been a variety of methods to estimate 

the heterogeneity variance (τ2), we employ the SJ estimator20 for our proposed methods 

because of its simplicity and robustness as supported by many follow-up studies 2,24,25. The 

SJ estimator gives a refinement to the usual weighted least squares estimator by using a 

residual variance as an initial (rough) estimate of the heterogeneity variance (Eq. 2)20.

τ0
2 = 1

K ∑
k = 1

K
βk − μ0

2, (2)

where μ0 = 1
K ∑k = 1

K βk. Then, the study-specific weights are updated using the initial 

estimate of the heterogeneity variance (Eq. 2) as w0k = τ0
2/ σk

2 + τ0
2  for k = 1, …, K, and 

then, the SJ estimator is formulated with (Eq. 3)20.

τSJ
2 =

βT W − W I ITW I −1ITW β
K − 1 , (3)

where W is a K × K diagonal matrix of the weights, W = diag(w01, . . . , w0K , I is a K × 1 

vector of 1’s, I = (1,…,1)T, and β is a K × 1 vector of the estimated study-specific effects, 

β = β1, . . . , βK
T . The refinement using the initial estimate of the heterogeneity variance 

leads that the SJ estimator (τSJ
2 ) more robustly estimates the heterogeneity variance than the 

ones with no refinement20,24,25. In addition, the SJ estimator is non-iterative and produces a 

non-negative variance estimate all the time with no need to truncate a negative estimate to 

zero. Therefore, the SJ estimator is computationally efficient and straightforward20,24,25.

Here, we are particularly interested in estimating the pooled effect across studies (μ) and 

testing the null hypothesis of no pooled effect against the alternative hypothesis of some 
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pooled effect, that is, H0: μ = 0 vs. H1: μ ≠ 0. In tradition, the pooled effect is estimated as a 

weighted average of study-specific effects (Eq. 4)23.

μ = ∑k = 1
K wkβk ∑k = 1

K wk
, (4)

where wk = σk
2 + τSJ

2 −1
. By its formula (Eq. 4), we can infer that the study-specific effects 

(βk) are weighted more for the studies with smaller within-study variance (σk
2) than the 

studies with larger within-study variance. This indicates, for example, that the study-specific 

effects (βk) are weighted more for the studies with larger sample sizes than the studies with 

smaller sample sizes since the standard error (σk) decreases as the sample size increases. We 

can also infer that the pooled effect (μ) is larger when the between-study variance (τSJ
2 ) is 

smaller. This indicates that the pooled effect (μ) is large when the individual studies are 

similar in their underlying study characteristics (e.g., study design, ethnicity, sequencing, 

etc), but it is vice versa when they are dissimilar in their underlying study characteristics.

The most commonly used approach to obtain the p-value and the confidence interval for μ is 

a parametric method that calculates the p-value as P(|μ/σμ| > N(0,1)) and the 95% 

confidence interval as μ ± 1.96×σμ, where σμ is the standard error of μ estimated as 

σμ = ∑k = 1
K wk

−1/2
. However, to estimate marker-by-marker correlations for mMeta (see 

Multi-marker meta-analysis (mMeta)) and because of the unknown limiting distribution of 

the minimum p-value statistic for aMeta (see Adaptive multi-marker meta-analysis (aMeta)), 

we instead employ a group permutation method proposed by Follmann and Proschan 

(1999)21 for our proposed methods. The group permutation method is semi-parametric 

assuming only that the distribution of βk is symmetric. The symmetry of the distribution is 

usually less demanding than a full distributional assumption, and it is satisfied by many 

common distributions (e.g., normal distribution, t-distribution). The symmetric βk enables 

the sign of βk to be equally likely positive or negative under H0, and thus we can generate 

the null values of βk’s by randomly assigning −1 or +1 to the absolute values of βk’s. 

Follmann and Proschan (1999)21 called this method as a group permutation method as it 

corresponds to flipping the labels of treatment and control groups in each clinical trial, and 

permuting possible combinations of the signs across trials. There are 2K possible 

permutations of the signs, and either all the 2K permutations or a large number of randomly 

selected permutations (e.g., 5,000 permutations) leads to reliable estimates26. However, a 

limitation of the group permutation method is that the number of all possible permutations 

(2K) is small for a small number of studies (i.e., a small K) so that it might not produce a 

reliable p-value for a small K due to a high discreteness of the exact null distribution. For 

example, the number of all possible permutations for K = 5 is only 25 = 32; hence, there are 

only 32 discrete null statistic values that are compared with the observed statistic value for K 
= 5. Therefore, we set the smallest possible value of K as K = 10 for our proposed methods.
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Suppose that there are R permutations of the signs. For each permutation (r = 1, …, R), we 

can compute the null values of βk (denoted as βk, 0r for k = 1, …, K) by assigning the signs 

of ±1’s to the absolute values of βk’s, and then compute the null values of μ (denoted as μ0r) 

using βk, 0r and σk for k = 1, …, K through Eq. 2, 3 and 4. We can then compute the p-value 

as the proportion of the null values of μ μ0r for r = 1, …, R) equal to or more extreme than 

the observed value of μ, and the 95% confidence interval for μ as the interval between 2.5% 

and 97.5% quantile values among the null values of μ μ0r for r = 1, …, R) around the 

observed value of μ21. We organized all the detailed computational procedures in Algorithm 

1. Single-marker meta-analysis.

Han and Eskin’s modified random effects meta-analysis

Han and Eskin (2011)22 addressed an important issue of assuming no heterogeneity under 

H0, and testing [H0: μ = 0 and τ2 = 0 vs. H1: μ ≠ 0 or τ2 > 0]. Here, [H0: μ = 0 and τ2 = 0] 

indicates no pooled effect and no heterogeneity under H0, which is equivalent to no effect 

across all studies under H0[H0:βk = 0 for all k’s in {1, …, K}], while [H1: μ ≠ 0 or τ2 > 0] 

indicates some pooled effect or some heterogeneity under H1, which is equivalent to some 

effect for at least one study under H1[H1: βk ≠ 0 for some k’s in {1, …, K}]. Therefore, [H0: 

μ = 0 and τ2 = 0 vs. H1: μ ≠ 0 or τ2 > 0] is equivalent to [H0:βk = 0 for all k’s in {1, …, K} 

vs. H1:βk ≠ 0 for some k’s in {1, …, K}], and we can see that the assumption of no 

heterogeneity under H0 also holds in the latter representation because βk’s are all 

equivalently zeros under H0.

Importantly, [H0: μ = 0 and τ2 = 0] indicates the traditional null hypothesis in random effects 

meta-analysis [H0: μ = 0], but [H0: μ = 0] does not necessarily indicate [H0: μ = 0 and τ2 = 

0]. In addition, [H1: μ ≠ 0] indicates [H1: μ ≠ 0 or τ2 > 0], but [H1: μ ≠ 0 or τ2 > 0] does not 

necessarily indicate [H1: μ ≠ 0]. Therefore, [H0: μ = 0 and τ2 = 0 vs. H1: μ ≠ 0 or τ2 > 0] is 

less conservative than [H0: μ = 0 vs. H1: μ ≠ 0], which indicates that the Han and Eskin’s 

modified random effects meta-analysis is more powerful than the traditional random effects 

meta-analysis.

As described in Han and Eskin (2011)22, we also notice that the assumption of the 

traditional null hypothesis that the heterogeneity exists even under H0 can be overly 

conservative. That is, if we suppose that βk’s are real numbers and K is finite, μ = 0 is likely 

to indicate βk = 0 for all k’s in {1, …, K} because there is no perfect cancelling-out of non-

zero βk’s to make μ = 0 in probability, and thus, the assumption of no heterogeneity under 

H0 does not comport a realistic difference against the traditional null hypothesis. Therefore, 

the Han and Eskin’s modified random effects meta-analysis can be considered to improve 

power while relaxing the conservative assumption of the heterogeneity under H0. We adopt 

the Han and Eskin’s modification for mMeta and aMeta, for which we set the permuted 

(null) heterogeneity estimates as all zeros (i . e . , τSJ , 0r
2  = 0 for r = 1, …, R) (see Option 1 

(default) in Algorithm 1. Single-marker meta-analysis), while providing the traditional 

hypothesis testing in random effects meta-analysis as a user option in our software package 

(see Option 2 in Algorithm 1. Single-marker meta-analysis).
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Algorithm 1.

Single-marker meta-analysis

Inputs. The estimated study-specific effect (βk) and its standard error (σk) for k = 1, …, K.

Options. ‘Option 1 (default)’ assumes the absence of the heterogeneity under H0 for testing [H0: μ = 0 and τ2 = 0 vs. 
H1: μ ≠ 0 or τ2 ≠ 0]; ‘Option 2’ assumes the existence of the heterogeneity under H0 for testing [H0: μ = 0 vs. H1: μ ≠ 0].

Outputs. The main outcomes to be reported are μ and the p-value and the 95% confidence interval for μ, and the 
ancillary outcomes to be stored for the following analyses are μ0r for r = 1, …, R.

 1. Generate a K × R matrix (denoted as S) including its elements with the randomly generated ±1’s.

 2. Compute the null values of βk (denoted as βk, 0r) as βk, 0r = Sk, r βk| for k = 1, …, K & r = 1, …, R, where 

Sk,r is the (k, r)-th element of S.

 3. If ‘Option 1 (default)’, τSJ , 0r
2

 = 0 for r = 1, …, R. If ‘Option 2’, compute the null values of τSJ
2  (denoted as 

τSJ , 0r
2

) using β1,0r, . . . , βK, 0r based on Eq. 2 and 3 for r = 1, …, R.

 4. Compute the null values of μ (denoted as μ0r) using β1,0r, . . . , βK, 0r, σ1
2, . . . , σK

2
, and τSJ , 0r

2
 based 

on Eq. 4 for r = 1, …, R.

 5. Compute the observed pooled effect (denoted as μ) using βk and σk
2

 for k = 1, …, K through Eq. 2, 3, 4.

 6. Compute the p-value as ∑r = 1
R I μ0r > μ + 1 / R + 1  and the 95% confidence interval for μ as 

[φ(0.025)+μ, φ(0.975)+μ], where I(·) is an indicator function, and φ(0.025) and φ(0.975) are 2.5% and 97.5% quantile 
values in {μ01, . . . , μ0R}, respectively.

Multi-marker meta-analysis (mMeta)

Now, we suppose that there are multiple, distinct but related, markers of interest such as the 

α-diversity indices (e.g., Species richness, Shannon, Simpson, Inverse Simpson, Chao1, 

ACE, PD, PE, PQE) in microbiome studies. Let Q denote the total number of markers, and 

μj and σμj (j = 1, …, Q) denote the marker-specific pooled effect and its standard error 

estimated through the single-marker meta-analysis. For example, if there are six α-diversity 

indices (e.g., Species richness, Shannon, Simpson, PD, PE, PQE) to be surveyed, Q equals 

to 6. Moreover, the results on all the Q markers do not need to be reported in all individual 

prior studies (for more details, see A simple modification to robustly handle missing 

summary data from prior studies). That is, in the above example, the results on all the six α-

diversity indices do not necessarily need to be reported in all individual prior studies.

Here, we are interested in estimating the pooled effect across all the studies and markers 

(denoted as μA) and testing H0:μA = 0 vs. H1:μA ≠ 0 in order to make an overall conclusion 

in effect direction and size on a common goal shared by the underlying multiple markers 

(e.g., an overall conclusion on ‘α-diversity’ by combining multiple α-diversity indices). One 

may want to estimate μA as a weighted average of marker-specific pooled effects such that 

μA = ∑j = 1
Q wμjμj

∑j = 1
Q wμj

, where wμj = σμj + τA
2 −1

 and τA
2  is the between-marker 

variance estimate. This approach is simply the traditional meta-analysis to combine multiple 

markers instead of the multiple studies in (Eq. 4). However, the multiple markers (e.g., α-
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diversity indices) are correlated to each other because of their semantic and technical 

relatedness8; hence the traditional meta-analysis based on the independence assumption (Eq. 

4) cannot be directly used to combine multiple correlated markers23. Therefore, here we first 

estimate the marker-by-marker (Q × Q) covariance matrix (denoted as V) to account for the 

correlations across markers. For this, we apply the same permuted signs to all different 

markers (i.e., we generate S in Step 1 in Algorithm 1 only once, and apply the same S to all 

different markers for the following steps), and calculate pairwise covariances across markers 

using the permuted (null) marker-specific pooled effects as (Eq. 5).

V jj′ = cov[(μj, 01, …, μj, 0R), (μj′, 01, …, μj′, 0R)], (5)

where V jj′ is the (j, j’)-th element of the Q × Q covariance matrix (V ) and 

(μj, 01, . . . , μj, 0R) and (μj′, 01, . . . , μj′, 0R) are the permuted (null) pooled effects for the j-

th and j’-th markers, respectively, for j = 1, …, Q and j’ = 1, …, Q. Then, we estimate μA as 

in (Eq. 6).

μA = ∑j = 1
Q wμjμj ∑j = 1

Q wμj
, (6)

where wμj = ∑j′ = 1
Q V jj′

−1. This is also the weighted average of marker-specific pooled 

effects like (Eq. 4)23, but importantly, here we applied the weights based on the estimated 

marker-by-marker covariance matrix (V ) to account for the correlations across markers.

For each permutation (r = 1, …, R), we can compute the null values of μA (denoted as μA0, r) 

using μj, 0r for j = 1, …, Q through Eq. 5 and 6. We can then compute the p-value as the 

proportion of the null values of μA μA0, r for r = 1, …, R) equal to or more extreme than the 

observed value of μA, and the 95% confidence interval for μA as the interval between 2.5% 

and 97.5% quantile values among the null values of μA μA0, r for r = 1, …, R) around the 

observed value of μA. We organized all the detailed computational procedures in Algorithm 

2. mMeta.

Algorithm 2.

mMeta

Inputs: The estimated marker-specific pooled effect (μj) and the permuted (null) pooled effects 

(μj, 01, . . . , μj, 0R) obtained based on the single-marker meta-analysis (Algorithm 1) for each marker (j = 1, …, 

Q).

Outputs: μA, the p-value and the 95% confidence interval for μA.

 1. Compute the marker-by-marker (Q × Q) covariance matrix (denoted as V ), by calculating pairwise covariances 

across markers as V jj′ = Cov[(μj, 01, . . . , μj, 0R), (μj′, 01, . . . , μj′, 0R)], where V jj′ is the (j, j’)-th 

element of V  for j = 1, …, Q and j’ = 1, …, Q (Eq. 5).
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 2. Compute the null values of μA (denoted as μA0, r) using μj, 0r for j = 1, …, Q and V  based on Eq. 6 for r = 1, …, 

R.

 3. Compute the observed pooled effect (denoted as μA) using μj for j = 1, …, Q and V  based on Eq. 6.

 4. Compute the p-value as [∑r = 1
R I μA0, r > |μA | ) + 1]/(R + 1) and the 95% confidence interval for μA as 

[φ(0.025)+μA, φ(0.975)+μA], where I(·) is an indicator function, and φ(0.025) and φ(0.975) are 2.5% and 97.5% 

quantile values in {μA0,1, . . . , μA0, R}, respectively.

Adaptive multi-marker meta-analysis (aMeta)

Again, mMeta is an approach to make a breadth of statistical inferences (i.e., effect 

estimation and hypothesis testing) based on a weighted average of marker-specific pooled 

effects (μA) (Eq. 6). The mechanism of weighted averaging is a natural way to combine 

multiple effects, but its central tendency can make mMeta a compromise among the multiple 

surveyed markers in performance. Especially, for a sparsity situation when only a few 

markers among many markers have significant signals, mMeta can lose power because the 

weighted average effect is diluted from many weak signals. Therefore, we introduce another 

meta-analysis method for multi-marker studies, aMeta, which is in the context of taking the 

strongest evidence of significance among single-marker meta-analyses instead of averaging 

marker-specific pooled effects, and testing H0:μj = 0 for all j’s in {1, …, Q} vs. H1:μj ≠ 0 for 

some j’s in {1, …, Q}.

Let Pj denote the estimated marker-specific p-value based on the single-marker meta-

analysis for each marker (j = 1, …, Q). We formulate the test statistic of aMeta as the 

minimum p-value among Pj’s (Eq. 7).

TaMeta = min
j ∈ 1, …, Q

Pj (7)

This minimum p-value statistic reflects only the most significant signal, ignoring all the 

other signals, among multiple surveyed markers, and thus enables aMeta to adaptively 

approach the highest power among single-marker meta-analyses. However, the major 

limitation of aMeta is that it is only for hypothesis testing with no effect estimation facilities.

The use of the minimum p-value statistic19 has also been widely used in many prior 

tests15,27,28,29,30 along with a permutation method partly because of the unknown properties 

on its limiting behavior, but, distinctively, aMeta is in the context of meta-analysis which 

requires only the summary statistics for implementation. We organized all the detailed 

computational procedures to calculate the p-value based on the minimum p-value statistic 

(Eq 7) in Algorithm 3. aMeta.
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Algorithm 3.

aMeta

Inputs: The estimated marker-specific p-value (Pj) and the permuted (null) pooled effects (μj, 01, . . . , μj, 0R) 

obtained based on the single-marker meta-analysis (Algorithm 1) for each marker (j = 1, …, Q).

Outputs: The p-value for aMeta.

 1. Compute the null values of Pj (denoted as Pjr) as Pjr = [∑r′ ≠ rI μA0, r′ > μA0, r + 1]/(R + 1), 

where r = 1, …, R and r′ = 1, …, R, for each marker (j = 1, …, Q).

 2. Compute the null statistic values of TaMeta (denoted as TaMetar) as TaMetar = min
j ∈ 1, …, Q

Pjr, for r = 1, 

…, R (Eq. 7).

 3. Compute the observed statistic value (denoted as TaMeta) as TaMeta = min
j ∈ 1, …, Q

Pj (Eq. 7).

 4. Compute the p-value for aMeta as [∑r = 1
R I TaMetar < TaMeta + 1]/(R + 1), where I(·) is an indicator 

function.

α-diversity indices

mMeta and aMeta can be broadly applied to any set of multiple related markers, depending 

on the availability of the summary statistics from prior studies and/or investigators’ interest. 

As a demonstration, we investigate six α-diversity indices, Species richness, Shannon6, 

Simpson7, PD11, PE12 and PQE13,14, in our simulations and real data applications. We show 

the formulas for these α-diversity indices in [Table 2]. These α-diversity indices have a 

common goal of measuring microbial diversity in a community (i.e., within-sample 

diversity), but are also distinguished by different weighting schemes based on microbial 

abundance and/or phylogenetic tree information8,15 [Table 2]. That is, the Species richness, 

Shannon and Simpson indices are non-phylogenetic indices which do not incorporate 

phylogenetic tree information8,15 [Table 2]. The Species richness is the total number of the 

species present in a sample, and it is the simplest form of α-diversity based only on the 

presence/absence information of species with no weights in relative abundance, while the 

Shannon and Simpson indices apply additional weights in relative abundance [Table 2]. 

Therefore, in an association analysis between microbial diversity and a host phenotype (or 

disease status), the Species richness suits the situation when the species associated with the 

host phenotype are rare species, while the Shannon and Simpson indices suit the situation 

when the associated species are common species. In contrast, PD, PE and PQE indices are 

phylogenetic indices which incorporate phylogenetic tree information12,15,31 [Table 2]. The 

PD index is simply the total length of the branches in the phylogenetic tree that belong to the 

species present in a sample with no weights in relative abundance [Table 2]. Instead, the PE 

and PQE indices apply additional weights in relative abundance [Table 2]. Therefore, the PD 

index suits the situation when the species associated with the host phenotype are rare species 

with high phylogenetic difference, while the PE and PQE indices suit the situation when the 

associated species are common species with high phylogenetic difference. Importantly, 

mMeta and aMeta are to make a statistical inference on the microbial α-diversity in general 

throughout different forms of α-diversity while robustly suiting diverse unknown association 

patterns.
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A simple modification to robustly handle missing summary data from prior 

studies

The summary statistics are not usually available in a balanced way across all the studies and 

markers, and it has been a general challenge in multivariate meta-analysis17. That is, for 

example, some studies can report the results on the Species richness, PE and PQE while 

other studies can report the results on Shannon, PD and PE or so. Therefore, here we provide 

some flexibility to our methods’ implementation. For this, we simply modified our software 

package while setting K in Algorithm 1. Single-marker meta-analysis including the subscript 

j as Kj for j = 1, …, Q. This simple modification allows the number of studies to vary by 

markers, and makes mMeta and aMeta to be able to use all available summary data with no 

error in their implementation. Thus, this modification should make mMeta and aMeta much 

more practical in case of the imbalance in available markers from prior studies.

Simulations

Here, we describe our simulation experiments to evaluate the performance of our proposed 

multi-marker meta-analyses, mMeta and aMeta, in terms of type I error and power. For the 

methods to calculate the p-value, we surveyed the parametric method based on the 

asymptotic normality that μ/σμ a N(0,1) under H0
23 as well as the semi-parametric group 

permutation method21 that we adopted for mMeta and aMeta. For the methods to estimate 

the heterogeneity variance, we surveyed the DerSimonian and Laird (DL) estimator (a.k.a. 

the method of moments estimator, and the mostly cited estimator in meta-analysis)2,23 as 

well as the SJ estimator17 that we adopted for mMeta and aMeta. We surveyed the six α-

diversity indices, Species richness, Shannon6, Simpson7, PD11, PE12 and PQE13,14 [Table 

2].

Simulation design

As in prior studies27,30, we simulated the count table across samples and species per study 

(denoted as Mk for k = 1, …, K) based on the Dirichlet-multinomial distribution32. For this, 

we employed the 100 common operational taxonomic units (OTUs) and their phylogenetic 

tree in the respiratory-tract microbiome data33 as surrogates for 100 microbial species. Then, 

we estimated their proportions and dispersion to reflect real microbial composition27. We 

surveyed 10, 20 and 30 studies, respectively (i.e., K=10, 20 or 30). We applied the estimated 

proportions and dispersion for the same 100 OTUs to each study. To reflect the 

heterogeneity in sample size and sequencing depth across studies, we randomly generated 

the sample size per study (denoted as nk) and the total read count per study based on the 

discrete uniform distributions from 50 to 100 samples and from 1,000 to 5,000 total reads, 

respectively. Then, we generated Gaussian responses for the host phenotype based on the 

linear regression model (Eq. 8).

yk, i = 0.5 × scale(x1k, i) + 0.5 × scale(x2k, i) + βk × scale(∑ℎ ∈ ζ Mkiℎ) + εk, i, (8)

where the subscripts, k, i, and h represent a study (k = 1, …, K), a sample (i = 1, …, nk), and 

a species (h = 1, …, 100), respectively, yk,i is the Gaussian responses for the host phenotype, 
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x1k, i and x2k, i are two covariates generated based on the Bernoulli distribution with success 

probability of 1/2 and the standard normal distribution N(0, 1), respectively, Mkiℎ is the (i, 

h)-th element of the simulated count table (Mk), ζ is the set of associated species, βk is the 

true study-specific effect, εk,i is an error generated based on N(0, 1), and scale(·) is the 

standardization function to have mean 0 and variance 1. To estimate type I errors, we set βk 

= 0 for k = 1, …, K, which satisfies the null hypothesis for both the traditional random 

effects meta-analysis and the Han and Eskin’s modified random effects meta-analysis. To 

estimate powers, we set βk = 1 for k = 1, …, K while selecting the set of associated species 

(ζ) (Eq. 8) as S1) ζ = {the 10 rarest species}, S2) ζ = {10 randomly selected species}, S3) ζ 
= {the 10 most common species} or S4) ζ = {species in a randomly selected cluster among 

10 clusters partitioned by partitioning-around-medoids (PAM) algorithm}15,28,29,30. The first 

three scenarios reflect the situations when rare, random and common species, respectively, 

are truly associated with the host phenotype. The PAM algorithm groups phylogenetically 

close species in the phylogenetic tree together34, and thus the fourth scenario reflects the 

situation when phylogenetically close species are truly associated with the host phenotype.

We computed the six α-diversity indices, Species richness, Shannon6, Simpson7, PD11, PE12 

and PQE13,14, based on their formulas [Table 2] and the same simulated count table and 

phylogenetic tree for each sample in each study, and denote them as djk, i for j ∈ {Richness, 

Shannon, Simpson, PD, PE, PQE}, k = 1, …, K, and i = 1, …, n. Then, to estimate study-

specific effects and their standard errors for each α-diversity index, we considered the linear 

regression model (Eq. 9).

E(yk, i; x1k, i, x2k, i, djk, i), = α1j, kx1k, i + α2j, kx2k, i + βj, kdjk, i, (9)

where α1j, k, α2j, k and βj,k are the regression coefficients for the covariates, x1k and x2k, and 

the α-diversity index, djk, respectively, for j ∈{Richness, Shannon, Simpson, PD, PE, PQE}. 

We estimated the regression coefficients and their standard errors for each α-diversity index 

in each study based on the least squares estimation adjusting for x1k and x2k, and denote 

them as βj, k and σj, k. Finally, we performed meta-analysis using βj, k’s and σj, k’s to 

combine multiple studies for each marker using the single-marker meta analyses and 

throughout all different markers using mMeta and aMeta.

Simulation results

Type I error—Table 3 reports the empirical type I error rates at the significance level of 5% 

for the single-marker meta-analyses for each α-diversity index and the multi-marker meta-

analyses, mMeta and aMeta. Here, we find well-controlled type I error rates (≤ 5%) for all 

the single-marker or multi-marker meta-analyses based on the asymptotic normality or the 

group permutation, based on the DL estimator or the SJ estimator, with or without the 

assumption of heterogeneity under H0, and for any number of studies [Table 3]; as such, all 

the surveyed methods are statistically valid.

For additional reference, we can observe that the empirical type I error rates are lower than 

the significance level of 5% for the asymptotic method with the assumption of heterogeneity 
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under H0 [Table 3] consequently leading to low statistical power (see Power), as expected by 

the conservative assumption that the heterogeneity exists even under H0
22. In contrast, for 

the single-marker meta-analysis, we can observe that the empirical type I error rates are 

close to the significance level of 5% for the group permutation method whether the 

assumption of heterogeneity under H0 exists or not [Table 3]; hence, for the group 

permutation method, the assumption of heterogeneity under H0 does not affect the empirical 

type I error rates, but only improves statistical power (see Power). In addition, for the multi-

marker meta-analyses, we can observe that the empirical type I error rates are lower than the 

significance level of 5%. This might be because our simulation design gives ideal marker-

by-marker correlations by calculating all the α-diversity indices based on their formulas 

using individual study data [Table 2], while our multi-marker meta-analyses estimate the 

marker-by-marker correlations based on summary-level statistics. Furthermore, our 

simulation is designed to give the validity to all individual single-marker meta-analyses 

[H0:μj = 0 for all j’s in {1, …, Q}], which is more conservative than the null hypothesis of 

mMeta [H0:μA = 0] consequently leading to low statistical power for mMeta (see Power).

Power

Figure 1, Figure S1 and Figure S2 report the power estimates for the single-marker meta-

analyses for each α-diversity index and the multi-marker meta-analyses, mMeta and aMeta 
for 20 (K = 20), 10 (K=10) and 30 (K=30) studies, respectively. In general, the power 

increases as the number of studies increases [Figure S1 < Figure 1 < Figure S2], but the 

comparative powers among different methods are the same irrespective of the number of 

studies [Figure 1, Figure S1–S2]. Thus, to save space, we moved the power estimates for 10 

(K=10) [Figure S1] and 30 (K=30) [Figure S2] studies to Appendix.

To compare powers among different p-value calculation methods and heterogeneity variance 

estimators, the group permutation method is more powerful than the method based on the 

asymptotic normality [Figure 1A,B < Figure 1C,D] as expected by the results on their 

empirical type I error rates [Table 3], while the SJ estimator is more powerful than the DL 

estimator [Figure 1A,C,E < Figure 1B,D,F]; as such, the combination of the group 

permutation method and the SJ estimator gives the highest power. For additional reference, 

we found that the Han and Eskin’s modified random effects meta-analysis for the 

assumption of no heterogeneity under H0 is more powerful than the traditional random 

effects meta-analysis for the existence of heterogeneity under H0 [Figure 1C,D < Figure 

1E,F].

To compare powers among single-marker meta-analyses, the Species richness and the 

Shannon index are most powerful when rare species are associated with the host phenotype 

[Figure 1: S1], the Shannon and Simpson indices are most powerful when random or 

common species are associated with the host phenotype [Figure 1: S2 & S3], and the PQE 

index is most powerful when phylogenetically relevant species are associated with the host 

phenotype [Figure 1: S4], as expected by the difference in their weighting schemes in 

relative abundance and the use or non-use of phylogenetic tree information [Table 2]. This 

indicates that the performance of single-marker meta-analyses can vary by markers and the 

underlying association patterns.
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To evaluate powers for the multi-marker meta-analyses compared with the single-marker 

meta-analyses, mMeta remains at a medium power level among multiple single-marker 

meta-analyses, as expected by the central tendency of its weighted averaging scheme (Eq. 6) 

[Figure 1], while aMeta robustly approaches the highest power among multiple single-

marker meta-analyses, as expected by the high adaptivity of its minimum p-value statistic 

(Eq. 7) [Figure 1].

In summary, mMeta is moderately powerful across all different association patterns, while 

aMeta is highly powerful across all different association patterns [Figure 1]. In contrast, the 

single-marker meta-analyses are highly sensitive to the chosen α-diversity index and the 

underlying association pattern [Figure 1]. Therefore, aMeta is most attractive in power 

especially because the true association pattern is usually unknown in practice. However, 

aMeta is limited to hypothesis testing, while mMeta conducts both effect estimation and 

hypothesis testing; hence, mMeta can be better interpreted with a breadth of statistical 

inference facilities including the pooled estimate and its confidence interval and p-value. All 

the possible results and interpretations for mMeta and aMeta are addressed in the following 

section with real data applications.

Real data applications

Here, we illustrate the use of our proposed multi-marker meta-analyses, mMeta and aMeta, 

through the meta-analysis for 15 gut microbiome studies on the disparity in microbial α-

diversity by the status of HIV infection (i.e., HIV uninfected (HIV-) vs. HIV infected (HIV

+) individuals)35,36,37,38,39,40,41,42,43,44,45,46,47,48,49. These 15 gut microbiome studies are 

also the ones surveyed in Tuddenham et al. (2019)50 for the single-marker meta-analyses on 

the Species richness and Shannon index, respectively. Although the meta-analysis requires 

only the summary statistics from prior studies, we actually could obtain all the 16S 

ribosomal RNA (rRNA) gene sequence data and metadata for each study from public 

databases or study authors.

We processed the raw 16S rRNA gene sequence data using the same procedures performed 

in Tuddenham et al. (2019) based on standard bioinformatics tools to construct the count 

table across samples and OTUs and the phylogenetic tree for each study, where we used the 

OTUs as surrogates for microbial species. To briefly describe the data processing 

procedures50, the paired-end read sequences from the Illumina platform were merged using 

FLASH51 and went through quality controls using Trimmomatic52 and PyNAST53, while 

the amplicon sequences from the Roche/454 platform went through quality controls using 

Acacia54. Then, the primers were trimmed and the chimeras were screened using 

UCLUST55, the human genome contaminants were filtered using Bowtie256, and the 

chloroplast and mitochondrial contaminants were filtered using the RDP classifier57. Then, 

the OTU table and the phylogenetic tree for each study were constructed using Resphera 

Insight and PyNAST53. We rarefied the OTU table for each study to an even level of total 

reads per sample, meant to control for differing total reads per sample, while minimizing 

sample loss due to insufficient total reads [Table S1].
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While using the same reprocessing pipeline for all the studies can lead to a smaller between-

study variance and thus a larger pooled effect (Eq. 4) than using different reprocessing 

procedures, we can still find that the studies are heterogeneous in many other characteristics, 

such as country, study design, sample size, sample type, targeted variable region, sequencing 

platform, and sequencing depth [Table S1]. Thus, to account for the possible heterogeneity 

across studies, the random effects meta-analysis could be better suited than the fixed effects 

meta-analysis. We surveyed two different random effects meta-analysis approaches, 1) the 

traditional random effects meta-analysis for the heterogeneity under H0 and 2) the Han and 

Eskin’s modified random effects meta-analysis for no heterogeneity under H0, respectively.

The α-diversity indices to be included in the meta-analysis depends on the availability of the 

summary statistics from prior studies. Yet, for a demonstration purpose, which is possible as 

we have all the individual study data, we computed all the six α-diversity indices, Species 

richness, Shannon6, Simpson7, PD11, PE12 and PQE13,14 for each sample in each study. 

Then, we fitted the simple logistic regression model to evaluate the disparity in each α-

diversity index for each study by the status of HIV infection (i.e., HIV uninfected (HIV-) 

individuals coded as 0 vs. HIV infected (HIV+) individuals coded as 1), and obtained the 

summary statistics, regression coefficient estimate and its standard error, for each study on 

each α-diversity index.

Figure 2 reports the results for each study on each α-diversity index and the results for the 

single-marker meta-analyses based on the SJ estimator20 and the group permutation 

method21 to combine all the studies on each α-diversity index. Here, we can first see that for 

a given α-diversity index, the results are not consistent across studies [Figure 2]. For 

example, for the Species richness, Dubourg et al. (2016), Noguera-Julian et al. (2016), 

Pinto-Cardoso et al. (2017), Serrano-Villar et al. (2017a), Vesterbacka et al. (2017) and 

Villanueva-Millán et al. (2017) are statistically significant at the significance level of 5%, 

while the other studies are not statistically significant [Figure 2A]. For the Species richness 

again, Lozupone et al. (2013) estimate a positive association (i.e., HIV infected (HIV+) 

individuals have a higher microbial α-diversity than HIV uninfected (HIV-) individuals), 

while the other studies estimate negative associations [Figure 2A]. Therefore, we need the 

single-marker meta-analyses for an overall conclusion on each α-diversity index. However, 

here we can find that the results for the single-marker meta-analyses are not also consistent 

across α-diversity indices [Figure 2]. For example, the PQE index is not statistically 

significant, while the other α-diversity indices are statistically significant [Figure 2]. For 

additional reference, we found that the Han and Eskin’s modified random effects meta-

analyses for the assumption of no heterogeneity under H0 produces smaller p-values than the 

traditional random effects meta-analyses for the existence of heterogeneity under H0 [Figure 

2], which also confirms our simulation results [Figure 1C,D < Figure 1E,F].

Figure 3 reports the results for the multi-marker meta-analyses, mMeta and aMeta, together 

with the single-marker meta-analyses that are also reported in [Figure 2]. Again, the results 

for the single-marker meta-analyses are not consistent across α-diversity indices, and thus, 

we cannot be sure about the association between microbial α-diversity and the status of HIV 

infection [Figure 3]. Therefore, we need the multi-marker meta-analyses, mMeta and aMeta, 

for an overall conclusion across all the studies and α-diversity indices. We interpret the 
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results for mMeta and aMeta [Figure 3] as follows: 1) Based on mMeta, we found a 

statistically significant association between microbial α-diversity and the status of HIV 

infection, and estimated that HIV infected (HIV+) individuals have a lower microbial α-

diversity than HIV uninfected (HIV-) individuals [Figure 3]; 2) Based on aMeta, we found a 

statistically significant association between microbial α-diversity and the status of HIV 

infection [Figure 3].

Here, we can find that mMeta is better interpreted in effect direction with the additional 

facility of the pooled estimate, yet aMeta produces a smaller p-value than mMeta, which 

also confirms our simulation results that aMeta is more powerful than mMeta [Figure 

1C,D,E,F]. Again, we found that the Han and Eskin’s modified random effects meta-

analyses for the assumption of no heterogeneity under H0 [Figure 3B] produces smaller p-

values than the traditional random effects meta-analyses for the existence of heterogeneity 

under H0 [Figure 3A].

For additional reference, we reported all the p-values for the single-marker and multi-marker 

meta-analyses based on different p-value calculation methods and heterogeneity variance 

estimators, and the traditional random effects meta-analysis for the existence of 

heterogeneity under H0 and the Han and Eskin’s modified random effects meta-analysis for 

the assumption of no heterogeneity under H0 in [Table S2]. Here, we found that the real data 

applications [Table S2] confirm the simulation results [Figure 1], while matching the 

methods with smaller (or larger) p-values in the real data applications [Table S2] to the same 

methods with lower (or higher) power estimates in the simulation results [Figure 1].

Discussion

In this paper, we introduced two multi-marker meta-analyses, mMeta and aMeta, to combine 

multiple studies throughout multiple related markers. We illustrated in our simulations that 

mMeta is moderately powerful across all different association patterns, while aMeta is 

highly powerful across all different association patterns. In the same context, we also found 

in our real data applications that aMeta produces smaller p-values than mMeta. Therefore, 

aMeta is more attractive than mMeta for powerful discoveries. However, mMeta is a 

statistical estimator that conducts both effect estimation and hypothesis testing in a unified 

approach based on a weighted average of marker-specific pooled estimates, while aMeta is 

purely a test for significance. Therefore, mMeta is better interpreted with a breadth of 

statistical inference tools including the pooled estimate and its confidence interval and p-

value.

Since aMeta is more powerful than mMeta, it is possible that aMeta produces a significant p-

value while mMeta does not. While such results are seemingly conflicting, they are 

distinguished in interpretation as follows: at least one marker-specific pooled effect has 

statistical significance by aMeta for the hypothesis testing of [H0:μj = 0 for all j’s in {1, …, 

Q} vs. H1:μj ≠ 0 for some j’s in {1, …, Q}], while the pooled effect across all the studies and 

markers has no statistical significance by mMeta for the hypothesis testing of [H0:μA = 0 vs. 

H1:μA ≠ 0]. Furthermore, such results can provide a critical insight that only a few markers 

among many markers might have significant signals and/or the marker-specific pooled 
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effects might be inconsistent in direction. The reason is because aMeta takes only the 

strongest evidence of significance into its minimum p-value statistic, while mMeta combines 

all the directions and sizes of marker-specific pooled effects into its weighted averaging 

scheme; as such, the sparsity in significance and the directionality of underlying markers 

substantially matter for mMeta, while they do not matter for aMeta.

We also surveyed different p-value calculation methods and heterogeneity variance 

estimators. We found in our simulations and real data applications that the group 

permutation method and the SJ estimator, geared up to mMeta and aMeta, give higher 

powers and smaller p-values than the method based on the asymptotic normality and the DL 

estimator, respectively. In light of Han and Eskin (2011), we described that the existence of 

heterogeneity even under H0 for the traditional random effects meta-analysis can be overly 

conservative. We also found in our simulations and real data applications that the Han and 

Eskin’s modified random effects meta-analysis for the assumption of no heterogeneity under 

H0 give higher powers and smaller p-values than the traditional random effects meta-

analysis for the existence of heterogeneity under H0. Therefore, we adopted the Han and 

Eskin’s modification for mMeta and aMeta, while providing a user option in our software 

package for the traditional random effects meta-analysis.

Throughout the paper, we illustrated the use of mMeta and aMeta to combine multiple 

microbiome studies with the results on multiple α-diversity indices. However, the 

application of mMeta and aMeta is not restricted to the microbiome studies or the α-

diversity indices. mMeta and aMeta are the multi-marker meta-analyses in general to 

combine multiple studies with the results on multiple related markers. Thus, mMeta and 

aMeta can be employed as long as we have the summary statistics, effect estimates and their 

standard errors, across multiple studies and multiple related markers. For example, we can 

imagine that there are multiple studies on the effect of an environmental exposure (or drug 

use) on liver function, and they report the results for multiple serum markers on liver 

function (e.g., alanine transaminase, aspartate transaminase, alkaline phosphatase, gamma-

glutamyl transferase). It is also reasonable to suppose that the studies are heterogeneous, the 

multiple serum markers are correlated because of their biological relatedness, and the results 

are not always balanced across all the studies and markers. Then, in this example, mMeta 
and aMeta can be used to make a conclusion on the effect of an environmental exposure (or 

drug use) on the ‘liver function’ in a global, while accounting for study characteristics and 

utilizing all available information. We encourage further studies on the possible extensions 

and applications of mMeta and aMeta.

We described that selecting candidate markers for mMeta and aMeta depends on the 

availability of the summary statistics from prior studies, scientific justifications and/or 

investigators’ interest. We also surveyed the six α-diversity indices, Species richness, 

Shannon, Simpson, PD, PE and PQE in our simulations and real data applications. The 

reason is because they have a common goal of measuring microbial diversity in a 

community but are also distinguished by different weighting schemes based on microbial 

abundance and/or phylogenetic tree information; as a result, we could demonstrate varying 

performances by markers as well as the overall conclusion across markers using mMeta and 

aMeta. However, the six α-diversity indices are not always available from prior studies 
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while other indices can be available from prior studies. Furthermore, researchers may have 

different interests and thoughts on selecting candidate markers for mMeta and aMeta. 

Therefore, it is debatable which selection rules are most reasonable. In spite that there are no 

set criteria for selecting candidate markers, we suggest delineating the selection rules you 

use so that future readers can evaluate if the selection rules are reasonable. To us, it is not 

reasonable to deliberately select only the markers that have strong association signals just to 

avoid some dilution from weak association signals and make a strong overall conclusion 

using mMeta or aMeta. Such an ex post facto selection overstates the results that are prone 

to multiple potential testing issues and thus hardly reproducible58. To us, it is more 

reasonable to select all the markers that are available from prior studies only with some 

inevitable exclusions, for example, due to some practical limitations.

We would also like to notice that, in practice, many studies report different forms of effect 

estimates or degrees of significance. For example, most of the 15 microbiome studies in our 

real data applications reported stratified effect estimates (e.g., mean, median, and 

interquartile range for each case or control group), not the estimates on difference or 

association, and p-values. Moreover, many of the 15 microbiome studies reported only the 

graphs (e.g., box plots, bar/line charts with error bars) with no numbers. While mMeta and 

aMeta require only the effect estimates and their standard errors for implementation, they are 

still hard to obtain in practice. Although such limitations are not unique to mMeta and aMeta 
(i.e., many other meta-analysis methods have such limitations), it is necessary to develop a 

more flexible and practical meta-analysis method that can deal with many different types of 

summary data, yet we did not fully achieve such a goal in this paper.

Besides, while p-values are useful tools in hypothesis testing, we suggest investigators to 

report confidence intervals as they are better informed by revealing the range of parameter 

values that are likely to exist. We also suggest reporting the effect estimates and their 

standard errors as well as the confidence intervals in numbers to better facilitate future meta-

analysis. Moreover, developing a database for summary data plays a crucial role in meta-

analysis as well. Thus, we included the effect estimates and standard errors for the six α-

diversity indices, Species richness, Shannon, Simpson, PD, PE and PQE, from the15 

microbiome studies in our R packages, mMeta.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability Statement

The summary data (i.e., effect estimates and standard errors) for the six α-diversity indices, 

Species richness, Shannon, Simpson, PD, PE and PQE, from the15 microbiome studies we 

used in our real data application can be found in our R packages, mMeta, at https://

github.com/hk1785/mMeta.
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Figure 1. Power estimates using different meta-analysis methods for 20 studies (K=20) (Unit: %). 
A. The method based on the asymptotic normality using DL estimator and for the traditional 
random effects meta-analysis for the existence of heterogeneity under H0; B. The method based 
on the asymptotic normality using SJ estimator and for the traditional random effects meta-
analysis for the existence of heterogeneity under H0; C. The group permutation method using 
DL estimator and for the traditional random effects meta-analysis for the existence of 
heterogeneity under H0; D. The group permutation method using SJ estimator and for the 
traditional random effects meta-analysis for the existence of heterogeneity under H0; E. The 
group permutation method using DL estimator and for the Han and Eskin’s modified random 
effects meta-analysis for the assumption of no heterogeneity under H0; F. The group permutation 
method using SJ estimator and for the Han and Eskin’s modified random effects meta-analysis 
for the assumption of no heterogeneity under H0.
* S1. ζ = {the 10 rarest species}; S2. ζ = {10 randomly selected species}; S3. ζ = {the 10 

most common species}; S4. ζ = {species in a randomly selected cluster among 10 clusters 

partitioned by PMA algorithm}, where ζ is the set of associated species (Eq. 8). * Richness, 

Shannon, Simpson, PD, PE and PQE represent the Species richness, Shannon, Simpson, PD, 

PE and PQE indices, respectively.
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Figure 2. The forest plot: the results for each study on each α-diversity index, and the results for 
the single-marker meta-analyses based on the combination of the SJ estimator and the group 
permutation method to combine all the studies on each α-diversity index. A. Species richness; B. 
Shannon index; C. Simpson index; D. PD index; E. PE index; F. PQE index.
* Overall(Het. under H0) represents the traditional random effects meta-analysis for the 

existence of heterogeneity under H0, and Overall(No het. under H0) represents the Han and 

Eskin’s modified random effects meta-analysis for the assumption of no heterogeneity under 

H0.
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Figure 3. 
The results for the single-marker meta-analyses and the multi-marker meta-analyses, mMeta 

and aMeta, based on the combination of the SJ estimator and the group permutation method. 

A. The traditional random effects meta-analysis for the existence of heterogeneity under H0. 

B. The Han and Eskin’s modified random effects meta-analysis for the assumption of no 

heterogeneity under H0.
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Table 1

An illustration of the summary data for mMeta and aMeta in a two-dimensional array.

Marker 1 Marker 2 … Marker Q-1 Marker Q

Study 1 (β1,1, σ1,1) (β1,2, σ1,2) … (β1, Q − 1, σ1, Q − 1) (β1, Q, σ1, Q)

Study 2 (β2,1, σ2,1) (β2,2, σ2,2) … (β2, Q − 1, σ2, Q − 1) (β2, Q, σ2, Q)

… … … … … …

Study K-1 (βK − 1,1, σK − 1,1) (βK − 1,2, σK − 1,2) … (βK − 1, Q − 1, σK − 1, Q − 1) (βK − 1, Q, σK − 1, Q)

Study K (βK, 1, σK, 1) (βK, 2, σK, 2) … (βK, Q − 1, σK, Q − 1) (βK, Q, σK, Q)

*
Suppose that there are K studies and Q markers, where (βk, j, σk, j) denotes the effect estimate and its standard error for the k-th study (k = 1, 

…, K) and the j-th marker (j = 1, …, Q).
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Table 2.

Formulas for the non-phylogenetic and phylogenetic α-diversity indices.

Non-phylogenetic indices Phylogenetic indices

Richness S PD ∑t = 1
S lt

Shannon −∑t = 1
S wtln wt PE −∑t = 1

S ltwtln wt

Simpson ∑t = 1
S wt2 PQE ∑t = 1

S ltwt2

*
S is the total number of species present in a sample, wt is the relative abundance of the t-th species, and lt is the length of the branches that belong 

to the t-th species in the phylogenetic tree for t = 1, …, S.

*
Richness, Shannon, Simpson, PD, PE and PQE represent the Species richness, Shannon, Simpson, PD, PE and PQE indices, respectively.
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Table 3.

Empirical type I error rates using different meta-analysis methods (Unit: %)

Methods
Asymptotic method (Het. under H0) Permutation method (Het. under H0) Permutation method (No het. under H0)

DL SJ DL SJ DL SJ

K = 10

Richness 1.49 0.72 4.91 4.89 4.94 4.85

Shannon 1.63 0.80 5.15 5.08 5.17 5.10

Simpson 1.61 0.86 4.86 4.89 4.87 4.86

PD 1.68 0.76 5.09 4.99 5.11 5.03

PE 1.64 0.86 4.93 4.96 4.97 5.00

PQE 1.53 0.74 4.95 4.95 4.91 4.87

mMeta - - 1.54 1.60 1.54 1.57

aMeta - - 3.83 3.84 3.87 3.68

K = 20

Richness 1.67 0.80 4.87 4.95 4.83 4.93

Shannon 1.50 0.64 4.86 4.84 4.88 4.88

Simpson 1.60 0.67 4.97 4.94 4.96 4.97

PD 1.62 0.68 4.98 5.06 4.94 5.08

PE 1.66 0.76 4.87 4.85 4.88 4.89

PQE 1.74 0.74 4.98 4.97 5.02 4.96

mMeta - - 1.89 1.93 1.89 1.94

aMeta - - 3.66 3.71 3.72 3.77

K = 30

Richness 1.52 0.62 4.85 4.93 4.85 4.95

Shannon 1.51 0.67 4.65 4.71 4.64 4.78

Simpson 1.63 0.74 4.81 4.82 4.85 4.86

PD 1.68 0.65 4.94 4.96 4.96 4.98

PE 1.59 0.74 4.93 4.93 4.96 5.00

PQE 1.66 0.70 4.88 4.97 4.95 4.94

mMeta - - 1.92 1.89 1.92 1.90

aMeta - - 3.38 3.44 3.41 3.48

*
[Asymptotic method (Het. under H0)] represents the p-value calculation method based on the asymptotic normality and for the traditional random 

effects meta-analysis for the existence of heterogeneity under H0; [Permutation method (Het. under H0)] represents the group permutation method 

and for the traditional random effects meta-analysis for the existence of heterogeneity under H0; [Permutation method (No het. under H0)] 

represents the group permutation method and for the Han and Eskin’s modified random effects meta-analysis for the assumption of no 
heterogeneity under H0.

*
DL and SJ represents the DerSimonian Laird (method of moments) estimator and the Sidik and Jonkman (robust variance or sandwich variance) 

estimator, respectively.

*
Richness, Shannon, Simpson, PD, PE and PQE represent the Species richness, Shannon, Simpson, PD, PE and PQE indices, respectively.
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