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Abstract

Diffusion magnetic resonance imaging (DMRI) suffers from lower signal-to-noise-ratio (SNR) due 

to MR signal attenuation associated with the motion of water molecules. To improve SNR, the 

non-local means (NLM) algorithm has demonstrated state-of-the-art performance in noise 

reduction. However, existing NLM algorithms do not take into account explicitly the fact that 

DMRI signal can vary significantly with local fiber orientations. Applying NLM naïvely can hence 

blur subtle structures and aggravate partial volume effects. To overcome this limitation, we 

improve NLM by performing neighborhood matching in non-flat domains and removing noise 

with information from both x-space (spatial domain) and q-space (wavevector domain). 

Specifically, we first encode the q-space sampling domain using a graph. We then perform graph 

framelet transforms to extract robust rotation-invariant features for each sampling point in x-q 
space. The resulting features are employed for robust neighborhood matching to locate recurrent 

information. Finally, we remove noise via an NLM framework. To adapt to the various types of 

noise in multi-coil MR imaging, we transform the signal before denoising so that it is Gaussian-

distributed, allowing noise removal to be carried out in an unbiased manner. Our method is able to 

more effectively locate recurrent information in white matter structures with different orientations, 

avoiding the blurring effects caused by naïvely applying NLM. Experiments on synthetic, 
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repetitively-acquired, and infant DMRI data demonstrate that our method is able to preserve subtle 

structures while effectively removing noise.
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Diffusion MRI; Denoising; Graph Framelet Transforms; Non-Local Means; Neighborhood 
Matching

I. INTRODUCTION

DIFFUSION magnetic resonance imaging (DMRI) plays a vital role in understanding white 

matter development and pathology in the human brain [1], [2]. For example, various studies 

have utilized DMRI in investigating the asynchronous and protracted nature of brain 

development in the first years of life [1]. DMRI tractography was used in [2] to study the 

small-world nature of the brain structural network in the first two years of life. DMRI was 

also employed to investigate the white matter pathological changes associated with various 

early brain diseases, such as autism spectrum disorder [3].

However, DMRI data suffers from low signal-to-noise-ratio (SNR), especially when the b-

value is high. This is due to the fact that DMRI encodes the motion of water molecules via 

signal attenuation, which increases with diffusion weighting (i.e., b-value). The low SNR is 

aggravated in infant DMRI. The lack of myelin in restricting water mobility results in 

greater attenuation of the MR signal, causing lower SNR. Fig. 1 indicates that the quality of 

diffusion-weighted (DW) images is lower for earlier time points. The higher diffusivity 

closer to the perinatal period, as indicated by the mean diffusivity (MD) images, suggests 

greater water mobility.

Image quality can be improved by hardware methods, e.g., employing greater magnetic field 

strength [4] and averaging repeated scans [5]. However, these require either expensive 

hardware upgrades or prolonged acquisition times, which are prohibitive in clinical settings. 

Alternatively, software methods have been widely used for noise removal [6]–[13]. A 

particularly effective method is the non-local means (NLM) algorithm [6]–[9], which 

averages self-similar information gathered via neighborhood matching. However, when self-

similar information does not recur, NLM can cause blurring and artifacts (see rare patch 
effect discussed in [14]–[17]). In DMRI, this typically happens in highly-curved white 

matter structures where the fiber orientations change significantly. This results in lower 

recurrence of signal patterns. Operating under such condition, NLM blurs diffusion signal 

profiles and aggravates partial volume effects.

In this paper, we propose a new neighborhood matching technique to overcome the 

limitations of NLM. DMRI acquires diffusion-weighted (DW) signals that are parameterized 

by both x-space (spatial domain) and q-space (wavevector domain). We encode the q-space 

sampling domain in a graph and view the DMRI signals in each voxel location as a function 

defined on the graph. Graph framelet transforms (GFTs), derived from the graph, are then 

applied to the function to extract features for neighborhood matching. Each GFT is used to 

extract features that correspond to a certain frequency subband of the spectrum obtained via 
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graph spectral decomposition. This process is linear and is thus computationally efficient. 

Based on the GFT features, effective neighborhood matching can be carried out in x-q space, 

even for highly-curved white matter structures.

Based on the neighborhood matching technique described above, we proposed a method, 

called graph framelet matching (GFM), to remove the noise in DMRI data. GFM involves 

two major components, i.e., noise adaptation and noise reduction. Specifically, using the 

method presented in [18], we first transform the DMRI signals so that the noise in DMRI 

data follows a Gaussian distribution. This strategy can well adapt to various types of noise in 

modern multi-coil MR imaging, and simplify the task of noise reduction. We then employ 

the proposed neighborhood matching technique to local the redundant information in x-q 
space, and utilize the gathered information for the effective noise removal in an NLM 

framework. Thanks to the robust neighborhood matching technique, the information existing 

in highly-curved white matter structures can be effectively used for denoising. Extensive 

experiments on synthetic and real DMRI data demonstrate that GFM improves the denoising 

performance, both qualitatively and quantitatively.

A preliminary version of this work has been presented in a conference [19]. The method 

presented herein is a significantly improved version that considers various types of noise 

resulting from multi-coil MRI. More comprehensive evaluation is performed using synthetic 

and real data. The associated results, analyses, and discussions are new and not part of the 

conference publication.

The paper is organized as follows. In Section II, we give a detailed description of the 

proposed method. In Section III, we demonstrate the effectiveness of the proposed method 

with one synthetic dataset and two real datasets. In Section IV, we provide further 

discussions on this work. Finally, in Section V, we conclude this work.

II. METHODS

In this section, we will describe our neighborhood matching technique and its application to 

DMRI denoising. First, we will introduce the theory of spectral graph convolution. Second, 

we will explain the details of GFTs, which are built upon the idea of graph convolution. 

Third, we will describe GFT-based neighborhood matching and its application to DMRI 

noise reduction. Finally, we will explain how noise removal can be performed for various 

types of noise in multi-coil MRI.

A. Spectral Graph Convolution

Unlike data uniformly sampled in the Euclidean space, convolution is less straightforward 

for irregularly-sampled data residing on manifolds. To achieve this, we introduce here the 

concept of spectral graph convolution.

We denote G: = ℰ, V, w  as a graph, where V: = vk ∈ ℳ:k = 0, …, K − 1  is a set of points 

on the vertices, and a manifold ℳ, ℰ ⊂ V × V is a set of edges relating w:ℰ ℝ+ is a 

weight function. Graph G is determined by an affinity matrix A which is symmetric with 

wk, k′ > 0 when two points k and, k′ are connected with each other. The graph Laplacian is 
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defined is as ℒ: = D − A where D: = diag d[1], d[2], …, d[K]  is a degree matrix with 

d[k]: = ∑k′wk, k′. Denote by λk, uk k = 0
K − 1 the pairs of eigenvalues and eigenvectors of ℒ

with 0 = λ0 ≤ λ1 ≤ λ2 ≤ … ≤ λK − 1 = λmax. The eigenvectors form an orthonormal basis for 

all functions on the graph: uk, uk′ : = ∑l = 0
K − 1uk[l]uk′[l] = δk, k′. The Fourier transform of a 

function f:V ℝ on the graph G is given by f[k]: = ∑l = 0
K − 1f[l]uk[l] = U⊤f, where 

U = u0, u1, …, uK − 1 . The convolution of f with filter h on G is defined as

ℎ ∗ f = U U⊤ℎ ⊙ U⊤f = U(ℎ ⊙ f) = U diag(ℎ)U⊤f, (1)

where ⊙ represents a point-wise product. Such a convolution is called frequency filtering 

and ℎ is the transfer function of the filter. This is consistent with the classical convolution 

operator, judging from the fact that convolutions are by definition linear operators that 

diagonalize in the Fourier domain (see Convolution Theorem [20]). Designing a convolution 

filter thus amounts to determining the spectral multipliers ℎ[0], ℎ[1], …, ℎ[K − 1] . While 

there are apparently many ways of doing so, we choose to achieve this using GFTs, which 

we will describe next.

B. Graph Framelet Transforms

GFT slices the frequency spectrum by using a set of masks ar( ⋅ ): r = 0, …, R , each 

corresponding to a subband, e.g., a0( ⋅ ) is a low-pass filter and the other masks, 

ar( ⋅ ):0 < r ≤ R , are high-pass and band-pass filters. Information from the different 

subbands allows us to more accurately establish point-to-point correspondences of the nodes 

in the graph for improving denoising performance. As in [21], [22], we define GFTs for the 

function f as

α: = Wf: = αl, r: = W l, rf:(l, r) ∈ ℬL, R , (2)

where ℬL, R: = (1, 1), (1, 2), …, (1, R), (2, 1), …, (L, R) ∪ (L, 0)  with maximum level L and

W l, rf[k]: =
ar γ−L + 1λk f[k]
ar γ−L + lλk a0 γ−L + l − 1λk

l = 1

⋯a0 γ−L + 1λk f[k] 2 ≤ l ≤ L,
(3)

where λk = λk/λmax π and γ > 1 is a dilation factor. GFT is a linear transform and can be 

computed efficiently.

We reformulate (3) so that the transform can be performed without explicit spectral 

decomposition. Denoting ℒ = UΛU⊤, where Λ = diag λ0, λ1, …, λK − 1 , we have
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W l, r: =
UΩr γ−L + 1Λ U⊤

UΩr γ−L + lΛ Ω0 γ−L + l − 1Λ
l = 1

⋯Ω0 γ−L + 1Λ U⊤ 2 ≤ l ≤ L,

(4)

where Λ = diag λ0, λ1, …, λK − 1  and

Ωr(cΛ) = diag ar cλ0 , ar cλ1 , …, ar cλK − 1 . (5)

All framelet masks, ar( ⋅ )  are generated based on the unitary extension principle (UEP) 

[22]. We show some examples of the masks in Table I. As in [22], [23], given a synthesis 

transform W⊤, we can have

W⊤α = W⊤Wf = If = f . (6)

C. Graph Representation of DMRI Data

We treat each point in q-space as a node in a graph and define the affinity weight between 

each pair of nodes using two Gaussian kernels, accounting for differences in gradient 

directions and diffusion weightings. Specifically, we define the affinity weight ak,k
′ of two 

points k,k′ in q-space as

ak, k′ = exp −
1 − qk

⊤qk′
2

2αp2
exp −

bk − bk′
2

2σp2
, (7)

where qk = qk/ qk  is a normalized wavevector with qk ∈ ℝ3, bk = t qk
2 is the corresponding 

b-value with diffusion time t, αp and σp are two parameters controlling the attenuations of 

two exponential functions, respectively. After computing the affinity weights between all the 

paired nodes in q-space, we then have the affinity matrix A: = ak, k′  that encodes the q-

space sampling geometric structure. Finally, the diffusion signals in each voxel are 

reformulated as a function defined on the graph.

D. Neighborhood Matching Using GFTs

We perform neighborhood matching based on the GFT features. A Gaussian function is 

employed to compute the similarity weight wk;k
′ between two nodes k and k′, defined as

wk; k′ = 1
Zk

exp −
ϕ[k] − ϕ k′ 2

2

ℎGFT
2 k, k′

, (8)

where Zk is a normalization constant ensuring that the weights sum to one, 

ϕ[k]: = αl, r[k]: (l, r) ∈ ℬL, R  is the GFT coefficients for node k, and hGFT(k,k′) is a 

parameter controlling the attenuation of the exponential function. It can be observed that (8) 

encourages a large similarity weight for two nodes sharing similar GFT features.
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Considering the variation of spatial location and b-value, we extend (8) to

wi, k; i′, k′ =
1

Zi, k
exp −

ϕi[k] − ϕi′ k′ 2
2

ℎGFT
2 i, k; i′, k′

exp −
bk − bk′

2

ℎb
2 , (9)

where i,i′ are two indices for different spatial locations, hGFT(i,k;i′, k′) and hb are two 

parameters controlling the bandwidths of the Gaussian kernels for differences in the GFT 

features and diffusion weightings. Referring to [24], we set

ℎGFT i, k; i′, k′ = β σi, k
2 + σi′, k′

2 ϕi[k] , (10)

where β is a constant, ϕi[k]  is the length of the feature vector, and σi, k is the noise standard 

derivation estimated at point (i, k). Similar to Eq. (10), we set ℎb = 2σb, where σb is a scale 

parameter. The normalization constant, Zi,k, in Eq. (9) is defined as

Zi, k = ∑
i′, k′ ∈ Vi, k

exp −
ϕi[k] − ϕi′ k′ 2

2

ℎGFT
2 i, k; i′, k′

exp −
bk − bk′

2

ℎb
2 ,

(11)

where Vi,k is the search volume associated with an x-space search radius s and a q-space 

search angle θ.

E. Denoising via Neighborhood Matching in x-q Space

Similar to NLM [25], we estimate the underlying noise-free signal NLM(S)(xi, qk) using

NLM(S) xi, qk = ∑
i′, k′ ∈ Vi, k

wi, k; i′, k′S xi′, qk′ ,
(12)

where S xi′, qk′  is a diffusion signal associated with a spatial location xi′ ∈ ℝ3 and a gradient 

qk′.

F. Adaptation to Various Types of Noise in Multi-Coil MRI

The classic NLM is designed to remove Gaussian noise and needs to be modified for the 

noncentral chi (nc-χ) distribution typical in modern multi-coil MRI [28]. The noise 

distribution of the composite magnitude signal (CMS) [28] given by modern multi-coil MRI 

techniques is dependent on how the k-space signal is sampled, how the magnitude signal is 

reconstructed, and how the coils are correlated. A summary of various types of noise for 

multi-coil MRI is shown in Fig. 2.

A number of methods [18], [29], [30] have been developed for dealing with the non-

Gaussian nature of noise in MR images. For instance, Foi [29] proposed to determine a 

forward variance-stabilizing transformation to allow stationary Rician noise in MR 
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magnitude images to be removed with filters designed for additive white Gaussian noise. 

The unbiased estimation of the true signal is obtained after denoising via a corresponding 

inverse variance-stabilizing transformation. This framework was extended in [30] for non-

stationary Rician noise resulting from parallel MRI. Another promising method, presented in 

[31], uses nonlocal maximum likelihood method for estimating the underlying true signal 

from an MR image with spatially-varying noise.

In this work, we adopt Koay et al.’s method [18] to transform a Rician/nc-χ signal to its 

Gaussian-distributed counterpart. This involves estimating the location parameter and 

Gaussian noise standard deviation of the nc-χ distribution and then performing signal 

transformation using the nc-χ cumulative distribution function (CDF) and the inverse 

Gaussian CDF [18], as illustrated in Fig. 3. Such signal transformation reduces the 

complexity of the denoising algorithm by not having to deal with the nc-χ nature of the 

noise [11], [18].

The estimation of noise standard derivation is key to accurate signal transformation. For 

spatially stationary noise, the noise standard derivation can be estimated from the image 

background using a method called probabilistic identification and estimation of noise 

(PIESNO) [32] or from doubly-acquired images using the method described in [33]. For 

spatially non-stationary noise, a number of noise estimation methods [11], [30], [34]–[38] 

have been proposed. For instance, inspired by the work presented in [39], Veraart et al. [40] 

estimated the spatially-varying noise in DMRI data by using the median absolute deviation 

estimator in the wavelet domain and Koay’s inversion technique [41]. The resulting noise 

map was then used for improving the estimation accuracy of diffusion MRI parameters. 

Manjón et al. [35] suggested using principle component analysis (PCA) for noise estimation 

and reduction in DMRI. Veraart et al. [36] proposed a method, called Marchenko-Pastur 

PCA (MP-PCA), that identifies the noise-only principal components automatically based on 

random matrix theory. In this work, we use MP-PCA [36] for estimating the spatially-

varying noise level.

III. EXPERIMENTS

A. Datasets

We evaluated the proposed method using one synthetic dataset and two real datasets. All real 

data were acquired at the Biomedical Research Imaging Center (BRIC) of the University of 

North Carolina (UNC) at Chapel Hill. Informed written consent was obtained from the all 

the subjects and the experimental protocols were approved by the Institutional Review Board 

of UNC School of Medicine. The study was carried out in accordance with the approved 

guidelines.

1) Synthetic Data: For quantitative evaluations, we generated a synthetic multi-shell 

dataset using phantomαs [42]. The fiber geometric setting was based on the description file 

used in the ISBI 2013 HARDI challenge1. Consistent with the infant data described in 

Section III-A3, the synthetic data were generated using b = 700,1500,3000s/mm2 with a 

1http://hardi.epfl.ch/static/events/2013_ISBI/
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total of 144 non-collinear gradient directions. Image dimensions are 55 × 55 × 55 with 1.5 × 

1.5 × 1.5mm2 resolution.

To evaluate the effect of noise removal of our method, the ground truth data was added with 

stationary and non-stationary nc-χ noise with different noise levels (3%, 5%, 7%, and 9%) 

and numbers of channels (1, 4, 8, and 12). Note that the nc-χ distribution with one channel 

is equivalent to a Rician distribution. The nc-χ noise is simulated using

Y N = μN + X(1) 2 + ∑
k = 2

2N
[X(k)]2, (13)

where N is the number of channels, YN is the noisy signal, μN is the true signal, and 

X(k) ∼ N(0, ησ) is a random variable following a Gaussian distribution with standard 

derivation ησ. We set σ to p percentages of the maximum signal value v, i.e., σ = v(p/100), 

and change p to simulate different noise levels [24]. We change η to simulate spatial 

stationary and non-stationary noise. Specifically, as illustrated in Fig. 4, a constant η map 

leads to stationary noise, whereas a spatially varying η map leads to non-stationary noise.

2) Repetitively-Acquired Data: We acquired the brain DMRI data of an adult 25 times 

using a Siemens 3T Magnetom Prisma MR scanner with the following imaging protocol: b = 

3000s/mm2, 42 gradient directions, 140 × 140 imaging matrix, voxel size 1.5 × 1.5 × 1.5 

mm3, TE=89ms, TR=2,513ms, 32 receiver coils. We performed signal transformation [43] 

and eddy correction [44] for each dataset. The 25 processed datasets were averaged to form 

a gold standard with improved SNR for evaluation purposes.

3) Infant Data: This dataset consists of a set of longitudinal infant brain DMRI data 

covering three time points, i.e., 0 month, 6 months, and 12 months. All data were from the 

Baby Connectome Project (BCP) [45] and were acquired using the Siemens 3T Magnetom 

Prisma MR scanner with the following imaging protocol: 140 × 140 imaging matrix, 1.5 × 

1.5 × 1.5 mm3 resolution, TE=88ms, TR=2,365ms, 32-channel receiver coil. Gradient 

directions and b-values were identical to the synthetic data. CMS reconstruction was 

performed using SENSE1 [46], resulting in non-stationary Rician noise distribution.

B. Parameter Settings

The parameters of GFM can be divided into two categorizes, i.e., parameters for GFT 

feature computation and x-q space non-local denoising. For the first category, we used the 

quadratic masks and set the decomposition level to L = 4. We used the low-frequency 

subbands since they are relatively unaffected by noise. The parameters in the second 

category were as follows:

1. Constant β: It is suggested in [24] to set β = 1. However, based on the theory of 

kernel regression, decreasing the bandwidth will reduce bias when the sample 

size is large [47]. In our case, the sample size is significantly increased since 

information in the joint x-q space is considered. Therefore, we set β = 0.1.
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2. Tuning parameter σb: Based on the diffusion gradients described in Section III-

A3, we computed the typical value for bk − bl , which is 1500 − 700 ≈ 12
Therefore, we set σb = 12/2 = 6.

3. x-space search radius s: Coupé et al. suggested to set s = 5, corresponding too 

5mm in physical distance) [24]. We set s = 2 since the voxel size of DW images 

is typical two times that of structural MR images in each physical dimension.

4. q-space search angle θ: We set θ = 2 × 15° = 30° based on the average angular 

separation of the gradient directions (15°).

5. Tuning parameter αp: Based on the same average angular separation, we set 

αp = 1 − cos2 15∘ ≈ 0.26.

6. Tuning parameter σp: Our data are all shell-sampled. Therefore, we set σp to a 

small value, 0.1, for greater localization.

C. Methods for Comparison

We compared GFM with the following methods:

1. Adaptive non-local means (ANLM): ANLM [34] is an extension of the NLM 

algorithm, which removes spatially non-stationary noise. Based on [34], we set 

the patch radius to 1.

2. Non-local spatial and angular matching (NLSAM): NLSAM [11] consists of 

three major steps, i.e., (i) Signal transformation so that the signals are Gaussian 

distributed; (ii) 4D block construction by considering diffusion-weighted images 

within an angular neighborhood; (iii) Noise removal using sparse representation. 

Based on [11], we set the patch radius to 1 and use 5 angular neighbours.

3. x-q space non-local means (XQ-NLM): XQ-NLM defines spherical patches in 

q-space. After mapping the spherical patch to a 2D disk, rotation-invariant 

features are computed using polar complex exponential transform (PCET) [48]. 

The resulting features are then used in x-q space patch matching. Finally, the 

signal is denoised through weighted averaging of self-similar information. Based 

on [12], we set the maximum order of PCET to 4. Other parameters are 

consistent with GFM and also based on the default values suggested in [12].

For fair comparison, we used the non-stationary noise field estimated by MP-PCA for 

ANLM, NLSAM, XQ-NLM, and GFM. For stationary noise, the noise standard deviation 

was determined using PIESNO [32].

D. Methods of Evaluation

Quantitative and qualitative evaluations were performed:

1. Peak signal-to-noise ratio (PNSR): We used PSNR as the metric for 

performance evaluation. PSNR is defined
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PSNR = 20log10
MAX
RMSE, (14)

where RMSE is the root mean square error computed between the denoised 

image and the ground truth noise free image, MAX is the maximum signal value.

2. Generalized fractional anisotropy (GFA) image: We computed the GFA image 

[49] using Dipy [50] based on the method described in [51].

3. Mean absolute difference (MAD): We computed the absolute difference (AD) 

map between each GFA image G and the gold standard GTrue. The MAD value 

was calculated by averaging across voxels in a brain region. Mathematically, 

MAD is defined as 1
|Ω| ∑i ∈ Ω ∣ GTrue(i) − G(i) ∣, where G(i) and GTrue(i) are the 

GFA values at location i in the brain region Ω.

4. RMSE map: Pixelwise accuracy was evaluated using the RMSE computed 

between the denoised signal vector at each voxel location with respect to the 

ground truth.

5. Residual map: We computed the residual map by subtracting denoised DW 

image from its noisy version. An ideal residual map should show noise and 

contain as little structural information as possible.

6. Fiber orientations: We evaluated the fiber orientation distribution functions 

(ODFs) [52] and the local minima [53].

7. Probability of false fiber detection (PFFD): We computed PFFD [54] using

PTrue − PEstimated
PTrue

× 100%, (15)

where PTrue and PEstimated are respectively the numbers of ground truth peaks 

and estimated peaks in a voxel.

8. Average angular error (AAE): We utilized AAE [54] to measure the angular 

accuracy of fiber orientations. AAE is defined as the average value of the angular 

errors computed for all ground true fiber peaks in one voxel. The associated 

angular error is defined as

180
π arccos dTrue ⋅ dEstimated , (16)

where dTrue and dEstimated are the ground truth peak direction and its closest 

estimation, respectively. We use to denote the dot product.

E. Results

1) Neighborhood Matching: We first evaluated the neighborhood matching 

performance of GFTs with respect to PCET [48], which is used in XQ-NLM [12]. The 

results, shown in Fig. 5, indicate that neighborhood matching with GFTs is more accurate 
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and more robust to noise than PCET. Note that the matching is not affected by the 

orientation of the signal profiles. Fig. 6 shows the matching results in the corpus callosum 

region of a real dataset, clearly demonstrating the effectiveness of the matching mechanism 

in curved white matter structures.

2) Synthetic Data: We show the PSNR results shown in Figs. 7 and 8. For stationary 

noise, GFM performs best for all noise levels and channel numbers. Compared with the 

second best method, XQ-NLM, GFM yields a largest improvement of 2.8dB when the noise 

level is 9% (one channel). For non-stationary noise, conclusions consistent with Fig. 7 can 

be drawn from Fig. 8, indicating that GFM performs best among all methods.

Fig. 9 shows the regional close-up views of DW images and RMSE maps. From the region 

marked by the red rectangle, it can be observed that XQ-NLM and GFM perform best in 

terms of edge preservation. In contrast, ANLM and NLSAM blur boundaries and result in 

higher RMSE values. The advantages of GFM over XQ-NLM can be clearly observed in the 

region marked by the blue rectangle, with GFM producing clearer boundaries and lower 

RMSE values than XQ-NLM. The blurring effects of ANLM over NLSAM can also be 

observed in this region.

The fiber peaks, shown as ‘sticks’ in in Fig. 10, indicate that GFM is able to produce clean 

fiber peaks similar to the ground truth. In regions marked by rectangles, spurious fiber peaks 

are produced by ANLM and NLSAM due to partial volume effects from blurring. In the 

region marked by the arrow, a missing fiber peak is observed in the result given by XQ-

NLM. In contrast, GFM produces correct fiber peaks and avoids such error. For quantitative 

evaluation, we show the PFFD values of the regions of interest at the bottom of Fig. 10. It 

can be observed that GFM and XQ-NLM correctly recover all fiber orientations without 

introducing any false positives or false negatives. In contrast, ANLM and NLSAM give 

unsatisfactory results by causing spurious peaks. Moreover, GFM gives an AAE of (3.8° ± 

2.1°) compared with (4.1° ± 5.1°) given by XQ-NLM, indicating that GFM improves 

angular accuracy.

3) Repetitively-Acquired Data: Fig. 11 indicates that GFM gives the lowest GFA 

mean MAD values, computed over the 25 datasets, with respect to the gold standard. Fig. 12 

shows the GFA images and associated GFA AD maps of one dataset. Compared with ANLM 

and NLSAM, XQ-NLM and GFM significantly reduce the AD values. Furthermore, the 

improvement of GFM over XQ-NLM is clearly observed in the regions marked by white 

rectangles. Overall, GFM give a GFA image with the best quality and lowest MAD value. 

The superior performance of GFM can be attributed to the fact that GFM is able to preserve 

edges while effectively remove noise. As shown in the synthetic data experiments, ANLM 

and NLSAM over-smooth DW images. Smoothing also blurs diffusion signal profile in q-

space, lowering the GFA value.

4) Infant Data: Since our method gives consistent performance for all time points, we 

only report the results for the 8-month subject here. Please refer to the supplementary 

materials for the results of all time points. Fig. 13 indicates that both XQ-NLM and GFM 

are effective in preserving structural information while removing noise. In contrast, the 
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boundaries between white matter and the ventricles are blurred by ANLM and NLSAM. 

Moreover, the regions marked by blue rectangles in Fig. 13 indicate that GFM is better at 

preserving edges than XQ-NLM.

Fig. 14 shows the residual maps for different methods. In contrast to ANLM and NLSAM, 

GFM and XQ-NLM result in little structural information in the residual maps, confirming 

that the edge-preserving effects observed in Fig. 13.

We further investigated the influence of denoising on fiber ODFs. The results, shown in Fig. 

15, indicate that GFM yields fiber ODFs that are clearer and more coherent, compared with 

XQ-NLM.

These experiments demonstrate that GFM is effective in removing noise in infant DMRI, 

which can be beneficial for studies on brain development [55], [56].

IV. DISCUSSION

The edge-preserving property of GFM can be attributed to the nature of the neighborhood 

matching framework, which can be summarized in three aspects:

• Rich characterization of signal pattern: GFTs decompose the signal into multiple 

frequency subbands and is thus able to provide a rich characterization of signal 

patterns. As demonstrated in Fig. 5 and 6, GFTs significantly improve the 

accuracy of neighborhood matching.

• Rotation-invariance: Since the graph Laplacian used to generate GFTs is agnostic 

to orientation, GFTs are rotation-invariant. The rotation-invariance of property 

GFTs provides a good basis for neighborhood matching in structures with 

different orientations.

• Linear operation: GFTs are linear operations. This significantly simplifies the 

implementation of GFTs and reduces computation times.

GFM is computationally efficiency, as verified by Table II, where we show the computation 

times of different methods when for one randomly selected dataset from the repetitively-

acquired data described in Section III-A2. GFM is about two times faster than XQ-NLM, the 

second best performing method. We implemented ANLM, XQ-NLM, and GFM using C++ 

based on the Insight Segmentation and Registration Toolkit (ITK) 2. NLSAM was compiled 

from source code3. Evaluation was based on a computer with a four-core 2.9GHz Intel Core 

i7 CPU.

While effective, GFM has several limitations. First, GFM requires a significant amount of 

memory for storing the GFT features. This can be resolved by performing noise reduction in 

local regions and then combining the results. Second, GFM, while faster than competing 

methods, is still not fast enough for real-time applications. Speed can be improved by using 

the neighborhood preselection strategy described in [34]. Third, unbiased noise reduction is 

2https://itk.org/ITK.git
3https://github.com/samuelstjean/nlsam

Chen et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://itk.org/ITK.git
https://github.com/samuelstjean/nlsam


still challenging for some noise distributions, e.g., the spatially-varying nc-χ noise 

distribution resulting from GRAPPA with SoS reconstruction [28]. Signal transformation 

cannot be properly performed due to the difficulty in estimating the parameters of the noise 

distribution.

The proposed method provides a general framework for performing neighborhood matching 

of structures that are orientationally different. We can apply our method to improve 

algorithms that rely on neighborhood matching; for instance, super-resolution [57], [58], 

atlas building [59]–[61], ODF estimation [62], [63], voxel-based morphometry [64], etc.

V. CONCLUSION

We have introduced a neighborhood matching technique for curved domains and applied it 

to the noise reduction of DMRI data. Extensive experiments were performed using synthetic 

data, repetitively-acquired data, and infant data. The experimental results demonstrate that 

our method, GFM, preserves edges while removing noise, significantly reducing noise-

induced artifacts in derived diffusion quantities. The proposed method outperforms various 

state-of-the-art methods, both qualitatively and quantitatively.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Data Quality.
Closer to the perinatal period, the quality of DW images (b = 1,500s/mm2) is lower due to 

signal attenuation associated with greater water mobility, as indicated by the mean 

diffusivity (MD) images.
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Fig. 2: Various Types of Noise in Multi-Coil MRI.
For fully-sampled k-space, sum of squares (SoS) and spatial matched filter (SMF) are 

common CMS reconstruction methods. For parallel MRI with subsampled k-space, 

sensitivity encoding (SENSE) [26] and generalized autocalibrating partially parallel 

acquisition (GRAPPA) [27] are well-known methods. The noise distribution is also 

influenced by correlation among coils. Multi-coil MRI produces signal with spatially 

stationary/non-stationary Rician/nc-χ noise distribution.
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Fig. 3: Signal Transformation.
A nc-χ measurement Snc−χ = 250 is mapped to the corresponding Gaussian measurement 

SGaussian = 200.63 using common probability P = 0.74.

Chen et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4: Noise Simulation.
5% 4-channel nc-χ noise with spatially constant and varying η maps for b = 700s/mm2.
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Fig. 5: Neighborhood Matching.
Neighborhood matching is performed in the presence of noise with respect to the point 

marked by the white arrow. Warm colors indicate greater agreement; cool colors indicate 

otherwise. Matching performance is significantly better in the case of GFT features than 

PCET features.
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Fig. 6: Neighborhood Matching in Real Data.
Similar to Fig. 5, but showing the neighborhood matching results in the corpus callosum of a 

real dataset. The results in the marked region are shown in axial and sagittal views.
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Fig. 7: PSNR Comparison – Stationary Noise.
Denoising performance for different noise levels and channel numbers.
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Fig. 8: PSNR Comparison – Non-Stationary Noise.
Denoising performance for different noise levels and channel numbers.
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Fig. 9: DW Images and RMSE Maps.
Boundary effects of various smoothing algorithms.
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Fig. 10: Fiber Peaks.
Local maxima of ODFs shown as sticks. The PFFD means and standard deviations for the 

regions of interest are shown at the bottom.
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Fig. 11: GFA MAD Comparison
For each of 25 repetitively-acquired datasets, we computed the MAD values for the GFA 

images given by the different methods. The means and standard deviations computed across 

the 25 datasets are shown.
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Fig. 12: GFA Images and AD Maps.
GFA images and the associated AD maps. GFM yields lower AD values than XQ-NLM, 

especially in the regions marked with rectangles. MAD values are shown in the top left 

corners of AD maps.
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Fig. 13: DW Images.
Edge-preserving performance of various denoising algorithms. The DMRI data of the 6-

month subject was used in the evaluation.
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Fig. 14: Residual Maps.
Evaluation of whether structural information is removed during denoising.
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Fig. 15: Fiber ODFs.
Fiber ODF comparison between XQ-NLM and GFM at different time points.
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TABLE I:

Framelet masks.

Haar Linear Quadratic

a0(ξ) = cos ξ
2

a1(ξ) = sin ξ
2

a0(ξ) = cos2 ξ
2

a1(ξ) = 1
2sin(ξ)

a2(ξ) = sin2 ξ
2

a0(ξ) = cos3 ξ
2

a1(ξ) = 3sin ξ
2 cos2 ξ

2
a2(ξ) = 3sin2 ξ

2 cos ξ
2

a3(ξ) = sin3 ξ
2
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TABLE II:

Comparison of computation times.

ANLM NLSAM XQ-NLM GFM

Time (mins) 33.2 332.2 115.5 49.4
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